首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pattern electroretinograms (P-ERGs) and visual evoked potentials (VEPs) to 4 Hz alternating square-wave gratings were simultaneously recorded in 23 subjects. Responses were Fourier analyzed and amplitude and phase of the 2nd and 4th temporal harmonics were measured.The spatial frequency-amplitude function of the P-ERG 2nd harmonic component displayed either a bandpass tuning behavior, or a low-pass behavior. The peak amplitude for subjects with bandpass tuning was at 1.5 c/deg. The phase of the P-ERG 2nd harmonic decreased monotonically as spatial frequency increased. The VEP 2nd harmonic had a bimodal spatial frequency function with a peak at 3 c/deg and a second increase at spatial frequencies below 1 c/deg, regardless of the P-ERG characteristics. The phase of VEP 2nd and 4th harmonic had an inverted U-shaped function with peak at 3 c/deg and 1.5 c/deg respectively.Comparison of simultaneously recorded P-ERG and VEP spatial frequency functions demonstrated different tuning behavior for cortical and retinal responses. It is concluded that the proposed technique permits the separate analysis of retinal and cortical processing of visual information. The 2nd and 4th harmonic components of VEP behave independently of each other suggesting they may be generated by different subsystems.  相似文献   

2.
It has been previously reported that presentation of square-wave gratings to either side of the horizontal meridian of the visual field gives rise to different Simple Reaction Times (RTs), depending upon the spatial frequency of the stimuli. Specifically, for 1 c/deg stimulus RT is faster in the lower hemefield, whereas the reverse is true for 3 c/deg pattern, RT being faster in the upper visual field. In the reported experiment, RT to simultaneous presentation of either the same (alternatively 1 c/deg or 3 c/deg) or different (i.e. 1 c/deg and 3 c/deg combined) spatial frequencies to both hemifields was analyzed. The data show that whenever the two half components correspond to different RTs, the resulting RT equates that of the faster component. Conversely, when the two components give rise to identical RTs, the resulting RT does not differ from the value obtained with each half stimulus. Implications of this result for the functional organization of the visual system are discussed.  相似文献   

3.
The visual acuity of the tammar wallaby was estimated using a behavioural discrimination task. The wallabies were trained to discriminate a high-contrast (86%) square-wave grating from a grey field of equal luminance (1000–6000 cd m−2). Visual-evoked cortical potentials were used to measure the complete contrast sensitivity function. The stimulus was a sinusoidal phase reversal of a sinusoidally modulated grating of various spatial frequencies and contrasts with a mean luminance of 40 cd m−2. The behavioural acuity was estimated to be about 4.8 cycles/deg. The contrast sensitivity peaked at about 0.15 cycles/deg and declined towards both lower and higher spatial frequencies. The cut-off frequency of the contrast sensitivity function is slightly lower than the behaviourally measured acuity at about 2.7 cycles/deg. The retinal magnification factor was estimated anatomically from laser lesions to be about 0.16 mm/deg. Based on the known ganglion cell density and the retinal magnification factor, an anatomical upper limit to visual acuity of about 6 cycles/deg can be calculated. The differences in estimates of visual acuity between the behavioural and anatomical methods on the one side and physiology on the other side are discussed. Accepted: 28 May 1998  相似文献   

4.
Barrett BT  Whitaker D 《Spatial Vision》2004,17(1-2):111-126
This study investigates the influence of contrast and exposure duration on vernier acuity thresholds for abutting and separated narrowband stimuli, and asks whether these data can predict broadband vernier performance. Vernier thresholds were determined for sinusoidal grating stimuli at two spatial frequencies (1 and 8 c/deg) across a range of contrasts (0.05-0.8) and exposure durations (35-2100 ms). Performance was assessed for the abutting configuration, and when a gap equivalent to 0.5 to 1.5 times the spatial period of the grating was introduced between the upper and lower halves of the grating. Vernier thresholds were also determined for a square-wave stimulus as a function of contrast (0.06 to 0.78). Exposure duration was fixed at 2100 ms. In addition, thresholds were determined at the appropriate contrast levels for the fundamental frequency (1.8 c/deg) of the square-wave, and for a number of the harmonics (3F, 5F, 7F, 9F). Our results provide support for filter models of vernier acuity by showing that vernier performance for abutting and closely-separated broadband stimuli represents the envelope of vernier sensitivity of those spatial frequency mechanisms that are activated by the broadband stimulus. In the case of high frequency grating stimuli presented for long exposure durations, vernier performance can be invariant across much of the contrast range. Despite this, however, contrast independence is not exhibited for abutting broadband stimuli because, within the broadband stimuli, the contrast of the higher harmonic components never reaches a level to reveal this plateau.  相似文献   

5.
Seeing objects in motion   总被引:1,自引:0,他引:1  
This paper reports estimates of the conjoint spatiotemporal tuning functions of the neural mechanisms of the human vision system which detect image motion. The functions were derived from measurements of the minimum contrast necessary to detect the direction of drift of a sinusoidal grating, in the presence of phase-reversed masking gratings of various spatial and temporal frequencies. A mask of similar spatial and temporal frequencies to the test grating reduces sensitivity considerably, whereas one differing greatly in spatial or temporal frequency has little or no effect. The results show that for test gratings drifting at 8 Hz, the tuning function is bandpass in both space and time, peaked at the temporal and spatial frequency (SF) of the test (SFs were 0.1, 1 or 5 c deg-1; c represents cycles throughout). For a grating of 5 c deg-1 drifting at 0.3 Hz, the function is bandpass in space but lowpass in time. Fourier transform of the frequency results yields a function in space-time which we term the 'spatiotemporal receptive field'. For movement detectors (bandpass in space and time) the fields comprise alternating ridges of opposing polarity, elongated in space-time along the preferred velocity axis of the detector. We suggest that this organization explains how detectors analyse form and motion concurrently and accounts, at least in part, for a variety of perceptual phenomena, including summation, reduction of motion smear, metacontrast, stroboscopic motion and spatiotemporal interpolation.  相似文献   

6.
We have measured the chromatic threshold sensitivity to stimuli with spectral composition determined by a periodic function of energy over wavelength. This approach is analogous to frequency studies of spatial vision for the study of colour. A device was constructed permitting the synthesis of illuminants over the entire visible range (400-700 nm) in which phase, frequency and amplitude can be independently controlled. We have used 12 frequencies of square-wave functions (from 0.5 to 3.6 cycles/300 nm) and seven values of phase (between 0 degrees and 180 degrees) to obtain the contrast sensitivity function of the chromatic system in three normal trichromats. The results show maximum sensitivity around 1.5 cycles/300 nm and a high-frequency cut-off at 3.6 cycles/300 nm. These empirical values are compared with the predictions obtained from three current psychophysical models of opponent-colour process.  相似文献   

7.
We measured susceptibility to the Müller-Lyer illusion in schizophrenic patients and normal observers. The images of the Müller-Lyer figure were digitally filtered in a high-frequency and low-frequency band by wavelet filter. Patients with schizophrenia are more susceptible to Müller-Lyer illusion, than mentally healthy examinees. The images of the Müller-Lyer figure with low spatial frequency were perceived in a similar way by the schizophrenic patients on the initial stage of disease and the control subjects. Patients with schizophrenia were more sensitive to the Müller-Lyer illusion when the image contained only high or medium spatial frequency. Schizophrenic patients in advanced stage were more susceptible to the illusion while presented with all types of images of the Müller-Lyer figure than the control group. It is hypothesized that those differences arise from the mismatch work of the magnocellular and parvocellular systems. It is known that images with the high spatial frequencies are most relevant for the parvocellular visual channels. The magnocellular visual channels are most sensitive to the images with the low spatial frequencies. Thus these findings demonstrate a significant impairment in parvocellular pathway function in patients on initial stage of schizophrenia. The patients on advanced stage of schizophrenia demonstrate impairment of both the parvocellular and magnocellular systems.  相似文献   

8.
An ignored region of the visual field might be monitored by an intermittent full visual analysis or by a more continuous but restricted analysis. We investigated which type of process is more likely in early vision by studying the effects of diverting attention on adaptation to a range of spatial (0.5, 2, 4. and 6 c/deg) and temporal (1.5 and 10 Hz) frequencies. During adaptation, subjects either fixated an unchanging digit (normal attention). or named the sequence of changing digits which formed the fixation point (diverted). The test field was always a static version of the adapting field, and the strength of adaptation was measured through the velocity and duration of subsequent Motion Aftereffects (MAEs). When attention during adaptation was normal MAE durations rose with spatial frequency for the 1.5 Hz stimuli, and declined with spatial frequency for the 10 Hz stimuli. When attention was diverted from the 10 Hz stimuli, MAE durations and velocities fell by a similar amount at all spatial frequencies. However, for the 1.5 Hz stimuli, the effects of diversion were very small at 0.5 c/deg, and rose progressively with spatial frequency, so that MAE reductions were largest at 6 c/deg. It appears that diversion hardly affects the encoding of coarse, slow stimuli, but attenuates the encoding of finer and/or faster stimuli. This is consistent with the idea that during diversion the visual system monitors the scene continuously, but over a restricted range of spatial and temporal scales.  相似文献   

9.
Solomon SG  Peirce JW  Dhruv NT  Lennie P 《Neuron》2004,42(1):155-162
Prior exposure to a moving grating of high contrast led to a substantial and persistent reduction in the contrast sensitivity of neurons in the lateral geniculate nucleus (LGN) of macaque. This slow contrast adaptation was potent in all magnocellular (M) cells but essentially absent in parvocellular (P) cells and neurons that received input from S cones. Simultaneous recordings of M cells and the potentials of ganglion cells driving them showed that adaptation originated in ganglion cells. As expected from the spatiotemporal tuning of M cells, adaptation was broadly tuned for spatial frequency and lacked orientation selectivity. Adaptation could be induced by high temporal frequencies to which cortical neurons do not respond, but not by low temporal frequencies that can strongly adapt cortical neurons. Our observations confirm that contrast adaptation occurs at multiple levels in the visual system, and they provide a new way to reveal the function and perceptual significance of the M pathway.  相似文献   

10.
Visual channels are defined psychophysically; stimuli that interact share information in the same channel, and those that do not interact are processed in different channels. Channels are often investigated by means of adaptation to one stimulus, testing contrast threshold elevation with one (or more) others. Much recent work has tested the tuning of channels for orientation and spatial frequency, using simple line gratings. This study examined the pattern-specificity of such adaptation, testing the hypothesis that the fundamental operators of the Lie Transformation Group Theory of Neuropsychology (LTG/NP) define psychophysical channels. In Experiment I the three basic pattern pairs of LTG/NP were used as adaptation and test stimuli in a conventional contrast threshold-elevation experiment. Threshold elevation was pattern-specific, thus supporting the hypothesis. In subsequent experiments various 'fractured' patterns, and patterns generated by combinations of Lie operators were used both for adaptation and test. The results were mixed; some supported the original hypothesis, but many did not. Relations between local contour orientations in adaptation and test patterns could explain some results, but not all. The hypothesis that adaptation occurs to the oriented spatial-frequency components of the test patterns, on the other hand, gave a good fit to the data. It is concluded that there is pattern-specificity in contrast threshold elevation, but it is a form of specificity that can be explained without recourse to a model of geometrical pattern processing, at least for the simple patterns used here.  相似文献   

11.
12.
Visually evoked potentials were used to determine the spatial contrast response function of the visual system and the visual acuity of the pigeon. The spatial contrast response describes the relationship between the contrast in a pattern of vertical stripes, whose luminance is a function of position, and the amplitude of the visually evoked response at various spatial frequencies for a given temporal frequency (pattern reversal frequency); it indicates how particular spatial frequencies are attenuated in the visual system. The visually evoked responses were recorded using monopolar stainless steel electrodes inserted into the stratum griseum superficiale of the optic tectum; the depth of penetration was determined on the basis of a stereotactic atlas. The stimulus patterns were generated on a video monitor placed 75 cm in front of the animal's eye perpendicular to the optic axis. The spatial contrast response function measured at 10% contrast and 0.5 Hz reversal frequency shows a peak at a spatial frequency of 0.5 c/deg, corresponding to 1 degree of visual angle, and decreases progressively at higher spatial frequencies. The high-frequency limit (cut-off frequency) for resolution of sinusoidal gratings, estimated from the contrast response function, is 15.5 c/deg, corresponding to a visual acuity of 1.9 min of arc.  相似文献   

13.
When observers view a vertical triangle-wave luminance profile, they often report a square-wave illusion with a depth component, resembling a corrugated surface. Alternate bars seem to be in front of or behind adjacent bars and the surface appears to be illuminated from the right or left. These perspectives alternate with continuous viewing. One explanation for this illusion stems from the notion of instability among phase-selective mechanisms. Two experiments (1 and 3) were designed to determine whether systematic phase shifts introduced between the fundamental and the odd harmonics of the waveform would lead to a systematic bias of the illusion. The results indicated that a significant bias occurred when a phase shift as small as 9 deg was introduced, and that the bias from the phase shifts was more powerful than previous reports of drift-induced bias. There was a highly significant effect of direction of phase shift and the corresponding perceived direction of illumination. Another experiment (2) was designed to determine if illusional cues within the phase-shifted profiles aided phase discrimination. The results indicated that experienced subjects, presumably using cues within the profiles, discriminated between the stimuli significantly better than did naive subjects. These data support the role of phase in the square-wave illusion, but they also raise questions about the role of contrast changes in local regions of the stimulus.  相似文献   

14.
It was shown from geometry and photographic measurement that the shading pattern for a sinusoidal corrugated surface of frequency f approximates to a luminance-defined grating of frequency f, 2f or f + 2f in specific relative phase. It was confirmed that a luminance grating modifies the appearance of a suprathreshold stereoscopic corrugated surface, suggesting an interaction between shading and binocular disparity. Disparity thresholds for detecting random-dot, disparity-defined gratings of spatial frequency 0.2 or 0.4 c/deg were measured in the presence of luminance gratings of spatial frequency 0.4 c/deg with the same orientation. Phase-specific facilitation of disparity thresholds was greatest for a phase relationship inconsistent with shading of a corrugated surface, and was disrupted by positional uncertainty. The presence of texture-defined lines (which served to mark explicitly the successive spatial locations of salient depth features in the image) produced a similar pattern of facilitation, in the absence of shape-from-shading cues. The pattern of results indicates direct local interactions, including spatial cueing, rather than interaction of depth cues.  相似文献   

15.
We recorded the monocular and binocular VEPs to the alternation of sinusoidal gratings in order to evaluate the binocular interaction in each component of transient and steady-state VEPs in 13 normal subjects. Three spatial frequencies (1.3, 2.6 and 5.3 c/deg) with a 90% contrast were used as visual stimuli. The latencies and amplitudes of N70 and P100 of the transient VEPs were measured. The steady-state VEPs were Fourier analyzed, and both the phase and amplitude of the second (2F) and fourth (4F) harmonic responses were obtained. Binocular interaction was influenced by spatial frequency such that a binocular summation or even an inhibition occurred. For the transient VEPs, a binocular summation was more pronounced in the amplitude of N70 than in that of P100 at all spatial frequencies. There were no significant effects of binocular stimulation on latencies of N70 or P100. However, the latencies of N70 and P100 showed different spatial frequency characteristics. For the steady-state VEPs, the amplitude of 2F revealed a binocular summation that was more pronounced at 5.3 c/deg, whereas the 4F amplitude showed binocular inhibition at 2.6 and 5.3 c/deg. The 2F phase showed binocular inhibition at all spatial frequencies, whereas no such inhibition was observed in the 4F phase. These results suggest that individual components of transient and steady-state VEPs are physiologically distinct and may therefore be generated from different neuronal populations in striate cortex.  相似文献   

16.
The issue of whether contrast adaptation can reduce the perceived contrast of gratings oriented orthogonal to the adapting stimulus to a greater extent than parallel gratings has been the subject of considerable debate (Snowden and Hammett, 1992; Ross and Speed, 1996). We compared the reductions in perceived contrast of various test gratings oriented parallel and orthogonal to the adapting stimulus across a range of spatial frequencies (2.25-9 c/deg) and adaptation contrasts (0.19-1.0). Our results show that when the adapting stimulus is low in contrast, parallel adaptation effects are always greater than the effects of orthogonal adaptation. When the adapting contrast is increased, however, the difference between parallel and orthogonal effects is reduced. Further increases in adapting contrast can produce a situation where cross-orientation adaptation effects exceed iso-orientation effects. This was observed at low spatial frequencies (2.25 and 4.5 c/deg) only. The difference in the pattern of results obtained at low and high spatial frequencies can be explained in terms of the adapting stimulus visibility. We conclude that cross-orientation adaptation effects can be greater than iso-orientation effects, but only when the adapting stimulus is highly suprathreshold.  相似文献   

17.
Spatial frequency analysis in early visual processing   总被引:1,自引:0,他引:1  
The existence of multiple channels, or multiple receptive field sizes, in the visual system does not commit us to any particular theory of spatial encoding in vision. However, distortions of apparent spatial frequency and width in a wide variety of conditions favour the idea that each channel carries a width- or frequency-related code or 'label' rather than a 'local sign' or positional label. When distortions of spatial frequency occur without prior adaptation (e.g. at low contrast or low luminance) they are associated with lowered sensitivity, and may be due to a mismatch between the perceptual labels and the actual tuning of the channels. A low-level representation of retinal space could be constructed from the spatial information encoded by the channels, rather than being projected intact from the retina.  相似文献   

18.
In an experiment, 20 participants had to detect a backward masked Gabor luminance-modulation target imposed on a field of uniform luminance at varying eccentricities along the horizontal meridian. Different spatial frequencies were used as target modulations. Results for a 7.0 c/deg target patch showed peak detection performance at the center of the visual field and a steady decrease toward the periphery. For 1.0 c/deg, 0.75 c/deg, and 0.5 c/deg target patches, in contrast, the peak was several degrees off retinal center and decreased steadily toward the center. Findings not only confirmed the familiar sensitivity loss toward peripheral areas for high spatial frequencies, but also indicated a sensitivity loss toward central areas for low spatial frequencies. It is concluded that they further support Gurnsey et al.'s (1996) 'mismatch hypothesis' extending its scope to also include 'first-stage' stimuli.  相似文献   

19.
In this study, the contrast sensitivity function (CSF) of one harbor seal was determined behaviorally in a go-/no-go-experiment at an ambient light of 0.9 lx in air. Contrast sensitivity was assessed as the reciprocal value of the threshold contrast for spatial frequencies varying between 0.03 and 1.5 cycles/deg, which were displayed with contrast ranging from 0.02 to 1 on a TFT monitor with a mean luminance of 3.8 cd/m2. The CSF of the harbor seal shows the general characteristics described for other species with a peak at an intermediate frequency, a low frequency roll-off and a high frequency cut-off towards the harbor seal’s resolution limit determined in a previous study. The position of the CSF’s peak lies at approximately 0.5 cycles/deg and adopts an absolute height of 40. These results compare well with the cat’s CSF assessed at a comparable adaptation light which might reflect similarities in lifestyle and optics.  相似文献   

20.
The amplitudes of the responses of over 300 neurons in area 17 of the cat were examined as a function of the spatial frequency of moving sinusoidal gratings. The optimal spatial frequency and the bandwidth of the tuning curves were determined. The bandwidth varied considerably from neuron to neuron. Neurons optimally responsive to high spatial frequencies tended to have narrower tuning curves than those responsive to lower frequencies. Neurons with narrow spatial frequency tuning curves also tended to have narrow orientation tuning curves. These observations suggest that linear spatial summation tends to occur over a relatively constant area of visual field despite marked differences in each neuron's optimal spatial frequency, a prediction of one model of visual analysis. There was little difference in either the optimal spatial frequencies or the bandwidths of tuning for different functional classes of neuron. Neurons with broad tuning curves tended to be restricted to lamina IV and its environs, being concentrated in the deep part of lamina II-III and the upper part of lamina IV ab. Neurons with very low optimal spatial frequencies were uncommon and tended to be found either at the border of laminae II-III and IV or in lamina V. These laminar distributions are discussed with respect to the laminar differences in the projection of l.g.m. X- and Y-cells to the visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号