首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamines are ubiquitous polycations that participate in cellular processes such as growth, differentiation and cell death. Among the different functions ascribed to these organic cations, the polyamine spermine is known to protect DNA from the damage produced by reactive oxygen species (ROS) generated by different agents including copper ions. We have found that spermine exerts opposite effects on DNA strand breakage induced by Fenton reaction depending on metal concentration. Whereas at low concentration of the transition metals, 10 microM copper or 50 microM Fe(II), 1 mM spermine exerted a protective role, at metal concentrations higher than 25 microM copper or 100 microM Fe(II), spermine stimulated DNA strand breakage. The promotion of the damage induced by spermine was independent of DNA sequence but decreased by increasing the ionic concentration of the media or by the presence of metal-chelating agents. Moreover, spermine did not increase the oxidation of 2-deoxyribose by metal/H2O2 when DNA was substituted by 2-deoxyribose as a target for damage. Our results corroborate that spermine may protect DNA and 2-deoxyribose from the damage induced by ROS but also demonstrate that under certain conditions spermine may promote DNA strand breakage. The fact that this promoting effect of spermine on ROS-induced damage was observed only in the presence of DNA suggests that this polyamine under certain conditions may facilitate the interaction of copper and iron ions with DNA leading to the formation of ROS in close proximity to DNA.  相似文献   

2.
We synthesized seven homologs of spermine (H2N(CH2)3NH(CH2)nNH(CH2)3NH2, where n = 2-9; n = 4 for spermine) and studied their effects on melting temperature (Tm), conformation, and precipitation of poly(dA).2poly(dT). The triplex DNA melting temperature, Tm1 was 34.4 degrees C in the presence of 150 mM KCl. Addition of spermine homologs increased Tm1 in a concentration-dependent and structure-dependent manner, with 3-6-3 (n = 6) exerting optimal stabilization. The dTm1/dlog[polyamine] values were 9-24 for these compounds. The duplex melting temperature, Tm2 was insensitive to homolog concentration and structure, suggesting their ability to stabilize triplex DNA without altering the stability of the underlying duplex. Circular dichroism spectral studies revealed psi-DNA formation in a concentration-dependent and structure-dependent manner. Phase diagrams were constructed showing the critical ionic/polyamine concentrations stabilizing different structures. These compounds also exerted structural specificity effects on precipitating triplex DNA. These data provide new insights into the ionic/structural determinants affecting triplex DNA stability and indicate that 3-6-3 is an excellent ligand to stabilize poly(dA).2poly(dT) triplex DNA under physiologic ionic conditions for antigene therapeutics.  相似文献   

3.
1. The activation of human peripheral blood lymphocytes by phytohaemagglutinin in vitro was accompanied by striking increases in the concentrations of the natural polyamines putrescine, spermidine and spermine. 2. The enhanced accumulation of polyamines could be almost totally abolished by dl-alpha-difluoromethylornithine, a newly discovered irreversible inhibitor of l-ornithine decarboxylase (EC 4.1.1.17), or by methylglyoxal bis(guanylhydrazone) {1,1'-[(methylethanediylidene)dinitrilo]diguanidine}, an inhibitor of S-adenosyl-l-methionine decarboxylase (EC 4.1.1.50). The inhibition of polyamine accumulation was associated with a marked suppression of DNA synthesis, which was partially or totally reversed by low concentrations of exogenous putrescine, spermidine, spermine and cadaverine and by higher concentrations of 1,3-diaminopropane. 3. In contrast with some earlier studies, we found that methylglyoxal bis(guanylhydrazone), at concentrations that were sufficient to prevent polyamine accumulation, also caused a clear inhibition of protein synthesis in the activated lymphocytes. Similar results were obtained with difluoromethylornithine. The decrease in protein synthesis caused by both compounds preceded the impairment of DNA synthesis. The inhibition of protein synthesis by difluoromethylornithine was fully reversed by exogenous putrescine, spermidine and spermine, and that caused by methylglyoxal bis(guanylhydrazone) by spermidine and spermine. In further support of the idea that the inhibition of protein synthesis by these compounds was related to the polyamine depletion, we found that difluoromethylornithine caused a dose-dependent decrease in the incorporation of [(14)C]leucine into lymphocyte proteins which closely correlated with the decreased concentrations of cellular spermidine. 4. Difluoromethylornithine and methylglyoxal bis(guanylhydrazone) also elicited a variable depression in the incorporation of [(3)H]uridine and [(14)C]adenine into total RNA. The apparent turnover of lymphocyte RNA remained essentially unchanged in spite of severe polyamine depletion brought about by difluoromethylornithine. 5. The present results, as well as confirming the anti-proliferative action of the inhibitors of polyamine biosynthesis, suggest that polyamine depletion may interfere with reactions at different levels of gene expression.  相似文献   

4.
DNA condensation, precipitation, and aggregation are related phenomena involving DNA-DNA interactions in the presence of multivalent cations, and studied for their potential implications in DNA packaging in the cell. Recent studies have shown that the condensation/aggregation is a prerequisite for the cellular uptake of DNA for gene therapy applications. To elucidate the ionic and structural factors involved in DNA aggregation, we studied the precipitation and resolubilization of high molecular weight and sonicated calf thymus DNA, two therapeutic oligonucleotides, and poly(dA).2Poly(dT) triplex DNA in the presence of the tetravalent polyamine spermine using a centrifugation assay, Tm measurements, and CD spectroscopy. The ability of spermine to provoke DNA precipitation was in the following order: triplex DNA > duplex DNA > single-stranded DNA. In contrast, their resolubilization at high polyamine concentrations followed a reverse order. The effective concentration of spermine to precipitate DNA increased with Na+ in the medium. Tm data indicated the DNA stabilizing effect of spermine even in the resolubilized state. CD spectroscopy revealed a series of sequential conformational alterations of duplex and triplex DNA, with the duplex form regaining the B-DNA conformation at high concentrations (approximately 200 mM) of spermine. The triplex DNA, however, remained in a Psi-DNA conformation in the resolubilized state. Chemical structural specificity effects were exerted by spermidine and spermine analogues in precipitating and resolubilizing sonicated calf thymus DNA, with N4-methyl substitution of spermidine and a heptamethylene separation of the imino groups of spermine having the maximal difference in the precipitating ability of the analogues compared to spermidine and spermine, respectively. Therapeutically important bis(ethyl) substitution reduced the precipitating ability of the analogues compared to spermine. The effect of the cationicity of polyamines was evident with the pentamines being much more efficacious than the tetramines and triamines. These results provide new insights into the mechanism of DNA precipitation by polyamines, and suggest the importance of polyamine structure in developing gene delivery vehicles for therapeutic applications.  相似文献   

5.
The precipitation of plasma fibronectin by heparin in dependence on various parameters was investigated. Rising heparin concentration augmented the precipitates up to a maximum beyond which precipitation decreased. Yields close to 80% were obtained at low temperatures, but some precipitation was observed at 37 degrees C as well. Insolubilization was considerably dependent on the ionic strength, indicating that electrostatic forces play a major role in the aggregation of fibronectin. Calcium already prevented precipitation by heparin at low concentrations. If precipitation was performed on hydrophobized glass cover slides, the formation of fibrils visible by phase-contrast microscopy was observed. On hydrophilic surfaces amorphous precipitates were generally obtained, most likely due to trapping of aggregates by adsorption prior to their arrangement to fibrils. The results are discussed on the basis of a model assuming that heparin induces a conformational rearrangement of plasma fibronectin so that masked binding sites responsible for self-association become exposed.  相似文献   

6.
Polyamines are abundant metabolites that directly influence gene expression. Although the role of polyamines in DNA condensation is well known, their role in RNA folding is less understood. Non-denaturing gel electrophoresis was used to monitor the equilibrium folding transitions of the Tetrahymena ribozyme in the presence of polyamines. All of the polyamines tested induce near-native structures that readily convert to the native conformation in Mg(2+). The stability of the folded structure increases with the charge of the polyamine and decreases with the size of the polyamine. When the counterion excluded volume becomes large, the transition to the native state does not go to completion even under favorable folding conditions. Brownian dynamics simulations of a model polyelectrolyte suggest that the kinetics of counterion-mediated collapse and the dimensions of the collapsed RNA chains depend on the structure of the counterion. The results are consistent with delocalized condensation of polyamines around the RNA. However, the effective charge of the counterions is lowered by their excluded volume. The stability of the folded RNA is enhanced when the spacing between amino groups matches the distance between adjacent phosphate groups. These results show how changes in intracellular polyamine concentrations could alter RNA folding pathways.  相似文献   

7.
The NMR pulsed field gradient self-diffusion method has been used to study the self-diffusion of the polyamine spermidine and the polyamine analog methylspermidine (completely N-methylated spermidine). The self-diffusion coefficient, D, was measured in solutions of calf thymus DNA prepared from nucleosome core particles (with an average length of 120 base pairs) as a function of the concentration ratio of polyamine to DNA phosphate. A study of the self-diffusion quotient, D/Do (where Do is the diffusion coefficient for free polyamine, not associated with DNA), in additions of spermidine and methyl-spermidine to solutions of NaDNA/NaCl, gave almost identical results with complete association of polyamine to DNA in the initial part of the titrations, indicating similar affinities for DNA. A large influence on the measured self-diffusion coefficients was detected for methylspermidine in NaDNA solutions with different concentrations of NaCl, which shows a considerable salt effect on the polyamine-DNA association. No notable differences in D/Do for methylspermidine were observed in competitive titrations of solutions of Li- and NaDNA, indicating that sodium and lithium ions behave similarly in their interactions with DNA. In titration experiments of methylspermidine into MgDNA solution, the results showed that the polyamine association is less effective than in the case of NaDNA, because of competition from magnesium binding to DNA. Comparisons with calculations based on the electrostatic Poisson-Boltzmann cell model were performed. It is suggested that the interaction is primarily of electrostatic nature, with no binding to specific sites on the DNA molecule.  相似文献   

8.
Fraga MF  Cañal MJ  Rodríguez R 《Planta》2002,215(4):672-678
DNA methylation and polyamine levels were analysed before and after Pinus radiata D. Don. phase change in order to identify possible molecular and physiological phase markers. Juvenile individuals (without reproductive ability) were characterised by a degree of DNA methylation of 30-35% and a ratio of free polyamines to perchloric acid-soluble polyamine conjugates greater than 1, while mature trees (with reproductive ability) had 60% 5-methylcytosine and a ratio of free polyamines to perchloric acid-soluble polyamine conjugates of less than 1. Results obtained with trees that attained reproductive capacity during the experimental period confirmed that changes in the degree of DNA methylation and polyamine concentrations found among juvenile and mature states come about immediately after the phase change. We suggest that both indicators may be associated with the loss of morphogenic ability during ageing, particularly after phase change, through a number of molecular interactions, which are subsequently discussed.  相似文献   

9.
The effect of a series of aminooxy analogues of the biogenic polyamines spermidine and spermine on the conformation of calf thymus DNA is studied. These new molecules are isosteric and charge insufficient analogues that are suitable to study the roles of both charge distribution and structural requirements in the molecular physiology of the biogenic polyamines. They are also evidenced as useful tools to inhibit polyamine biosynthesis and cell growth. Circular dichroism (CD) spectra of solutions containing DNA and the aminooxy analogues at different concentrations (100-1000 microM) and different pH values, (5-7.5) are recorded. We use both sonicated and highly polymerized calf thymus DNA. The CD spectra of sonicated DNA showed the formation of Psi-DNA, a highly ordered aggregated structure similar to liquid crystals, in the presence of the aminooxy analogues. Aggregation induced by an aminooxy derivative of spermine is followed by DNA collapse when increasing the polyamine concentration. The features of Psi-DNA are not detected for highly polymerized DNA. Temperature melting measurements support a high degree of structural order of the aggregates. The CD experiments indicate that dications are unable to induce major changes on the macromolecular structure of DNA. In addition, aggregation is only observed when the trimethylene moiety is present between two adjacent positive charges. The observed differences among the CD spectra of DNA solutions with different aminooxy derivatives of spermidine indicate different roles for different amino groups of this biogenic polyamine when interacting with DNA. Our results support the idea that aminooxy analogues can be used as good models in studying the physiological functions of biogenic polyamines.  相似文献   

10.
Condensation of DNA by spermine has been studied by electric dichroism, electric birefringence and rotational relaxation times at 1 mM ionic strength. Using Manning's theory, we found that condensation occurs for a fraction of neutralized phosphate charges (r) equal to 0.90, in good agreement with previous studies using spermidine, synthetic polyamines and trivalent cations (e.g. Co(NH3)36 +, Tb3 +). Our results are compatible with the presence in solution of torus-shaped condensed structures in a narrow range of spermine concentration; further addition of the polyamine produced precipitation due to the self-aggregation of several toroids. For spermine concentrations lower than that required for collapse, important changes of the orientation mechanism in the electric field and of DNA stiffness were observed. Whereas free DNA was mainly oriented by a fast-induced polarizability mechanism, DNA-spermine complexes displayed an important permanent dipole component, in the spermine concentration range where extension of the DNA molecules was present. The birefringence relaxation times suggested that, in the first step, the stiffness of the DNA molecules increased, and then, at higher spermine concentration, bending of the DNA molecules occurred so that condensation into toroidal particles became possible.  相似文献   

11.
Polyamine induced aggregation of DNA.   总被引:5,自引:5,他引:0       下载免费PDF全文
Polyamine induced aggregation of various DNAs has been studied under conditions usually employed in many enzymatic assays where DNA is one of the substrates. Spermine was by far the most efficient polyamine in causing aggregation followed by spermidine and cadaverine. All double-stranded and naturally occurring single-stranded DNAs were found to aggregate. No aggregation of single-stranded homodeoxypolymers could be detected under the same conditions. The concentration of polyamine at which the aggregation commenced was found to be a linear function of the DNA concentration. The slope of the curves depended on the nature of the polyamine, DNA the concentration of Mg++ and the ionic strength.  相似文献   

12.
The Poisson Boltzmann (PB) cell model of polyelectrolyte solution has been used for calculation of the electrostatic free energy difference, Delta G(el), between double- and single-stranded DNA. The calculations have been performed for conditions relevant to describe the DNA helix-coil transition in NaCl solution in the presence of the natural polyamines putrescine(2+), spermidine(3+), spermine(4+) and their synthetic homologs with different spacing between the charged amino groups, for which experimental values of the DNA 'melting' transition temperature (T(m)) are available. Using the PB theory and the polyamine ion radius as an adjusting parameter provides quantitative agreement between experimental and theoretical T(m)--salt concentration dependencies only by using physically unreasonable radii for the polyamine. Thus, modeling the linear and flexible polyamines as charged spheres within the PB cell model is an implausible oversimplification. We propose another explanation for the experimental observations, still within the frame of the 'primitive' PB polyelectrolyte theory. This explanation is based on an analysis of the Delta G(el) dependence on the stoichiometry of polyamine-polyanion binding to double- and single-stranded DNA.  相似文献   

13.
1. An increase in polyamine concentration, caused by inhibiting the amine oxidase activities with iproniazid, increased the incorporation of [3H]orotic acid into chick-embryo RNA and DNA. On the other hand, a decrease in polyamine concentration, obtained by causing an increase in amine oxidase activities, decreased [3H]orotic acid incorporation into nucleic acids. This was particularly evident for nuclear DNA and ribosomal RNA. 2. Polyribosomal patterns obtained by sucrose-density-gradient centrifugation showed highest radioactivity in the regions of 259s and 280s aggregates in those embryos in which the polyamine contents were enhanced, whereas a decrease in the radioactivity was observed when the polyamine concentrations were decreased. 3. The activity of DNA-dependent RNA polymerase, assayed in the same experimental conditions, also varied in the same fashion with changes in polyamine concentration.  相似文献   

14.
We present experiments on the bias-induced release of immobilized, single-stranded (ss) 24-mer oligonucleotides from Au-surfaces into electrolyte solutions of varying ionic strength. Desorption is evidenced by fluorescence measurements of dye-labeled ssDNA. Electrostatic interactions between adsorbed ssDNA and the Au-surface are investigated with respect to 1), a variation of the bias potential applied to the Au-electrode; and 2), the screening effect of the electrolyte solution. For the latter, the concentration of monovalent salt in solution is varied from 3 to 1600 mM. We find that the strength of electric interaction is predominantly determined by the effective charge of the ssDNA itself and that the release of DNA mainly occurs before the electrochemical double layer has been established at the electrolyte/Au interface. In agreement with Manning's condensation theory, the measured desorption efficiency (etarel) stays constant over a wide range of salt concentrations; however, as the Debye length is reduced below a value comparable to the axial charge spacing of the DNA, etarel decreases substantially. We assign this effect to excessive counterion condensation on the DNA in solutions of high ionic strength. In addition, the relative translational diffusion coefficient of ssDNA in solution is evaluated for different salt concentrations.  相似文献   

15.
Density-inhibited cultures of 3T3 cells were stimulated with calf serum or with one of 11 other agents reported to cause cells in culture to divide. In agreement with previous studies, activation of polyamine synthesis and cell number increase showed a similar dose-response to calf serum. In contrast, when the results from all agents were considered together, increases in ornithine decarboxylase activity and putrescine and spermidine concentrations correlated poorly with the stimulation of DNA synthesis and proliferation. However, the increases in polyamine parameters correlated highly with the stimulation of rRNA synthesis by both serum and the other agents. These latter results are consistent with previous evidence of a temporal relationship between polyamine and RNA concentrations and synthesis. Increases in polyamine synthesis were not sufficient to cause cell division in resting 3T3 cells, a result similar to previous observations with rat tissues. Also, results with glucocorticoids demonstrate that induction of cell division in resting 3T3 cells does not require activation of either polyamine or RNA synthesis.  相似文献   

16.
The presence of polyamines in living cells is crucial for survival. Due to their high net charge at physiological pH, polyamines effectively charge neutralize the phosphodiester backbone of DNA in an interaction that also may protect the DNA from external damage. We here present a study illustrating the influence of spermidine and spermine on the platination reactions of the model oligonucleotides d(T(6)GT(6)), d(T(12)GT(12)), and d(T(24)GT(24)), and the pUC18 DNA plasmid. The aquated forms of the anticancer active compounds cisplatin (cis-[Pt(NH(3))(2)Cl(2)]) and the major Pt(II) metabolite of JM216 (cis-[PtCl(2)(NH(3))(c-C(6)H(11)NH(2))], JM118) were used as platination reagents. The study shows that the kinetics for formation of the coordinative Pt-DNA adduct are strongly influenced by the presence of sub-millimolar polyamine concentrations. At polyamine concentrations in the muM-range, the reactions remain salt-dependent. In contrast, platination of pUC18 is effectively prevented at mM concentrations of both spermidine and spermine with the latter as the more potent inhibitor. The results suggest that variations of intracellular polyamine concentrations may have a profound influence on the efficacy by which cationically charged reagents interfere with DNA function in vivo by modulation of the preassociation conditions.  相似文献   

17.
On the subcellular localization of the polyamines   总被引:3,自引:0,他引:3  
Putrescine, spermidine and spermine were determined in the nuclear fraction of rat liver which was obtained by density gradient centrifugation in non-aqueous media, i.e. under conditions which avoid migration of water-soluble compounds. Calculations of the distribution of the polyamines between nuclear and extranuclear compartments were based on the assumption that the DNA is concentrated in the nuclei. No significant losses of the polyamines occurred during fractionation. From the polyamine determination in tissue and nuclear fraction it appeared that 16-17% of the liver spermidine and spermine, and about 8% of the putrescine content was localized in the nuclei. The spermidine/spermine-ratios in nuclei and whole tissue were not significantly different. Pretreatment of the animals with inhibitors of ornithine decarboxylase caused a decrease of putrescine exclusively in the extranuclear compartments, in agreement with a higher proportion of the inhibitors in the cytoplasm. Since the nuclear volume of rat liver corresponds to about 5% of total liver volume, the concentration of spermidine and spermine is higher in the nucleus than in extranuclear compartments. Published histochemical localizations of the polyamines suggested very low polyamine concentrations in the nuclei of non-dividing liver and HeLa cells, but dramatic polyamine accumulations in metaphase and anaphase nuclei. These results are in disagreement with previously reported autoradiographic data, subcellular localizations based on density gradient centrifugations, and with our present results. Since subcellular localization is a key issue in all attempts to clarify cellular functions of the polyamines the careful revision of the techniques involved in subcellular polyamine localizations seems imperative.  相似文献   

18.
Kuniyasu Soda 《Amino acids》2020,52(2):213-224
The polyamines spermidine and spermine are synthesized in almost all organisms and are also contained in food. Polyamine synthesis decreases with aging, but no significant decrease in polyamine concentrations were found in organs, tissues, and blood of adult animals and humans. We found that healthy dietary patterns were associated with a preference for polyamine-rich foods, and first reported that increased polyamine intake extended the lifespan of mice and decreased the incidence of colon cancer induced by repeated administration of moderate amounts of a carcinogen. Recent investigations have revealed that changes in DNA methylation status play an important role in lifespan and aging-associated pathologies. The methylation of DNA is regulated by DNA methyltransferases in the presence of S-adenosylmethionine. Decarboxylated S-adenosylmethionine, converted from S-adenosylmethionine by S-adenosylmethionine decarboxylase, provides an aminopropyl group to synthesize spermine and spermidine and acts to inhibit DNMT activity. Long-term increased polyamine intake were shown to elevate blood spermine levels in mice and humans. In vitro studies demonstrated that spermine reversed changes induced by the inhibition of ornithine decarboxylase (e.g., increased decarboxylated S-adenosylmethionine, decreased DNA methyltransferase activity, increased aberrant DNA methylation), whose activity decreases with aging. Further, aged mice fed high-polyamine chow demonstrated suppression of aberrant DNA methylation and a consequent increase in protein levels of lymphocyte function-associated antigen 1, which plays a pivotal role on inflammatory process. This review discusses the relation between polyamine metabolism and DNA methylation, as well as the biological mechanism of lifespan extension induced by increased polyamine intake.  相似文献   

19.
The linker histones are involved in the salt-dependent folding of the nucleosomes into higher-order chromatin structures. To better understand the mechanism of action of these histones in chromatin, we studied the interactions of the linker histone H1 with DNA at various histone/DNA ratios and at different ionic strengths. In direct competition experiments, we have confirmed the binding of H1 to superhelical DNA in preference to linear or nicked circular DNA forms. We show that the electrophoretic mobility of the H1/supercoiled DNA complex decreases with increasing H1 concentrations and increases with ionic strengths. These results indicate that the interaction of the linker histone H1 with supercoiled DNA results in a soluble binding of H1 with DNA at low H1 or salt concentrations and aggregation at higher H1 concentrations. Moreover, we show that H1 dissociates from the DNA or nucleosomes at high salt concentrations. By the immobilized template pull-down assay, we confirm these data using the physiologically relevant nucleosome array template.  相似文献   

20.
BACKGROUND: Plasmid DNA (pDNA) dissociation from polyamine gene vectors after cellular uptake has not been well characterized. A more detailed understanding of this process could lead to more efficient gene transfer agents. Since RNA is present in the cytoplasm at high concentrations and due to its structural similarity to DNA, we were interested in its conceivable interaction with polyamine gene vectors. METHODS: In a first set of experiments gene vectors were incubated in cell lysate and pDNA release was investigated by Southern blot analysis with or without RNase A pretreatment and by confocal laser scanning microscopy. Further, interaction of polyamine gene vectors with RNA was investigated by fluorescence quenching assay. These methods were complemented by a functionality assay using isolated nuclei. RESULTS: The incubation of gene vectors with cell lysate resulted in the dissociation of pDNA from the complexes. This effect was abolished when the cell lysate was pretreated with RNase A. The addition of RNA in the absence of cell lysate led also to a dissociation of pDNA. This process commenced instantaneously after the addition of RNA as analyzed by fluorescence quenching. When gene vectors were incubated in cell lysate containing isolated nuclei, the dissociation of pDNA from the polyamine gene vectors occurred preferentially extranuclearally as confirmed by confocal laser scanning microscopy. These results were further corroborated in a functional assay. CONCLUSIONS: These data suggest that RNA induces pDNA dissociation from the polyamine gene vectors. Furthermore, this process apparently occurs in the cytoplasm before the gene vectors enter the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号