首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerase was purified from Drosophila melanogaster embryos by a combination of phosphocellulose adsorption, Sepharose 6B gel filtration, and DEAE-cellulose chromatography. Three enzyme forms, designated enzymes I, II, and III, were separated by differential elution from DEAE-cellulose and were further purified by glycerol gradient centrifugation. Purification was monitored with two synthetic primer-templates, poly(dA) . (dT)-16 and poly(rA) . (dT)-16. At the final step of purification, enzymes I, II, and III were purified approximately 1700-fold, 2000-fold and 1000-fold, respectively, on the basis of their activities with poly(dA) . (dT)-16. The DNA polymerase eluted heterogeneously as anomalously high-molecular-weight molecules from Sepharose 6B gel filtration columns. On DEAE-cellulose chromatography enzymes I and II eluted as distinct peaks and enzyme III eluted heterogeneously. On glycerol velocity gradients enzyme I sedimented at 5.5-7.3 S, enzyme II sedimented at 7.3-8.3 S, and enzyme III sedimented at 7.3-9.0 S. All enzymes were active with both synthetic primer-templates, except the 9.0 S component of enzyme III, which was inactive with poly(rA) . (dT)-16. Non-denaturing polyacrylamide gel electrophoresis did not separate poly(dA) . (dT)-16 activity from poly(rA) . (dT)-16 activity. The DNA polymerase preferred poly(dA) . (dT)-16 (with Mg2+) as a primer-template, although it was also active with poly(rA) . (dT)-16 (with Mn2+), and it preferred activated calf thymus DNA to native or heat-denatured calf thymus DNA. All three primer-template activities were inhibited by N-ethylmaleimide. Enzyme activity with activated DNA and poly(dA) . (dT)-16 was inhibited by K+ and activity with poly(rA) . (dT)-16 was stimulated by K+ and by spermidine. The optimum pH for enzyme activity with the synthetic primer-templates was 8.5. The DNA polymerases did not exhibit deoxyribonuclease or ATPase activities. The results of this study suggest that the forms of DNA polymerase from Drosophila embryos have physical properties similar to those of DNA polymerase-alpha and enzymatic properties similar to those of all three vertebrate DNA polymerases.  相似文献   

2.
Genetic and biochemical evidence suggests there are at least three DNA polymerases required for replication in eukaryotic cells. However, Drosophila embryonic cells have a very short duration S phase which is regulated differently. To address the question of whether embryos utilize different DNA polymerases, we employed Mono Q anion exchange chromatography to resolve the DNA polymerase activities. Two types of DNA polymerase, DNA polymerase delta and DNA polymerase alpha, were distinguished by: 1. copurification of DNA primase or 3'-5'exonuclease activities; 2. immunoblot analysis with alpha-specific polyclonal antisera; 3. sensitivity to aphidicolin and BuPdGTP; and 4. processivity measurements with and without Proliferating Cell Nuclear Antigen. These observations suggest that Drosophila embryos, similar to nonembryonic cells, have both alpha- and delta-type DNA polymerases.  相似文献   

3.
DNA polymerase alpha and beta in the California urchin.   总被引:3,自引:1,他引:2       下载免费PDF全文
DNA polymerase alpha and beta were identified in the urchin, Strongylocentrotus purpuratus. The DNA polymerase beta sedimented at 3.4 S, constituted 5% of total DNA polymerase activity, and was resistant to N-ethylmaleimide and high ionic strength. The polymerase alpha sedimented at 6--8 S, was inhibited by N-ethylmalemide or 0.1 M (NH4)2SO4, and was dependent upon glycerol for preservation of activity. Both the polymerases alpha and beta were nuclear associated in embryos. The DNA polymerase alpha was markedly heterogeneous on DEAE-Sephadex ion exchange and showed three modal polymerase species. These polymerase alpha species were indistinguishable by template activity assays but the DNA polymerase associated ribonucleotidyl transferase (Biochemistry 75 : 3106-3113, 1976) was found predominantly with only one of the DNA polymerase alpha species.  相似文献   

4.
Three DNA polymerases that use poly(rA).oligo(dT) were partially purified from cytoplasmic extracts of cultured mouse cells (after removal of mitochondria), and characterized. One is similar to, and may be the same as, the mitochondrial DNA polymerase gamma. The other two enzymes, one 7.5 S and the other 3.6 S, share some properties with DNA polymerases beta and gamma, e.g. their responses to certain inhibitors; however, they are not clearly identified with any previously well-characterized mammalian DNA polymerases. It is also demonstrated that the response of DNA polymerase gamma to N-ethylmaleimide is template dependent, and that DNA polymerase alpha has an authentic (albeit small) activity with poly(rA).oligo(dT).  相似文献   

5.
A complex which is active in in vitro synthesis of adeno-associated virus (AAV) DNA was solubilized from Vero cells that were co-infected with AAV and either adenovirus (Ad5) or a herpes simplex virus type 1 (HSV-1) as the helper virus. The complexes from the Ad5 and HSV-1-infected cells sedimented at 23 S and 28 S, respectively. The optimal conditions for in vitro DNA synthesis for the two types of complex using the endogenous AAV template and the endogenous DNA polymerase, differed with respect to the effect of KCl and K2SO4 concentration. In addition the complex from HSV-1-infected cells, but not that from Ad5-infected cells, was inhibited by phosphonoacetic acid. Thus, the two complexes appear to contain different DNA polymerase activities. This was verified by phosphocellulose chromatography of the DNA polymerases solubilized from the isolated complexes. The major activity in the complex from HSV-1 infected cells was the HSV-induced DNA polymerase with lesser amounts of cellular DNA polymerase alpha and gamma or both. The complex from the Ad5-infected cells contained mainly a cellular DNA polymerase gamma.  相似文献   

6.
The rates of RNA synthesis in cultured human KB cells infected by adenovirus 2 were estimated by measuring the endogenous RNA polymerase activities in isolated nuclei. The fungal toxin α-amanitin was used to determine the relative and absolute levels of RNA synthesis by RNA polymerases I, II, and III in nuclei isolated during the course of infection. Whereas the level of endogenous RNA polymerase I activity in nuclei from infected cells remained constant relative to the level in nuclei from mock-infected cells, the endogenous RNA polymerase II and III activities each increased about 10-fold. These increases in endogenous RNA polymerase activities were accompanied by concomitant increases in the rates of synthesis in isolated nuclei of viral mRNA precursor, which was monitored by hybridization to viral DNA, and of viral 5.5S RNA, which was quantitated by electrophoretic analysis on polyacrylamide gels. The cellular RNA polymerase levels were measured with exogenous templates after solubilization and chromatographic resolution of the enzymes on DEAE-Sephadex, using procedures in which no losses of activity were apparent. In contrast to the endogenous RNA polymerase activities in isolated nuclei, the cellular levels of the solubilized class I, II, and III RNA polymerases remained constant throughout the course of the infection. Furthermore, no differences were detected in the chromatographic properties of the RNA polymerases obtained from infected or control mock-infected cells. These observations suggest that the increases in endogenous RNA polymerase activities in isolated nuclei are not due to variations in the cellular concentrations of the enzymes. Instead, it is likely that the increased endogenous enzyme activities result from either the large amounts of viral DNA template available as a consequence of viral replication or from functional modifications of the RNA polymerases or from a combination of these effects.  相似文献   

7.
The activities of DNA polymerases alpha and delta, in extracts from Chinese hamster ovary (CHO) cells, were assayed in order to determine whether these polymerases are regulated during the cell cycle. An exponential population of CHO cells was separated into enriched populations of G-1, S, and G-2/M phases of cell cycle by centrifugal elutriation. Total cell homogenates from each population were assayed for DNA polymerase activity by measuring labeled nucleotide incorporation into the exogenous templates oligo(dT).poly(dA) and DNase I activated calf thymus DNA. In these experiments, specific DNA polymerase inhibitors were added to assays of the cellular extracts to allow for the independent measurement of activities of DNA polymerases alpha and delta. Comparisons of total DNA polymerase activity from cellular extracts, sampled from each portion of the cell cycle, demonstrated no significant change with respect to the concentration of total protein. However, results indicate that the activity of DNA polymerase delta increases with respect to that of DNA polymerase alpha in the G-2/M portion of the cell cycle. This difference in relative activities of DNA polymerases alpha and delta suggests a coordinate regulation of a specific species of DNA polymerase during the cell cycle.  相似文献   

8.
《The Journal of cell biology》1994,126(6):1331-1340
Most DNA topoisomerase II (topo II) in cell-free extracts of 0-2-h old Drosophila embryos appears to be nonnuclear and remains in the supernatant after low-speed centrifugation (10,000 g). Virtually all of this apparently soluble topo II is particulate with a sedimentation coefficient of 67 S. Similar topo II-containing particles were detected in Drosophila Kc tissue culture cells, 16-19-h old embryos and extracts of progesterone-matured oocytes from Xenopus. Drosophila topo II- containing particles were insensitive to EDTA, Triton X-100 and DNase I, but could be disrupted by incubation with 0.3 M NaCl or RNase A. After either disruptive treatment, topo II sedimented at 9 S. topo II- containing particles were also sensitive to micrococcal nuclease. Results of chemical cross-linking corroborated those obtained by centrifugation. Immunoblot analyses demonstrated that topo II- containing particles lacked significant amounts of lamin, nuclear pore complex protein gp210, proliferating cell nuclear antigen, RNA polymerase II subunits, histones, coilin, and nucleolin. Northern blot analyses demonstrated that topo II-containing particles lacked U RNA. Thus, current data support the notion that nonnuclear Drosophila topo II-containing particles are composed largely of topo II and an unknown RNA molecule(s).  相似文献   

9.
Infection of mouse myeloma (MPC-11) cells with vesicular stomatitis virus resulted in rapid loss in activity of cellular RNA polymerases associated with nuclear chromatin. No RNA polymerase inhibitor could be detected in extracts of infected cell nuclei. Reconstitution experiments with solubilized RNA polymerases dissociated from chromatin of infected and uninfected cells demonstrated that vesicular stomatitis viral infection did not affect the ability of the polymerases to function on endogenous or exogenous templates; nor did infection alter the template capability of the chromatin. Measurement of the number of actively growing RNA chains revealed that infected cell nuclei contained fewer active polymerase units; however, the rates of RNA chain elongation were the same in nuclei from infected and uninfected cells. Quantitation of the number of polymerase units active in nuclear chromatin revealed that the alpha-amantin-sensitive polymerase II was more severely reduced by viral infection than were polymerases I and III.  相似文献   

10.
DNA replication of double-stranded simian virus 40 (SV40) origin-containing plasmids, which has been previously thought to be a species-specific process that occurs only with factors derived from primate cells, is catalyzed with an extract derived from embryos of the fruit fly Drosophila melanogaster. This reaction is dependent upon both large T antigen, the SV40-encoded replication initiator protein and DNA helicase, and a functional T-antigen binding site at the origin of DNA replication. The efficiency of replication with extracts derived from Drosophila embryos is approximately 10% of that observed with extracts prepared from human 293 cells. This activity is not a unique property of embryonic extracts, as cytoplasmic extracts from Drosophila tissue culture cells also support T-antigen-mediated replication of SV40 DNA. By using highly purified proteins, DNA synthesis is initiated by Drosophila polymerase alpha-primase in a T-antigen-dependent manner in the presence of Drosophila replication protein A (RP-A; also known as single-stranded DNA-binding protein), but neither human RP-A nor Escherichia coli single-stranded DNA-binding protein could substitute for Drosophila RP-A. In reciprocal experiments, however, Drosophila RP-A was able to substitute for human RP-A in reactions carried out with human polymerase alpha-primase. These results collectively indicate that many of the specific functional interactions among T antigen, polymerase alpha-primase, and RP-A are conserved from primates to Drosophila species. Moreover, the observation that SV40 DNA replication can be performed with Drosophila factors provides a useful assay for the study of bidirectional DNA replication in Drosophila species in the context of a complete replication reaction.  相似文献   

11.
Antibodies to homogeneous calf thymus DNA polymerase-beta and calf thymus DNA polymerase-alpha preparations were raised in rabbits. The antiserum against calf thymus DNA polymerase-beta cross-reacts with all vertebrate DNA polymerase-beta preparations tested, but does not cross-react with trypanosome DNA polymerase-beta, DNA polymerase-gamma, terminal transferase, yeast DNA polymerases, and Escherichia coli DNA polymerase I. The antibodies against calf thymus DNA polymerase-alpha cross-react with DNA polymerase-alpha from mouse, human, and chicken, but do not cross-react with DNA polymerase-alpha from sea urchin embryos and Drosophila embryos, DNA polymerase-beta, DNA polymerase-gamma, terminal transferase, yeast DNA polymerases, and E. coli DNA polymerase I.  相似文献   

12.
We have studied the DNA polymerase activities in cultured cells and embryos of Med-fly (Ceratitis capitata Wied.) and we observed that only DNA polymerases alpha and gamma were detectable in crude extracts. The level of DNA polymerase alpha, measured during the life cycle of the insect embryos, increased in parallel with the rate of embryonic cell proliferation, whereas DNA polymerase gamma increased at much later fertilization time, when cell differentiation is already taking place. DNA polymerase alpha, purified 100 folds from Med-fly embryos, was 10 times more resistant to aphidicolin, its specific inhibitor, than the mammalian DNA polymerase alpha. In situ visualization of the active peptides after NaDodSO4/PAGE, confirmed that only high Mr DNA polymerase fragments were present in embryo extracts and in purified preparations of DNA polymerase alpha. It appears that C. capitata cells represent a rather peculiar system in the phylogeny of DNA polymerases since they are devoid of DNA polymerase beta and present a DNA polymerase alpha partially resistant to aphidicolin.  相似文献   

13.
HEp-2 cells were infected with herpes simplex virus type 1 and extracted with 0.25% Triton X-100 and 0.1 M NaCl. The extract was sedimented on sucrose gradients, and the fractions containing the endogenous DNA polymerizing activity (replication complex) were collected. The properties of the replication complex were partially characterized. Under optimal conditions 375 pmol of dTMP per micrograms of DNA was incorporated, which corresponds to about 50% replication of preexisting viral DNA. The replication complex was shown to contain only DNA of viral origin by its density in CsCl. By using specific assays for DNA polymerases alpha, beta, gamma, and herpes simplex virus, we found that only the viral DNA polymerase copurified with the replication complex.  相似文献   

14.
A protein that stimulates DNA polymerase alpha/primase many-fold on unprimed poly(dT) was purified to homogeneity from extracts of cultured mouse cells. The protein contains polypeptides of approximately 132 and 44 kDa, and the total molecular mass of 150 kDa calculated from Stokes radius (54 A) and sedimentation coefficient (6.7 S) indicates that it contains one each of the two subunits. The purified "alpha accessory factor" (AAF) also stimulates DNA polymerase alpha/primase in the self-primed reaction with unprimed single-stranded DNA. In addition to these effects on the coordinate activities of DNA polymerase alpha and DNA primase, stimulatory effects were also demonstrated separately on both the polymerase and primase activities of the enzyme complex. However, there was no stimulation with DNase-treated ("activated") DNA under normal conditions for assay of DNA polymerase alpha. The stimulatory activity of mouse AAF is highly specific for DNA polymerase alpha/primase; no effect was observed with mouse DNA polymerases beta, gamma, or delta, nor with retroviral, bacteriophage, or bacterial DNA polymerases. Mouse AAF stimulated human DNA polymerase alpha/primase with several different templates, similar to results with the mouse enzyme. However, it had very little effect on the DNA polymerase/primase from either Drosophila embryo or from yeast.  相似文献   

15.
K C Sitney  M E Budd  J L Campbell 《Cell》1989,56(4):599-605
Three nuclear DNA polymerases have been described in yeast: DNA polymerases I, II, and III. DNA polymerase I is encoded by the POL1 gene and is essential for DNA replication. Since the S. cerevisiae CDC2 gene has recently been shown to have DNA sequence similarity to the active site regions of other known DNA polymerases, but to nevertheless be different from DNA polymerase I, we examined cdc2 mutants for the presence of DNA polymerases II and III. DNA polymerase II was not affected by the cdc2 mutation. DNA polymerase III activity was significantly reduced in the cdc2-1 cell extracts. We conclude that the CDC2 gene encodes yeast DNA polymerase III and that DNA polymerase III, therefore, represents a second essential DNA polymerase in yeast.  相似文献   

16.
Three forms of the RNA-dependent DNA polymerase were isolated from highly purified avian sarcoma virus B77 grown in duck embryo fibroblasts, using sequential chromatography on DEAE-cellulose, phosphocellulose, and poly(U)-cellulose. One form, which sedimented with about 5.2 S, contained only one species of polypeptide, with a molecular weight of 63,000; a second sedimented with about 7.8 S and contained only one species of polypeptide with a molecular weight of 81,000; and a third form, which sedimented with about 7.3 S, contained two species of polypeptides with molecular weights of 63,000 and 81,000. The molecular constitution of the three enzyme forms were therefore alpha, beta2, and alphabeta. All three possessed almost the same specific activity with poly(rA)-oligo(dT) as the primer-template. Forms alpha and alphabeta of avian sarcoma virus DNA polymerase have already been described in the literature; form beta2 is a new form. All three forms possessed ribonuclease H activity, the relative specific activities of the alpha, beta2, and alphabeta forms being about 1:4:5. All three enzyme forms were inhibited by antiserum to the alphabeta form, but whereas the alpha and alphabeta forms could be inhibited about 95%, the maximum degree of inhibition of the beta2 form was about 80%. The three enzyme forms also differed with respect to heat stability at 46 degrees, the monomeric alpha form of the enzyme being only about one-half as stable as the two dimeric forms.  相似文献   

17.
The newly identified yeast DNA polymerase III was compared to DNA polymerases I and II and the mitochondrial DNA polymerase. Inhibition by aphidicolin (I50) of DNA polymerases I, II, and III was 4, 6, and 0.6 micrograms/ml, respectively. The mitochondrial enzyme was insensitive to the drug. N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate strongly inhibited DNA polymerase I (I50 = 0.3 microM), whereas DNA polymerase III was less sensitive (I50 = 80 microM). Conditions that allowed proteolysis to proceed during the preparation of extracts converted DNA polymerase II from a sensitive form (I50 = 2.4 microM) to a resistant form (I50 = 2 mM). The mitochondrial DNA polymerase is insensitive (I50 greater than 5 mM). With most other inhibitors tested (N-ethylmaleimide, heparin, salt) only small differences were observed between the three nuclear DNA polymerases. Polyclonal antibodies to DNA polymerase III did not inhibit DNA polymerases I and II, nor were those polymerases recognized by Western blotting. Monoclonal antibodies to DNA polymerase I did not crossreact with DNA polymerases II and III. The results show that DNA polymerase III is distinct from DNA polymerase I and II.  相似文献   

18.
The rates of RNA synthesis in cultured human KB cells infected by adenovirus 2 were estimated by measuring the endogenous RNA polymerase activities in isolated nuclei. The fungal toxin alpha-amanitin was used to determine the relative and absolute levels of RNA polymerases I, II, and III in nuclei isolated during the course of infection. Whereas the level of endogenous RNA polymerase I activity in nuclei from infected cells remained constant relative to the level in nuclei from mock-infected cells, the endogenous RNA polymerase II and III activities each increased about 10-fold. These increases in endogenous RNA polymerase activities were accompanied by concomitant increases in the rates of synthesis in isolated nuclei of viral mRNA precursor, which was quantitated by electrophoretic analysis on polyacrylamide gels. The cellular RNA polymerase levels were measured with exogenous templates after solubilization and chromatographic resolution of the enzymes on DEAE-Sephadex, using procedures in which no losses of activity were apparent. In contrast to the endogenous RNA polymerase activities in isolated nuclei, the cellular levels of the solubilized class I, II, and III RNA polymerases remained constant throughout the course of the infection. Furthermore, no differences were detected in the chromatographic properties of the RNA polymerases obtained from infected or control mock-infected cells. These observations suggest that the increases in endogenous RNA polymerase activities in isolated nuclei are not due to variations in the cellular concentrations of the enzymes. Instead, it is likely that the increased endogenous enzyme activities result from either the large amounts of viral DNA template available as a consequence of viral replication of from replication or from functional modifications of the RNA polymerases or from a combination of these effects.  相似文献   

19.
20.
A DNA ligase has been purified approximately 2,100-fold, to near-homogeneity, from Drosophila melanogaster 6-12-h embryos and was shown to catalyze the formation of 3',5'-phosphodiester bonds. Polypeptides with molecular weights 83,000, 75,000, and 64,000 were observed when the purified enzyme was electrophoresed under denaturing conditions. These polypeptides were shown by partial proteolysis studies and two-dimensional gel analysis to be structurally related. The two smaller polypeptides were presumably derived from the largest, 83,000 molecular weight protein, by proteolysis during purification or in vivo. All three polypeptides formed enzyme-adenylylate complexes in the absence of DNA. Drosophila DNA ligase had a Stokes radius of 45 A, a sedimentation coefficient of 4.3 S, and a frictional ratio of 1.6, yielding a calculated molecular weight of 79,800. These studies indicate that DNA ligase from Drosophila embryos is a monomer. The purified ligase was free of detectable ATPase, nuclease, topoisomerase, and DNA polymerase activities. The enzyme exhibited an absolute requirement for ATP in the joining reaction. A divalent metal was required and N-ethylmaleimide inhibited the reaction. Formation of phosphodiester bonds by Drosophila ligase required the presence of 5'-phosphoryl and 3'-hydroxyl termini. The purified enzyme restored biological activity to endonucleolytically cleaved pBR322 DNA. The specific activity of Drosophila DNA ligase was highest in unfertilized eggs. Developing embryos had 5-10-fold more ligase activity than at any later time in development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号