共查询到20条相似文献,搜索用时 0 毫秒
1.
Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers 总被引:21,自引:0,他引:21
Cold storage of potato (Solanum tuberosum L.) tubers is known to cause accumulation of reducing sugars. Hexose accumulation has been shown to be cultivar-dependent and proposed to be the result of sucrose hydrolysis via invertase. To study whether hexose accumulation is indeed related to the amount of invertase activities, two different approaches were used: (i) neutral and acidic invertase activities as well as soluble sugars were measured in cold-stored tubers of 24 potato cultivars differing in the cold-induced accumulation of reducing sugars and (ii) antisense potato plants with reduced soluble acid invertase activities were created and the soluble sugar accumulation in cold-stored tubers was studied. The cold-induced hexose accumulation in tubers from the different potato cultivars varied strongly (up to eightfold). Large differences were also detected with respect to soluble acid (50-fold) and neutral (5-fold) invertase activities among the different cultivars. Although there was almost no correlation between the total amount of invertase activity and the accumulation of reducing sugars there was a striking correlation between the hexose/sucrose ratio and the extractable soluble invertase activitiy. To exclude the possibility that other cultivar-specific features could account for the obtained results, the antisense approach was used to decrease the amount of soluble acid invertase activity in a uniform genetic background. To this end the cDNA of a cold-inducible soluble acid invertase (EMBL nucleicacid database accession no. X70368) was cloned from the cultivar Desirée, and transgenic potato plants were created expressing this cDNA in the antisense orientation under control of the constitutive 35S cauliflower mosaic virus promotor. Analysis of the harvested and cold-stored tubers showed that inhibition of the soluble acid invertase activity leads to a decreased hexose and an increased sucrose content compared with controls. As was already found for the different potato cultivars the hexose/sucrose ratio decreased with decreasing invertase activities but the total amount of soluble sugars did not significantly change. From these data we conclude that invertases do not control the total amount of soluble sugars in coldstored potato tubers but are involved in the regulation of the ratio of hexose to sucrose.The authors are grateful to Heike Deppner and Christiane Prüßner for tuber harvest and technical assistance during the further analysis. We thank Andrea Knospe for taking care of tissue culture, Birgit Schäfer for patient photographic work, Hellmuth Fromme and the greenhouse personnel for attending plant growth and development and Astrid Basner for elucidating the sequence of clone INV-19. The work was supported by the Bundesministerium für Forschung und Technologie (BMFT). 相似文献
2.
Sugimoto Y Naniwa Y Nakamura T Kato H Yamamoto M Tanabe H Inoue K Imaizumi A 《Archives of biochemistry and biophysics》2007,468(1):44-48
To identify the novel inhibitor of de novo lipogenesis in hepatocytes, we screened for inhibitory activity of triglyceride (TG) synthesis using [14C]acetate in the human hepatoma cell line, HepG2. Using this assay system we discovered the novel compound, benzofuranyl α-pyrone (TEI-B00422). TEI-B00422 also inhibited the incorporation of acetate into the triglyceride (TG) fraction in rat primary hepatocytes. In HepG2 cells, the incorporation of oleate into TG was unaffected. TEI-B00422 inhibited rat hepatic acetyl-CoA carboxylase (ACC), Ki = 3.3 μM, in a competitive manner with respect to acety-CoA but not fatty acid synthase and acyl-CoA transferase/diacylglycerol. Thus, these results suggest that the inhibition of TG synthesis by TEI-B00422 is based on the inhibitory action of ACC. The structure of TEI-B00422 is totally different from the known inhibitors of ACC and may be useful in the development of therapeutic agents to combat a number of metabolic disorders. 相似文献
3.
Analysis of the expression of potato uridinediphosphate-glucose pyrophosphorylase and its inhibition by antisense RNA 总被引:9,自引:0,他引:9
The expression of the enzyme UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) from potato (Solanum tuberosum L.) was analysed with respect to sink-source interactions and potato tuber storage. The highest level of expression was found in developing tubers, the strongest sink tissue. Storage of mature tubers at low temperatures led to an increase of the steady-state level of UGPase mRNA, implicating a role of this enzyme in the process of cold-sweetening. Transgenic plants were created expressing UGPase antisensee RNA under the control of the 35S promoter of the Cauliflower Mosaic Virus with the polyadenylation signal of the octopine-synthase gene. Regenerated plants were tested for reduction of UGPase at the RNA, protein and activity levels. Plants with a 95%–96% reduction of UGPase activity in growing tubers showed no change in growth and development. Also, carbohydrate metabolism in tubers of these plants was not substantially affected, indicating that only 4% of the wild-type UGPase activity is sufficient for the enzyme to function in plant growth and development.Abbreviations cDNA
copy DNA
- CaMV
Cauliflower Mosaic Virus
- Glc1P
glucose-1-phosphate
- UDPGlc
UDP-glucose
- SDS-PAGE
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- UGPase
UDP-glucose pyrophosphorylase
We are grateful to Dr. J.P. Spychalla (Cambridge Laboratory, Norwich, Norfolk, UK) for providing antiserum directed against the potato tuber UGPase protein. We thank J. Bergstein and B. Schäfer for photographic work, J. Dietze for plant transformation and R. Breitfeld and B. Burose for taking care of the greenhouse plants. 相似文献
4.
The aim of this work was to investigate the partitioning of imported glucose 6-phosphate (Glc6P) to starch and fatty acids, and to CO2 via the oxidative pentose phosphate pathway (OPPP) in plastids isolated from developing embryos of oilseed rape (Brassica napus L.). The ability of the isolated plastids to utilize concurrently supplied substrates and the effects of these substrate combinations on the Glc6P partitioning were also assessed. The relative fluxes of carbon from Glc6P to starch, fatty acids, and to CO2 via the OPPP were close to 2∶1∶1 when Glc6P was supplied alone. Under these conditions NADPH generated via the OPPP was greater than that required by the concurrent rate of fatty acid synthesis. Fatty acid synthesis was unaffected by the presence or absence of exogenous NADH and/or NADPH and the requirement of fatty acid synthesis for reducing power is therefore met entirely by intraplastidial metabolism. When Glc6P was supplied in the presence of either pyruvate or pyruvate and acetate, the total flux from these metabolites to fatty acids was up to threefold greater than that from either Glc6P or pyruvate when they were supplied singly. In these experiments there was little competition between Glc6P and pyruvate in fatty acid synthesis and the flux to starch was unchanged. This implies that the starch and fatty acid biosynthesis pathways did not compete for the exogenously supplied ATP on which they were strongly dependent. When Glc6P and pyruvate were provided together, the NADPH generated by the OPPP pathway was less than that required by the concurrent rate of fatty acid synthesis. This suggests that the metabolism of exogenous Glc6P via the OPPP can contribute to the NADPH demand created during fatty acid synthesis but it also indicates that other intraplastidial sources of reducing power must be available under the in-vitro conditions used. 相似文献
5.
Labelling experiments in which high-specific-activity [U-14C]sucrose or [U-14C]hexoses were injected into potato (Solanum tuberosum L. cv. Desiree) tubers showed that within 1 d of detaching growing tubers from their mother plant, there is an inhibition
of starch synthesis, a stimulation of the synthesis of other major cell components, and rapid resynthesis of sucrose. This
is accompanied by a general increase in phosphorylated intermediates, an increase in UDP-glucose, and a dramatic decrease
of ADP-glucose. No significant decline in the extracted activity of enzymes for sucrose degradation or synthesis, or starch
synthesis is seen within 1 d, nor is there a significant decrease in sucrose, amino acids, or fresh weight. Over the next
7 d, soluble carbohydrates decline. This is accompanied by a decline in sucrose-synthase activity, hexose-phosphate levels,
and the synthesis of structural cell components. It is argued that a previously unknown mechanism acting at ADP-glucose pyrophosphorylase
allows sucrose-starch interconversions to be regulated independently of the use of sucrose for cell growth. 相似文献
6.
Microbial biosynthesis of fatty acid-like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Free fatty acids can be produced by introducing an acyl–acyl carrier protein thioesterase gene into Escherichia coli. The presence of the acyl-ACP thioesterase will break the fatty acid elongation cycle and release free fatty acid. Depending on their sequence similarity and substrate specificity, class FatA thioesterase is active on unsaturated acyl-ACPs and class FatB prefers saturated acyl group. Different acyl-ACP thioesterases have different degrees of chain length specificity. Although some of these enzymes have been characterized from a number of sources, information on their ability to produce free fatty acid in microbial cells has not been extensively examined until recently. In this study, we examined the effect of the overexpression of acyl-ACP thioesterase genes from Diploknema butyracea, Gossypium hirsutum, Ricinus communis and Jatropha curcas on free fatty acid production. In particular, we are interested in studying the effect of different acyl-ACP thioesterase on the quantities and compositions of free fatty acid produced by an E. coli strain ML103 carrying these constructs. It is shown that the accumulation of free fatty acid depends on the acyl-ACP thioesterase used. The strain carrying the acyl-ACP thioesterase gene from D. butyracea produced approximately 0.2 g/L of free fatty acid while the strains carrying the acyl-ACP thioesterase genes from R. communis and J. curcas produced the most free fatty acid at a high level of more than 2.0 g/L at 48 h. These two strains accumulated three major straight chain free fatty acids, C14, C16:1 and C16 at levels about 40%, 35% and 20%, respectively. 相似文献
7.
Michael M. Burrell Peter J. Mooney Margaret Blundy Dawn Carter Fiona Wilson John Green Keith S. Blundy Tom ap Rees 《Planta》1994,194(1):95-101
The aim of this work was to discover whether genetic manipulation of 6-phosphofructokinase [EC 2.7.1.11; PFK(ATP)] influenced the rate of respiration of tuber tissue of Solanum tuberosum L. Transgenic plants were produced that contained the coding sequence of the Escherichia coli pfkA gene linked to a patatin promoter. Expression of this chimaeric gene in tubers resulted in a 14to 21-fold increase in the maximum catalytic activity of PFK(ATP) without affecting the activities of the other glycolytic enzymes. Tubers, and aged disks of tuber tissue, from transformed plants showed no more than a 30% fall in the content of hexose 6-monophosphates; the other intermediates of glycolysis increased threeto eightfold. Fructose-2,6-bisphosphate was barely detectable in aged disks of transformed tubers. The relative rates of 14CO2 production from [1-14C]-and [6-14C]-glucose supplied to disks of transformed and control tubers were similar. Oxygen uptake and CO2 production by aged disks of transformed tubers did not differ significantly from those from control tubers. The same was true of CO2 production, in air, and in nitrogen, for tuber tissue. It is concluded that PFK(ATP) does not dominate the control of respiration in potato tubers.Abbreviations Fru2,6bisP
fructose-2,6-bisphosphate
- FW
freshweight
- GUS
-glucuronidase
- PFK(ATP)
6-phosphofructokinase
- PFK(PPi)
pyrophosphate: fructose-6-phosphate 1-phosphotransferase 相似文献
8.
9.
Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content 总被引:2,自引:0,他引:2
Jianyi Zhao Zoran Dimov Heiko C. Becker Wolfgang Ecke Christian Möllers 《Molecular breeding : new strategies in plant improvement》2008,21(1):115-125
Increasing oil content and improving the fatty acid composition in the seed oil are important breeding goals for rapeseed
(Brassica napus L.). The objective of the study was to investigate a possible relationship between fatty acid composition and oil content
in an oilseed rape doubled haploid (DH) population. The DH population was derived from a cross between the German cultivar
Sollux and the Chinese cultivar Gaoyou, both having a high erucic acid and a very high oil content. In total, 282 DH lines
were evaluated in replicated field experiments in four environments, two each in Germany and in China. Fatty acid composition
of the seed oil was analyzed by gas liquid chromatography and oil content was determined by NIRS. Quantitative trait loci
(QTL) for fatty acid contents were mapped and their additive main effects were determined by a mixed model approach using
the program QTLMapper. For all fatty acids large and highly significant genetic variations among the genotypes were observed.
High heritabilities were determined for oil content and for all fatty acids (h
2 = 0.82 to 0.94), except for stearic acid content (h
2= 0.38). Significant correlations were found between the contents of all individual fatty acids and oil content. Closest genetic
correlations were found between oil content and the sum of polyunsaturated fatty acids (18:2 + 18:3;
r
G = −0.46), the sum of monounsaturated fatty acids (18:1 + 20:1 + 22:1; r
G = 0.46) and palmitic acid (16:0; r
G = −0.34), respectively. Between one and eight QTL for the contents of the different fatty acids were detected. Together, their
additive main effects explained between 28% and 65% of the genetic variance for the individual fatty acids. Ten QTL for fatty
acid contents mapped within a distance of 0 to 10 cM to QTL for oil content, which were previously identified in this DH population.
QTL mapped within this distance to each other are likely to be identical. The results indicate a close interrelationship between
fatty acid composition and oil content, which should be considered when breeding for increased oil content or improved oil
composition in rapeseed. 相似文献
10.
Lytovchenko A Hajirezaei M Eickmeier I Mittendorf V Sonnewald U Willmitzer L Fernie AR 《Planta》2005,221(6):915-927
The aim of this work was to evaluate the influence of elevating the cytosolic activity of phosphoglucomutase (PGM; EC 5.4.2.2) on photosynthesis, growth and heterotrophic metabolism. Here we describe the generation of novel transgenic plants expressing an Escherichia coli phosphoglucomutase (EcPGM) under the control of the 35S promoter. These lines were characterised by an accumulation of leaf sucrose, despite displaying no alterations in photosynthetic carbon partitioning, and a reduced tuber starch content. Determinations of the levels of a wide range of other metabolites revealed dramatic reductions in maltose and other sugars in leaves of the transformants, as well as a modification of the pattern of organic and amino acid content in tubers of these lines. Intriguingly, the transgenics also displayed a dramatically delayed rate of sprouting and significantly enhanced rate of respiration, however, it is important to note that the severity of these traits did not always correlate with the level of transgene expression. These results are discussed in the context of current understanding of the control of respiration and the breaking of tuber dormancy. 相似文献
11.
Dieter Heineke Anne Kruse Ulf-Ingo Flügge Wolf B. Frommer Jörg W. Riesmeier Lothar Willmitzer Hans W. Heldt 《Planta》1994,193(2):174-180
The introduction of an antisense DNA into transgenic potato (Solanum tuberosum L.) plants decreased the expression of the chloroplast triose-phosphate translocator and lowered its activity by 20–30%. With plants propagated from tubers, the effect of the transformation on photosynthetic metabolism was analysed by measuring photosynthesis, the formation of leaf starch, and the total and subcellular metabolite contents in leaves. Although the transformants, in contrast to those propagated from cell cultures, did not differ from the wild-type plants in respect to rates of photosynthesis, plant appearance, growth and tuber production, their photosynthetic metabolism was found to be severely affected. The results show that the decrease in activity of the triose-phosphate translocator in the transformants caused a fourfold increase in the level of 3-phosphoglycerate and a corresponding decrease in inorganic phosphate in the stromal compartment, resulting in a large increase in the synthesis of starch. Whereas during a 12-h day period wild-type plants deposited 43% of their CO2 assimilate into starch, this value rose to 61–89% in the transformants. In contrast to the wild-type plants, where the rate of assimilate export from the leaves during the night period was about 75% of that during the day, the export rate from leaves of transformants appeared to be much higher during the night than during the day. As the mobilisation of starch occurs in part hydrolytically, resulting in the formation of glucose, the triose-phosphate translocator loses its exclusive function in the export of carbohydrates from the chloroplasts when the photoassimilates are temporarily deposited as starch. It appears that by directing the CO2 assimilates mainly into starch, the transformants compensate for the deficiency in triose-phosphate translocator activity in such a way that the productivity of the plants is not affected by the transformation.Abbreviations Chl
chlorophyll
- DHAP
dihydroxyacetone phosphate
- 3-PGA
3-phosphoglycerate
- Rubisco
ribulose,1,5-bisphosphate carboxylase/oxygenase
- RuBP
ribulose-1,5-bisphosphate
- trioseP
triose phosphate
- WT
wild type
The able technical assistance of Mrs. K. Wildenberger and Mrs. A. Großpietsch is gratefully acknowledged. This work has been supported by the Bundesminister für Forschung und Technologie. 相似文献
12.
13.
Synthesis of fructans in tubers of transgenic starch-deficient potato plants does not result in an increased allocation of carbohydrates 总被引:11,自引:0,他引:11
Inhibition of starch biosynthesis in transgenic potato (Solanum tuberosum L. cv. Désirée) plants (by virtue of antisense inhibition of ADP-glucose pyrophosphorylase) has recently been reported to influence tuber formation and drastically reduce dry matter content of tubers, indicating a reduction in sink strength (Müller-Röber et al. 1992, EMBO J 11: 1229–1238). Transgenic tubers produced low levels of starch, but instead accumulated high levels of soluble sugars. We wanted to know whether these changes in tuber development/sink strength could be reversed by the production of a new high-molecular-weight polymer, i.e. fructan, that incorporates sucrose and thereby should reduce the level of osmotically active compounds. To this end the enzyme levan sucrase from the gram-negative bacterium Erwinia amylovora was expressed in tubers of transgenic potato plants inhibited for starch biosynthesis. Levan sucrase was targeted to different subcellular compartments (apoplasm, vacuole and cytosol). Only in the case of apoplastic and vacuolar targeting was significant accumulation of fructan observed, leading to fructan representing between 12% and 19% of the tuber dry weight. Gel filtration and 13C-nuclear magnetic resonance spectroscopy showed that the molecular weight and structure of the fructan produced in transgenic plants is identical to levan isolated from E. amylovora. Whereas apoplastic expression of levansucrase had deleterious effects on tuber development, tubers containing the levansucrase in the vacuole did not differ in phenotype from tubers of the starch-deficient plants used as starting material for transformation with the levansucrase. When tuber yield was analysed, no increase but rather a further decrease relative to ADP-glucose pyrophosphorylase antisense plants was observed.Abbreviations CaMV
cauliflower mosaic virus
- NMR
nuclear magnetic resonance
We gratefully acknowledge Dr. Ulrich Eder (Schering AG, Berlin, Germany) for performing 13C-NMR spectroscopy, and Dr. Susanne Hoffmann-Benning (Institut für Genbiologische Forschung) for introducing us to immunohistochemistry. We thank Jessyca Dietze for plant transformations, Birgit Burose for taking care of greenhouse plants, and Antje Voigt for photographic work. 相似文献
14.
The potato species Solanum andigena (Juz. and Buk.) and Solanum demissum (Lindl.) that both require short days for tuberisation were kept in either long days (16 h light), or short days (8 h light) with a 30-min night break mid-way through the dark period. Tuberisation of these species was inhibited under both conditions. Repeated spraying of these plants with up to 100 μM jasmonic acid did not induce them to tuberise even though jasmonic acid was shown to be taken up and transported within the plant. This result argues against jasmonic acid itself being the transported tuber-inducing signal, although it does not exclude a role for jasmonic acid later in tuber formation and development once induction has taken place. 相似文献
15.
16.
Domenico Carputo Teodoro Cardi Tiberio Chiari Giovanni Ferraiolo Luigi Frusciante 《Plant Cell, Tissue and Organ Culture》1995,41(2):151-158
The response to different in vitro methods for use in potato breeding has been evaluated in 11 genotypes of 5 Solanum species, S. etuberosum, S. lycopersicoides, S. maglia, S. rickii, and S. tuberosum. Callus induction and growth, and shoot regeneration were strongly influenced by the genotype, explant source, and medium utilized. Furthermore, considerable differences among the 11 genotypes were found both in plating efficiency and shoot regeneration from protoplast culture. Some interesting correlations were found between different tissue culture responses, suggesting linkage and/or pleiotropic effect of genes. The potential application to potato breeding of the in vitro techniques analyzed is discussed.Abbreviations BA
6-benzylaminopurine
- GA3
gibberellic acid
- NAA
naphthaleneacetic acid
- MS
Murashige & Skoog (1962)
- 2,4-d
dichlorophenoxyacetic acid 相似文献
17.
丙二酸是一种重要的有机二元羧酸,其应用价值遍及化工、医药、食品等领域。本文以大肠杆菌为底盘细胞,过表达了ppc、aspC、panD、pa0132、yneI和pyc基因,成功构建了丙二酸合成重组菌株大肠杆菌BL21(TPP)。该菌株在摇瓶发酵条件下,丙二酸产量达到0.61 g/L。在5 L发酵罐水平,采用间歇补料的方式丙二酸的积累量达3.32 g/L。本研究应用了融合蛋白技术,将ppc和aspC、pa0132和yneI分别进行融合表达,构建了工程菌BL21(SCR)。在摇瓶发酵水平,该菌株丙二酸的积累量达到了0.83 g/L,较出发菌株BL21(TPP)提高了36%。在5 L发酵罐中,工程菌BL21(SCR)的丙二酸产量最高达5.61 g/L,较出发菌株BL21(TPP)提高了69%。本研究实现了丙二酸在大肠杆菌中的生物合成,为构建丙二酸合成的细胞工厂提供了理论依据和技术基础,同时也对其他二元羧酸的生物合成具有启发和指导意义。 相似文献
18.
Several vegetative tissues of potato plants were screened for proteinase activity. Both endopeptidase and exopeptidase activities were investigated using gelatin and L-amino acid-4-nitroanilides (benzoyl-L-arginine-4-nitroanilide/BAPA, glutaryl-L-phenyl-alanine-4-nitroanilide/GLUPHEPA, alanine-4-nitro-anilide/APA, leucine-4-nitroanilide/LPA, and benzoyl-L-tyrosine-4-nitroanilide/BTPA) as substrates. Leaves and rootes were found to contain the highest levels of endopeptidase activity; lesser activities were detected in flower petals, sprouts, and tubers. Three different types of proteinases, L-BAPAase (serine proteinase), APAase (thiol proteinase), and BTPAase (sensitive to reducing agents), were characterized in various physical and chemical properties. Their temperature optima were determined to be 25° (L-BAPAase) and 40° (BTPAase, APAase) respectively; their pH optimum was between 8.6 and 9.0, their isoelectric points were between pH 4.25 and 6.0, and their molecular weight was estimated 70,000 (L-BAPAase, APAase) and between 150,000–250,000 (BTPAase). The trypsin-like activity against L-BAPA was inhibited by diisopropylfluorophosphate and by tosyllysine-chloromethyl ketone, but not by trypsin inhibitors from potato and legume.Abbreviations APA
alanine-4-nitroanilide
- BAPA
benzoyl-L-arginine-4-nitroanilide
- BTPA
benzoyl-L-tyrosine-4-nitroanilide
- DFP
diisopropylfluorophosphate
- DMF
dimethyl formamide
- EDTA
ethylenedinitrilotetraacetic acid
- GLUPHEPA
glutaryl-L-phenylalanine-4-nitroanilide
- LPA
leucine-4-nitroanilide
- PHMB
p-hydroxy-mercuribenzoate
- PI-I
potato chymotrypsin inhibitor I
- PPI
potato proteinase leaf
- PPr
potato proteinase root
- PPt
potato proteinase tuber
- PVP
polyvinylpyrrolidone
- TLCK
tosyl-L-lysinechloromethyl ketone
- TPCK
tosyl-L-phenylalanyl chloromethane 相似文献
19.
S-ethyldipropylthiocarbamate (EPTC), S-(2,3-dichloroallyl)diisopropylthiocarbamate (diallate) and S-(2,3,3-trichloroallyl)diisopropylthiocarbamate (triallate) inhibited the formation of very long chain fatty acids by aged potato discs. Incorporation of acetate-[14C] into total fatty acids was inhibited 24% by EPTC, 50% by triallate and 55% by diallate at 10?4 M. The relative sensitivity of very long chain fatty acid synthesis to thiocarbamates in potato tuber provides further evidence that these herbicides reduce cuticular wax by inhibiting fatty acid elongation. 相似文献
20.
Chaiyaso T H-Kittikun A Zimmermann W 《Journal of industrial microbiology & biotechnology》2006,33(5):338-342
Palm fatty acid distillates (PFAD) are by-products of the palm oil refining process. Their use as the source of fatty acids, mainly palmitate, for the biocatalytic synthesis of carbohydrate fatty acid esters was investigated. Esters could be prepared in high yields from unmodified acyl donors and non-activated free fatty acids obtained from PFAD with an immobilized Candida antarctica lipase preparation. Acetone was found as a compatible non-toxic solvent, which gave the highest conversion yields in a heterogeneous reaction system without the complete solubilization of the sugars. Glucose, fructose, and other acyl acceptors could be employed for an ester synthesis with PFAD. The synthesis of glucose palmitate was optimized with regard to the water activity of the reaction mixture, the reaction temperature, and the enzyme concentration. The ester was obtained with 76% yield from glucose and PFAD after reaction for 74 h with 150 U ml−1 immobilized lipase at 40°C in acetone. 相似文献