首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Jing W  DeAngelis PL 《Glycobiology》2003,13(10):661-671
Type A Pasteurella multocida produces a hyaluronan (HA) capsule to enhance infection. The 972-residue HA synthase, pmHAS, polymerizes the linear HA polysaccharide composed of alternating beta3N-acetylglucosamine (GlcNAc)-beta4glucuronic acid (GlcUA). We demonstrated previously that pmHAS possesses two independent glycosyltransferase sites. Here we further define the sites and putative motifs. Deletion of residues 1-117 does not affect HA polymerizing activity. The carboxyl-terminal boundary of the GlcUA-transferase resides within residues 686-703. Both transferase sites contain a DXD motif essential for HA synthase activity. D247N or D249N mutants possessed only GlcUA-transferase activity, whereas D527N or D529N mutants possessed only GlcNAc-transferase activity, further confirming our assignment of the two active sites within the synthase polypeptide. A potential role of the DXD motif in substrate binding was supported by experiments utilizing high UDP-sugar concentrations that partially rescued the activity of certain mutants. The WGGED sequence motif is involved in GlcNAc-transferase activity because mutants with substitutions at E369 or D370 possessed only GlcUA-transferase activity. Type F P. multocida synthesizes an unsulfated chondroitin (beta3GalNAc-beta4GlcUA) capsule. A chimeric enzyme consisting of residues 1-427 of pmHAS and residues 421-704 of pmCS, the homologous chondroitin synthase, was an active HA synthase. The converse chimeric enzyme consisting of residues 1-420 of pmCS and residues 428-703 of pmHAS was a functional chondroitin synthase. Analyses of a panel of pmHAS/pmCS chimeric enzymes identified a 44-residue region, corresponding to pmHAS residues 225-265, involved in UDP-hexosamine selectivity. Overall, these findings further support the model of two independent transferase sites within a single polypeptide.  相似文献   

2.
Glycosaminoglycans (GAGs) are linear polysaccharides made by all animal cells. GAGs bind to hundreds of proteins, such as growth factors, cytokines, chemokines, extracellular matrix components, protease inhibitors, proteases, and lipoprotein lipase, through carbohydrate and protein interactions. These interactions control many multicellular processes. The increased use of GAGs isolated from cells and small tissue samples in bioassays and binding experiments demands a sensitive and robust quantification method. We have developed such a method, which is based on a popular assay for amino acid analysis. We have refined it to enhance GAG quantification. It allows the quantification of glucosamine- and galactosamine-containing GAGs after the reversed-phase separation of their fluorescent isoindole derivatives. The derivatives are created by the reaction of o-phthaldialdehyde and 3-mercaptopropionic acid (3MPA) with the amino group of hexosaminitol monosaccharides generated from GAG acid hydrolysis and sodium borohydride reduction. The advantages of our method include automatic derivitization, a simple chromatograph with clean separation of glucosaminitol and galactosaminitol derivatives from contaminating amino acids, excellent sensitivity with 0.04 pmol detection, and linearity from 2.5 to 1280 pmol. A major advantage is that it can be readily implemented in any laboratory with typical reversed-phase high performance liquid chromatography (HPLC) equipment.  相似文献   

3.
The cell wall mycolyl-arabinogalactan (AG)--peptidoglycan complex is essential in mycobacterial species, such as Mycobacterium tuberculosis, and is the target of several antitubercular drugs. For instance, ethambutol (EMB) targets AG biosynthesis through inhibition of the arabinofuranosyltransferases Mt-EmbA and Mt-EmbB, as well as the single Emb from Corynebacterium glutamicum. Here, we present for the first time an experimental analysis of the membrane topology of Emb. The domain organization clearly positions highly conserved loop regions, like the recognized glycosyltransferase C motif and the hydrophilic C-terminus towards the periplasmic side of the cell. Moreover, the assignment and orientation of hydrophobic segments identified a loop region, which might dip into the membrane and could possibly line a transportation channel for the emerging substrate. Site-directed mutations introduced into plasmid-encoded Cg-emb were analyzed in a C. glutamicumDeltaemb strain for their AG glycosyl composition and linkage analysis. Mutations analyzed did not perturb galactan synthesis; however, D297A produced a dramatically reduced arabinan content and prevented growth, indicating an inactive Emb. A second D298A mutation also drastically reduced arabinan content; however, growth of the corresponding mutant was not altered, indicating a certain tolerance of this mutation in terms of Emb function. A W659L-P667A-Q674E triple mutation in the chain length regulation motif (Pro-motif) resulted in a reduced arabinose deposition in AG but retained all arabinofuranosyl linkages. Taken together, the data clearly define important residues of Emb involved in arabinan domain formation and, for the first time, shed new light on the topology of this important enzyme.  相似文献   

4.
C-Mannosylation is a novel type of glycosylation in proteins. There are several examples of proteins in which the specific motif Trp-X-X-Trp is mannosylated at the first Trp to produce C-mannosylated Trp (CMW). Although C-mannosylation modifies Trp-X-X-Trp, predicted to be a functional motif of various integral proteins such as cytokine receptors, the physiological or pathological relevance of C-mannosylation in the cell is still not known. In this study, to characterize C-mannosylation in biological samples, we generated specific polyclonal antibodies against CMW by using a chemically synthesized CMW as an antigen. Using the antibody, we investigated the effect of hyperglycemic conditions on protein C-mannosylation in cultured cells and diabetic Zucker fatty rats. We found that protein C-mannosylation was increased in macrophage-like RAW264.7 cells under hyperglycemic conditions compared to low-glucose conditions. Furthermore, C-mannosylation was increased in the aortic vessel wall of Zucker fatty rats. Thrombospondin-1 was identified as a protein modified with C-mannosylation, and its expression was also increased in the aortic tissues of Zucker fatty rats. These results indicate that C-mannosylation is increased in specific tissues or cell types under hyperglycemic conditions, suggesting a pathological role for the increased C-mannosylation in the development of diabetic complications.  相似文献   

5.
6.
Maternally inherited mutations in the mtDNA-encoded ATPase 6 subunit of complex V (ATP synthase) of the respiratory chain/oxidative phosphorylation system are responsible for a subgroup of severe and often-fatal disorders characterized predominantly by lesions in the brain, particularly in the striatum. These include NARP (neuropathy, ataxia, and retinitis pigmentosa), MILS (maternally inherited Leigh syndrome), and FBSN (familial bilateral striatal necrosis). Of the five known pathogenic mutations causing these disorders, four are located at two codons (156 and 217), each of which can suffer mutations converting a conserved leucine to either an arginine or a proline. Based on the accumulating data on both the structure of ATP synthase and the mechanism by which rotary catalysis couples proton flow to ATP synthesis, we propose a model that may help explain why mutations at codons 156 and 217 are pathogenic.  相似文献   

7.
The fundamental importance of correct protein glycosylation is abundantly clear in a group of diseases known as congenital disorders of glycosylation (CDGs). In these diseases, many biological functions are compromised, giving rise to a wide range of severe clinical conditions. By performing detailed analyses of the total serum glycoproteins as well as isolated transferrin and IgG, we have directly correlated aberrant glycosylation with a faulty glycosylation processing step. In one patient the complete absence of complex type sugars was consistent with ablation of GlcNAcTase II activity. In another CDG type II patient, the identification of specific hybrid sugars suggested that the defective processing step was cell type-specific and involved the mannosidase III pathway. In each case, complementary serum proteome analyses revealed significant changes in some 31 glycoproteins, including components of the complement system. This biochemical approach to charting diseases that involve alterations in glycan processing provides a rapid indicator of the nature, severity, and cell type specificity of the suboptimal glycan processing steps; allows links to genetic mutations; indicates the expression levels of proteins; and gives insight into the pathways affected in the disease process.  相似文献   

8.
To facilitate deciphering the information content in the glycome, thin film-coated photoactivatable surfaces were applied for covalent immobilization of glycans, glycoconjugates, or lectins in microarray formats. Light-induced immobilization of a series of bacterial exopolysaccharides on photoactivatable dextran-coated analytical platforms allowed covalent binding of the exopolysaccharides. Their specific galactose decoration was detected with fluorescence-labeled lectins. Similarly, glycoconjugates were covalently immobilized and displayed glycans were profiled for fucose, sialic acid, galactose, and lactosamine epitopes. The applicability of such platforms for glycan profiling was further tested with extracts of Caco2 epithelial cells. Following spontaneous differentiation or on pretreatment with sialyllactose, Caco2 cells showed a reduction of specific glycan epitopes. The changed glycosylation phenotypes coincided with altered enteropathogenic E. coli adhesion to the cells. This microarray strategy was also suitable for the immobilization of lectins through biotin-neutravidin-biotin bridging on platforms functionalized with a biotin derivatized photoactivatable dextran. All immobilized glycans were specifically and differentially detected either on glycoconjugate or lectin arrays. The results demonstrate the feasibility and versatility of the novel platforms for glycan profiling.  相似文献   

9.
The expression of polysialic acid (PSA) on neural cell adhesion molecule (NCAM) is known to attenuate cell-cell interactions. During neural development the widespread expression of PSA-NCAM creates permissive conditions for the migration of neuronal and glial precursors and the guidance and targeting of axons. NCAM polysialylation can occur via either of two specific sialyltransferases, ST8SiaII (STX) and ST8SiaIV (PST), and the purpose of this study was to determine if retroviral delivery of either PST or STX could induce PSA expression in vivo and thereby alter tissue plasticity. Retroviruses expressing GFP-PST or GFP-STX were injected into embryonic retina, and development was evaluated by examining neuroepithelial structure, the expression of markers for specific cell types, cellular proliferation, and apoptosis. Chick retina was chosen because it down-regulates PSA early in its development and has a highly stereotyped program of morphogenesis. Retroviral expression of PST induced PSA expression in retina and resulted in severe but localized alterations in retinal morphogenesis, including an early disruption of radial glial cell morphology, highly disorganized retinal layers, and invasion of pigmented cells into the neural retina. In contrast, retroviral delivery of STX did not induce PSA expression or affect morphogenesis. These findings demonstrate that expression of PSA is sufficient to promote morphological alterations in a relatively nonplastic neural tissue.  相似文献   

10.
Popova AV  Hincha DK 《Glycobiology》2005,15(11):1150-1155
Glycolipids are important components of almost all biological membranes. They possess unique properties that have only been incompletely characterized so far. The plant glycolipid digalactosyldiacylglycerol (DGDG) strongly influences the physical behavior of phospholipid model membranes in both the dry and hydrated state. It was, however, unclear whether the strong effect of DGDG on the gel to liquid-crystalline phase transition temperature (Tm) in dry phosphatidylcholine (PC) bilayers is mainly due to the high degree of unsaturation of the DGDG fatty acyl chains or to interactions between the DGDG and PC headgroups. Also, no information on the relative effectiveness of membrane bound and free sugars on membrane phase behavior was available. We have used Fourier-transform infrared spectroscopy (FTIR) to investigate the phase properties and H-bonding patterns in dry membranes made from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) containing one saturated and one monounsaturated (16:0/18:1) fatty acid and different fractions of DGDG or 1,2-dilinolenoyl-sn-glycero-3-phosphatidylcholine (DLPC) (18:3/18:3). This was compared to the effects of galactose (Gal) and digalactose (diGal). All additives depressed Tm of the dry membranes, but DGDG was much more effective than DLPC or Gal. diGal had a similar effect as DGDG, pointing to the sugar headgroup as the component with the strongest influence on membrane phase behavior. A combination of DLPC and diGal, which should theoretically be equivalent to DGDG, was much more effective than the galactolipid. H-bonding interactions with the P = O group of PC were also stronger for free diGal than for DGDG, indicating that the free sugar may be structurally more flexible to adopt an optimal conformation for interactions with the PC headgroup.  相似文献   

11.
MGL1/CD301a is a C-type lectin that recognizes galactose and N-acetylgalactosamine as monosaccharides and is expressed on limited populations of macrophages and dendritic cells at least in adult mice. In this study, pregnant mice with Mgl1+/- genotype were mated with Mgl1+/- or Mgl1-/- genotype males, and the embryos were used to assess a hypothesis that this molecule plays an important role in the clearance of apoptotic cells. After X-ray irradiation at 1 Gy of developing embryos at 10.5 days post coitus (d.p.c.), the number of Mgl1-/- pups was significantly reduced as compared with Mgl1+/+ pups. Distributions of MGL1-positive cells, MGL2-positive cells, and apoptotic cells were histologically examined in irradiated Mgl1+/+ embryos. MGL1-positive cells were detected in the neural tube in which many cells undergo apoptosis, whereas MGL2-positive cells were not observed. Biotinylated recombinant MGL1 bound a significant portion of the apoptotic cells. When Mgl1+/+ and Mgl1-/- embryos were examined for the presence of apoptotic cells, similar numbers of apoptotic cells gave rise, but the clearance of these cells was slower in Mgl1-/- embryos than in Mgl1+/+ embryos. These results strongly suggest that MGL1/CD301a is involved in the clearance of apoptotic cells. This process should be essential in the repair and normal development of X-ray-irradiated embryos.  相似文献   

12.
Ascidians are urochordates, marine invertebrates with non-feeding motile chordate tadpole larvae, except in the family Molgulidae. Urodele, or tailed, Molgulids have typical ascidian chordate tadpole larvae possessing tails with muscle cells, a notochord, and a dorsal hollow nerve cord. In contrast, anural (or tail-less) Molgulids lack a tail and defining chordate features. Molecular phylogenies generated with 18S and 28S ribosomal sequences indicate that Molgulid species fall into at least four distinct clades, three of which have multiple anural members. This refined and expanded phylogeny allows careful examination of the factors that may have influenced the evolution of tail-less ascidians.  相似文献   

13.
The microaerophilic bacterium Helicobacter pylori is well established for its role in development of different gastric diseases. Bacterial adhesins and corresponding binding sites on the epithelial surface allow H. pylori to colonize the gastric tissue. In this investigation, the adhesion of H. pylori to dot blot arrays of natural glycoproteins and neoglycoproteins was studied. Adhesion was detected by overlay with fluorescence-labeled bacteria on immobilized (neo)glycoproteins. The results confirmed the interaction between the adhesin BabA and the H-1-, Lewis b-, and related fucose-containing antigens. In addition, H. pylori bound to terminal alpha2-3-linked sialic acids as previously described. The use of a sabA mutant and sialidase treatment of glycoconjugate arrays showed that the adherence of H. pylori to laminin is mediated by the sialic acid-binding adhesin, SabA. The adhesion to salivary mucin MUC5B is mainly associated with the BabA adhesin and to a lesser extent with the SabA adhesin. This agrees with reports, that MUC5B carries both fucosylated blood group antigens and alpha2-3-linked sialic acids. The adhesion of H. pylori to fibronectin and lactoferrin persisted in the babA/sabA double mutant. Because binding to these molecules was abolished by denaturation rather than by deglycosylation, it was suggested to depend on the recognition of unknown receptor moieties by an additional unknown bacterial surface component. The results demonstrate that the bacterial overlay method on glycoconjugate arrays is a useful tool for exploration and the characterization of unknown adhesin specificities of H. pylori and other bacteria.  相似文献   

14.
Galectin-9 (Gal-9) is a tandem-repeat-type member of the galectin family associated with diverse biological processes, such as apoptosis, cell aggregation, and eosinophil chemoattraction. Although the detailed sugar-binding specificity of Gal-9 has been elucidated, molecular mechanisms that underlie these functions remain to be investigated. During the course of our binding study by affinity chromatography and surface plasmon resonance (SPR) analysis, we found that human Gal-9 interacts with immobilized Gal-9 in the protein-protein interaction mode. Interestingly, this intermolecular interaction strongly depended on the activity of the carbohydrate recognition domain (CRD), because the addition of potent saccharide inhibitors abolished the binding. The presence of multimers was also confirmed by Ferguson plot analysis of result of polyacrylamide gel electrophoresis and matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Moreover, this intermolecular interaction was observed between Gal-9 and other galectin members, such as Gal-3 and Gal-8, but not Gal-1. Because such properties have not been reported yet, they may explain an unidentified mechanism underlying the diverse functions of Gal-9.  相似文献   

15.
In this study, we use a novel glycan array to analyze the glycan-binding antibody repertoire in a pool of affinity-purified IgG collected from a healthy human population. The glycan array used is based on mono- and oligosaccharides covalently linked to the surface via a long linker at their reducing ends. They are thus presented to the medium with a well-defined orientation and are accessible for specific binding by glycan-binding proteins, such as antibodies and lectins. A novel anticellulose antibody was detected that binds specifically to beta4-linked saccharides with a preference for glucopyranose over galactopyranose residues. We also found previously known antiglycan antibodies against mono- and oligosaccharides that are constituents of commonly occurring bacterial polysaccharides. We propose that this array can facilitate high-throughput screening of glycan-binding proteins and the search for biomarkers for personalized medicine.  相似文献   

16.
Sharon N 《Glycobiology》2007,17(11):1150-1155
Bacillosamine (2,4-diamino-2,4,6-trideoxy-d-glucose, Bac), a rare amino sugar, was discovered 50 years ago as a result of the follow-up of a chance observation made during studies of polypeptide synthesis by a Bacillus subtilis strain later renamed Bacillus licheniformis. In the following decades this amino sugar was almost completely ignored, although it was found in a number of bacterial polysaccharides and other metabolites. Recently, there has been a burst of interest in Bac when it was found to be a link glycan in eubacterial glycoproteins. In this retrospective, I review the chance discovery of Bac, its structural determination and its biosynthesis.  相似文献   

17.
The application of Arabidopsis genetics to research into the responses of plants to light has enabled rapid recent advances in this field. The plant photoreceptor phytochrome mediates well-defined responses that can be exploited to provide elegant and specific genetic screens. By this means, not only have mutants affecting the phytochromes themselves been isolated, but also mutants affecting the transduction of phytochrome signals. The genes involved in these processes have now begun to be characterized by using this genetic approach to isolate signal transduction components. Most of the components characterized so far are capable of being translocated to the cell nucleus, and they may help to define a new system of regulation of gene expression. This review summarises the ongoing contribution made by genetics to our understanding of light perception and signal transduction by the phytochrome system.  相似文献   

18.
Depletion and multiple deletions of mitochondrial DNA (mtDNA) have been associated with a growing number of autosomal diseases that have been classified as defects of intergenomic communication. MNGIE, an autosomal recessive disorder associated with mtDNA alterations is due to mutations in thymidine phosphorylase that may cause imbalance of the mitochondrial nucleotide pool. Subsequently, mutations in the mitochondrial proteins adenine nucleotide translocator 1, Twinkle, and polymerase gamma have been found to cause autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA. Uncovering the molecular bases of intergenomic communication defects will enhance our understanding of the mechanisms responsible for maintaining mtDNA integrity.  相似文献   

19.
Wu AM  Singh T  Wu JH  Lensch M  André S  Gabius HJ 《Glycobiology》2006,16(6):524-537
Cell-surface glycans are functional docking sites for tissue lectins such as the members of the galectin family. This interaction triggers a wide variety of responses; hence, there is a keen interest in defining its structural features. Toward this aim, we have used enzyme-linked lectinosorbent (ELLSA) and inhibition assays with the prototype rat galectin-5 and panels of free saccharides and glycoconjugates. Among 45 natural glycans tested for lectin binding, galectin-5 reacted best with glycoproteins (gps) presenting a high density of Galbeta1-3/4GlcNAc (I/II) and multiantennary N-glycans with II termini. Their reactivities, on a nanogram basis, were up to 4.3 x 10(2), 3.2 x 10(2), 2.5 x 10(2), and 1.7 x 10(4) times higher than monomeric Galbeta1-3/4GlcNAc (I/II), triantennary-II (Tri-II), and Gal, respectively. Galectin-5 also bound well to several blood group type B (Galalpha1-3Gal)- and A (GalNAcalpha1-3Gal)-containing gps. It reacted weakly or not at all with tumor-associated Tn (GalNAcalpha1-Ser/Thr) and sialylated gps. Among the mono-, di-, and oligosaccharides and mammalian glycoconjugates tested, blood group B-active II (Galalpha1-3Gal beta1-4GlcNAc), B-active IIbeta1-3L (Galalpha1-3Galbeta1-4GlcNAc beta1-3Galbeta1-4Glc), and Tri-II were the best. It is concluded that (1) Galbeta1-3/4GlcNAc and other Galbeta1-related oligosaccharides with alpha1-3 extensions are essential for binding, their polyvalent form in cellular glycoconjugates being a key recognition force for galectin-5; (2) the combining site of galectin-5 appears to be of a shallow-groove type sufficiently large to accommodate a substituted beta-galactoside, especially with alpha-anomeric extension at the non-reducing end (e.g., human blood group B-active II and B-active IIbeta1-3L); (3) the preference within beta-anomeric positioning is Galbeta1-4 > or = Galbeta1-3 > Galbeta1-6; and (4) hydrophobic interactions in the vicinity of the core galactose unit can enhance binding. These results are important for the systematic comparison of ligand selection in this family of adhesion/growth-regulatory effectors with potential for medical applications.  相似文献   

20.
The neuronal ceroid lipofuscinoses (NCLs, also known collectively as Batten disease) are a group of lysosomal storage disorders characterized by the accumulation of autofluorescent storage material in the brain and other tissues. A number of genes underlying various forms of NCL have been cloned, but the basis for the neurodegeneration in any of these is unknown. High levels of dolichol pyrophosphoryl oligosaccharides have previously been demonstrated in brain tissue from several NCL patients, but the specificity of the effect for the NCLs has been unclear. In the present study, we examine eight mouse models of lysosomal storage disorders by modern FACE and found striking lipid-linked oligosaccharide (LLO) accumulation in NCL mouse models (especially CLN1, CLN6, and CLN8 knockout or mutant mice) but not in several other lysosomal storage disorders affecting the brain. Using a mouse model of the most severe form of NCL (the PPT1 knockout mouse), we show that accumulated LLOs are not the result of a defect in LLO synthesis, extension, or transfer but rather are catabolic intermediates derived from LLO degradation. LLOs are enriched about 60-fold in the autofluorescent storage material purified from PPT1 knockoutmouse brain but comprise only 0.3% of the autofluorescent storage material by mass. The accumulation of LLOs is postulated to result from inhibition of late stages of lysosomal degradation of autophagosomes, which may be enriched in these metabolic precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号