首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(1) The inhibition of potassium uptake by low concentration of norepinephrine (3 X 10-8 M) and of dibutyryl cyclic AMP (DBcAMP, 10 minus5 M) was studied in cardiac Purkyn? fibres. (2) The inhibitory action of DBcAMP on K uptake was abolished by the alpha blocker phentolamine. (3) Norepinephrine alone decreased K uptake and such inhibition was somewhat larger when DBcAMP was added. DBcAMP alone caused the usual decrease in K uptake but addition of norepinephrine abolished it. (4) The inhibition caused by norepinephrine reduced the increase in uptake caused by a high concentration (10 minus 3 M) of DBcAMP. (5) The inhibitory effect of norepinephrine was reversed in the presence of high concentration of magnesium (5.25 mM). (6) The inhibitory effect of norepinephrine was reversed by aminophylline and abolished by caffeine. (7) The inhibitory action of norepinephrine and BCcAMP was reversed or abolished, respectively, by imidazole. (8) It is concluded that the inhibition of potassium uptake by low concentration of DBcAMP is mediated by an alpha receptor mechanism and that possibly the "receptors" for this effect of norepinephrine and DBcAMP are located at different sites. Also it appears that DBcAMP may be acting at the membrane and that the action of methylxanthines and imidazole is not necessarily mediated only by a modification of phosphodiesterase activity.  相似文献   

2.
Synaptosomal acetylcholine synthesis was found to be dependent on the presence of Na+-dependent HC-3 sensitive choline transport at low (5.5 mM) and high (35 mM) K+ concentrations. However, at 5, 20, and 100 M choline, choline phosphorylation was proportional to total choline uptake, in the presence or absence of high affinity transport. Only in the presence of eserine (50 M) did acetylcholine synthesis increase as the choline concentration was elevated from 20 M to 100 M, and this effect was observed at low and high K+ concentrations. Our results suggest that: 1) the synthesis of non-surplus synaptosomal ACh is dependent on high affinity choline transport; and 2) choline is equally likely to be phosphorylated after being taken up by low or high affinity transport.  相似文献   

3.
Summary The transport of potassium, sodium and various anions in rat-liver mitochondria was studied mainly by analysis of ion content and water compartmentation of the mitochondrial pellet. A comparison of spontaneous transport with valinomycin- or gramicidin-stimulated transport is made. The rate or extent of uptake, the internal concentrations and the concentration ratio (Cin/Cout) are calculated and compared to test existing models for ion transport in mitochondria.Several models of ion transport in mitochondria are based on a cation-pump which is directed inward. This hypothesis is rejected because of the following findings: (1) Valinomycin stimulates the rate of potassium uptake but does not increase the potassium concentration ratio that can be actively maintained in a steady state (in which there is no potassium flow). (2) Valinomycin greatly stimulates the efflux of42K from mitochondria during the process of potassium accumulation. When potassium accumulation is stimulated the flux ratio, i.e. influx/efflux, decreases; in the presence of valinomycin this ratio approaches 1. (3) In the presence of gramicidin, the concentration ratios of potassium and sodium are about the same under a variety of conditions. These findings indicate that potassium and sodium transport are passive processes of relaxation towards electro-chemical equilibrium (of the potassium and sodium). In high external potassium concentrations the extent of potassium uptake is limited by the permeation of anions; of the permeating anions multivalent acids support a higher extent than monovalent acids. It was found that succinate, acetate and oxalate which are transported together with potassium are distributed in accordance with the pH and without any relation to the potassium concentration ratio. These findings are compatible with the hypothesis that an outward-directed proton pump creates an electrical potential gradient, which shifts the equilibrium state for the cations and drives sodium and potassium inward, and also creates proton gradient that is the driving force for anion transport.  相似文献   

4.
Voltage-clamp experiments have been performed on frog atrial preparations in order to study the mechanism of the inotropic effect of acetylcholine (ACh) at various concentrations. The amplitude of the slow inward current (Is) is reduced even at low ACh concentrations; such low concentrations have little or no effect on potassium permeability. Dose-effect relationships for Is inhibition (Is/Is max) by ACh show a half amplitude dose (K0.5 around 8 X 10(-8) M ACh. The reduction of Is is attributed largely to a decrease of the maximal conductance of the slow channel (gs). Steady-state activation and inactivation parameters are not affected by ACh. Experiments in a Na-free solution (Na replaced by Li ions) or in a Ca-free solution (with EGTA) indicate that the "slow sodium current" is more sensitive to ACh than the "slow Ca current", although these two currents both seem to flow through the slow channel. The decrease of the phasic component of contraction observed in the presence of ACh is very well correlated with the decrease of Is (K0.5 = 8 X 10(-8) M ACh), while the increase of the tonic tension may be related to the outward potassium current induced by high concentrations of ACh. The significant difference between the half amplitude dose (K0.5) observed in the dose effect curves with ACh for Is inhibition (K0.5 = 8 X 10(-8) M) and for ACh-induced extra-current (K0.5 - 10(-6) M) may indicate the presence of two muscarinic receptors.  相似文献   

5.
The uptake of glutamine was studied in Bacillus pasteurii DSM 33. Only one uptake system was detected in the concentration range studied (between 1 and 100 M glutamine) which exhibited Michaelis-Menten saturation kinetics, with an apparent K t of 10.7 (±3.5) M glutamine. The uptake was sodium-dependent (apparent K t=0.2 mM Na+); none of several monovalent cations tested was able to replace sodium in the uptake reaction. Ionophores interfering with proton, sodium or potassium gradients across membranes strongly inhibited uptake of glutamine. Low uptake rates correlating with low potassium content and an acidic cytoplasm were measured in cells grown at high ammonium1 concentrations. Ammonium and other permeant amines as well as potassium stimulated the uptake reaction in these cells, leading to an increase of up to 100-fold in V max without affecting the affinity of the uptake system. In cells grown at low concentrations of ammonium, an alkaline cytoplasm and both high glutamine uptake activities and potassium content were measured; the uptake reaction was not further stimulated by permeant amines or potassium in such cells. Growth of the strain was inhibited by Tris at high concentrations; this inhibition was relieved by the addition of increasing amounts of ammonium.Abbreviations CCCP carbonylcyanide-m-chlorphenylhydrazone - DCCD dicyclohexylcarbodiimide This work is dedicated to Prof. Dr. H. Kaltwasser on the occasion of his 60th birthday  相似文献   

6.
Insulin stimulated the uptake of 86Rb+ (a K+ analog) in rat adipocytes and increased the steady state concentration of intracellular potassium. Half-maximal stimulation occurred at an insulin concentration of 200 pM. Both basal- and insulin-stimulated 86Rb+ transport rates depended on the concentration of external K+, external Na+, and were 90% inhibited by 10(-3) M ouabain and 10(-3) M KCN, indicating that the hormone was activating the (Na+,K+)-ATPase. Insulin had no effect on the entry of 22Na+ or exit of 86Rb+. Kinetic analysis demonstrated that insulin acted by increasing the maximum velocity, Vmax, of 86Rb+ entry. Inhibition of the rate of Rb+ uptake by ouabain was best described by a biphasic inhibition curve. Scatchard analysis of ouabain binding to intact cells indicated binding sites with multiple affinities. Only the rubidium transport sites which exhibited a high affinity for ouabain were stimulated by insulin. Stimulation required insulin binding to an intact cell surface receptor, as it was reversible by trypsinization. We conclude that the uptake of 86Rb+ by the (Na+,K+)-ATPase is an insulin-sensitive membrane transport process in the fat cell.  相似文献   

7.
The uptake of [3H]atropine, [3H]acetylcholine and [14C]inulin in mouse brain cortex slices was studied in slices treated with phospholipases A or C. In control experiments the slices took up atropine and acetylcholine against a concentration gradient, indicating active uptake. This uptake was decreased by ouabain, by anaerobic conditions and by an increase in the potassium ion concentration. The phospholipases were found to decrease the uptake of atropine and particularly that of acetylcholine in the slices. The uptake of labelled inulin in enzyme-treated slices, as compared to untreated slices, was not decreased, indicating no change in the inulin space. The effect of the phospholipases was time dependent and, up to a certainlimit, concentration dependent. The effect of ouabain in decreasing the uptake of atropine was not eliminated by the enzyme treatment. The effect of anaerobic conditions in decreasing the uptake was weak after treatment with phospholipases. The effect of higher concentrations of potassium ions was abolished by treatment with phospholipase A. The results emphasize the importance of phospholipids as substances controlling structural order in membranes and suggest their participation in active transport.  相似文献   

8.
The effect of the calcium channel agonist BAY K 8644 on the ability of KCl and norepinephrine to induce contractions of rabbit aortic rings has been examined in Krebs-Henseleit buffer containing either 4.0 or 6.8 mM potassium. BAY K 8644 (10(-8) to 10(-6) M) alone induced slowly developing aortic contractures which were 10 (at 4.0 mM potassium) or 20 (at 6.8 mM potassium) percent of the maximum obtainable with norepinephrine. These contractions were not observed in every experiment, but were more likely to occur at 6.8 mM (71% at 10(-6) M BAY K 8644) when compared to 4.0 mM (31% at 10(-6) M BAY K 8644) potassium buffer. BAY K 8644, in either potassium buffer, induced a statistically significant shift to the left in the norepinephrine dose-response curve. The norepinephrine dose-response curve was significantly curvilinear in the presence of 3 X 10(-8) M BAY K 8644 (6.8 mM potassium) and 10(-6) M BAY K 8644 (4.0 mM potassium). Similarly, BAY K 8644 induced sinistral shifts in the KCl dose-response curve with a curvilinear function observed at 3 X 10(-7) M BAY K 8644. These data show that BAY K 8644 is capable of inducing aortic contractures at potassium concentrations significantly lower than previously reported. Furthermore, BAY K 8644 facilitates opening of calcium channels by either potassium or norepinephrine. In contrast to others, our data indicates that BAY K 8644 can affect calcium channels activated by norepinephrine. Finally, our data suggest that the alpha and dihydropyridine receptors are capable of interacting and that occupation of one receptor can affect the action of a compound binding to the other receptor.  相似文献   

9.
Aortic rings excised from rats at 12 weeks of age showed a decrease in responsiveness during repeated contraction by increasing potassium concentration. By comparison, aortic rings obtained from rats at 22 and 26 weeks exhibited less loss or an increase in responsiveness to high potassium concentration during repeated contraction. The decrease in responsiveness to potassium in aortae of young rats was not due to the extended interval of incubation of these tissue in vitro. Aortic rings incubated without stimulation for 4 h following a reference contraction showed no change in contractile response to potassium. However, the magnitude of loss in responsiveness to potassium did appear to be related to the potassium concentration and the length of time the tissues were exposed to the high potassium solutions. Contraction of the tissue at 60 versus 30 mM KCl or extending the interval in depolarizing solution from 15 to 60 min significantly enhanced the decline in tissue responsiveness to potassium. The interruption of a series of potassium-induced contractions by exposure of the tissue to contractile (serotonin, norepinephrine) or relaxant (acetylcholine, isoproterenol) stimuli had no effect on the loss in responsiveness to potassium. However, injection of the calcium channel agonist, Bay K 8644, into the incubation media restored responsiveness to potassium. Concentration-response curves indicated that both sensitivity and the maximal response to potassium were reduced in aortic rings repeatedly contracted with potassium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Dual effect of adrenalin on sugar transport in rat diaphragm muscle   总被引:4,自引:0,他引:4  
The effect of adrenalin on the membrane transport of the non-metabolized sugar, 3-methylglucose, was studied in isolated "intact" rat hemidiaphragms and related to simultaneously occurring changes in the internal levels of Na+, ATP, glucose-6-P, glycerol formation and 45Ca uptake and loss. Basal sugar transport was inhibited by low (10-8-10-5 M) concentrations of adrenalin; this was antagonized by propranolol and practolol. High concentrations (10-4-10-3 M) stimulated sugar transport, and this was blocked by propranolol and butoxamine and was dependent on external Ca2+. These results suggest interaction with two different classes of adrenergic receptors, possibly of beta 1 and beta 2 types. Both low and high concentrations increases Na+ and K+ gradients by a practolol-sensitive effect. Isoproterenol behaved identically but phenylephrine had only the two practolol-sensitive effects on sugar and ion transport. Insulin did not interfere with inhibition of sugar transport and decrease in internal Na+ but prevented stimulation of sugar transport. Under anoxia adrenalin had no effect on sugar transport but led to greater Na+ gain by tissue. Addition of 3.0 mM palmitate decreased inhibition of sugar transport without changing receptor specificity. ATP was decreased and lipolysis enchanged by high adrenalin but glucose-6-P was increased by the low concentration as well. Influx of 45 Ca was decreased by low and increased by high adrenalin; 45Ca efflux was also differentially affected. The results indicate that inhibition and stimulation of sugar transport depend on different receptors and that the latter response may override the former. The data are consistent with the earlier postulated regulatory role of sarcoplasmic Ca2+ on sugar transport in muscle, with adrenalin affecting Ca2+ fluxes and distribution both directly and indirectly.  相似文献   

11.
Waegeneers  N.  Camps  M.  Smolders  E.  Merckx  R. 《Plant and Soil》2001,235(1):11-20
The differences in radiocaesium uptake between species were analysed in a series of solution culture and pot trials. Since radiocaesium uptake is very sensitive to the solution potassium (K) concentration, it was hypothesised that species depleting K in the rhizosphere to a larger extent, will have a higher radiocaesium uptake. Five species (bean, lettuce, winter barley, ryegrass and bentgrass) were grown for 18–21 days in nutrient solution spiked with 137Cs and at 4 K concentrations between 0.025 and 1.0 mM. Shoot 137Cs activities all decreased between 17- and 81-fold with increasing K supply. Shoot 137Cs activities were 4-fold different between species at the lowest K supply and 3.4-fold different at high K supply. The same five species were grown in two 134Cs spiked soils with contrasting exchangeable K but similar clay content. Shoot 134Cs activities were up to 19-fold higher in the soil with lowest exchangeable K. Differences in shoot activity concentrations between the species were only 4.5-fold in the high K soil, but were 15-fold in the low K soil. Bulk soil solution 134Cs and K concentration data were combined with radiocaesium uptake characteristics measured in solution culture to predict radiocaesium uptake from soil. Predictions were within 1.6-fold of observations in the high K soil but largely underestimated 134Cs uptake in lettuce, ryegrass and barley in the low K soil. A solute transport model was used to estimate K and radiocaesium concentrations in the rhizosphere. These calculations confirmed the assumption that higher radiocaesium uptake is found for species that deplete K in the rhizosphere to a larger extent.  相似文献   

12.
A method has been developed for measuring K influx into the epithelial cells of frog skin from the inside solution. Diffusion delay in the connective tissue has been taken into account. Ninety-four per cent of skin K was found to exchange with K42 in the inside solution with a single time constant. K influx showed saturation with increasing K concentration, was not altered by imposing a potential difference of ±200 mv across the skin, and was inhibited by dinitrophenol, fluoroacetate, and ouabain. Relatively low concentrations of dinitrophenol (5 x 10-5 M) and fluoroacetate (10-10 M) had no effect on k influx but caused a 40 per cent decrease in net Na flux. There was no correlation between the rate of K uptake at the "inner barrier" and the rate of net Na transport. Reduction of net Na transport by lowering Na concentration in the outside solution caused little change in K uptake. These observations indicate that there is not a significant Na-K exchange involved in active transport of Na across the skin. K influx was found, however, to require Na in the inside bathing solution.  相似文献   

13.
Transport of K(+) by K(+)-depleted cells of marine pseudomonad B-16 (ATCC 19855) exhibited saturation kinetics. Rb(+) inhibited both K(+) transport and the K(+)-dependent transport of alpha-aminoisobutyric acid (AIB) into K(+)-depleted cells of the organism in proportion to the concentration of Rb(+) in the suspending medium. Inhibition of the K(+)-dependent uptake of AIB into K(+)-depleted cells by Rb(+) could be overcome by increasing the concentration of K(+) in the medium. When AIB and K(+) were added simultaneously to a suspension of K(+)-depleted cells, the uptake of K(+) occurred immediately and rapidly, whereas the accumulation of AIB occurred only after a lag. The initial uptake rate of AIB was directly proportional to the intracellular K(+) concentration. The intracellular concentration of K(+) and AIB at their steady-state levels increased to a maximum as the Na(+) concentration in the suspending medium was increased. At Na(+) concentrations between 0.2 and 0.3 M, the molar ratio of K(+) to AIB at their intracellular steady-state concentrations was constant at 1.6. At external Na(+) concentrations less than 0.2 M, the cells maintained a relatively higher K(+) intracellular steady-state level than AIB.  相似文献   

14.
High affinity transport of choline into synaptosomes of rat brain   总被引:33,自引:13,他引:20  
—The accumulation of [3H]choline into synaptosome-enriched homogenates of rat corpus striatum, cerebral cortex and cerebellum was studied at [3H]choline concentrations varying from 0.5 to 100 μm . The accumulation of [3H]choline in these brain regions was saturable. Kinetic analysis of the accumulation of the radiolabel was performed by double-reciprocal plots and by least squares iterative fitting of a substrate-velocity curve to the data. With both of these techniques, the data were best satisfied by two transport components, a high affinity uptake system with Km. values of 1.4 μM (corpus striatum), and 3.1 μM (ceμ(cerebral cortex) and a low affinity uptake system with respective Km. values of 93 and 33 μM for these two brain regions. In the cerebellum choline was accumulated only by the low affinity system. When striatal homogenates were fractionated further into synaptosomes and mitochondria and incubated with varying concentrations of [3H]choline, the high affinity component of choline uptake was localized to the synaptosomal fraction. The high affinity uptake system required sodium, was sensitive to various metabolic inhibitors and was associated with considerable formation of [3H]acetylcholine. The low affinity uptake system was much less dependent on sodium, and was not associated with a marked degree of [3H]acetylcholine formation. Hemicholinium-3 and acetylcholine were potent inhibitors of the high affinity uptake system. A variety of evidence suggests that the high affinity transport represents a selective accumulation of choline by cholinergic neurons, while the low affinity uptake system has some less specific function.  相似文献   

15.
In our previous study vesamicol, an inhibitor of the acetylcholine transporter of the cholinergic vesicles, inhibited veratridine-evoked external Ca2+-dependent acetylcholine release from striatal slices but did not influence acetylcholine release observed in Ca2+-free medium (4). Here we examined if the effect of veratridine on membrane potential, Ca2+ uptake, and intracellular Ca2+ concentration of synaptosomes was altered by vesamicol in parallel with the inhibition of acetylcholine release. The depolarizing effect of 10 M veratridine (from 67±2.3 mV resting membrane potential to 50.7±2.5 mV) was not significantly influenced by vesamicol (1–20 M). Vesamicol (1–20 M) had no effect on either the overall curve of the veratridine-evoked45Ca2+ uptake or the amount of Ca2+ taken up by synaptosomes. Veratridine caused a rise in intrasynaptosomal Ca2+ concentration as measured by Fura2 fluorescence, and the same increase both in characteristics and in magnitude was observed in the presence of vesamicol (20 M). The K+-evoked (40 mM) increase of Ca2+ uptake and of intracellular calcium concentration were also unaltered by vesamicol. In high concentration (50 M) vesamicol inhibited both the fall in membrane potential and the elevated Ca2+ uptake by veratridine, indicating a possible nonspecific effect on potential-dependent Na+ channels at this concentration. Vesamicol, in lower concentration (20 M) when neither of the above parameters was changed, completely prevented veratridine-evoked increase of [14C]acetylcholine release. This was observed only when vesamicol was present in the media throughout the experiment after loading the preparation with [14C]choline. The results suggest that vesamicol does not interfere with veratridine-induced changes in isolated nerve terminals other than with the release of acetylcholine, thus further supporting the involvement of a vesamicol-sensitive vesicular transmitter pool in Ca2+-dependent veratridine-elicited acetylcholine release.  相似文献   

16.
The effects of N-ethylmaleimide (NEM) on mouse platelet serotonin (5-HT) and 86Rb+ uptake were studied. The 5-HT transport system showed a biphasic response to increasing concentrations of NEM, with low concentrations (25–50 μM) stimulating and high concentrations (200–400 μM) inhibiting 5-HT transport. Fluoxetine, an inhibitor of the platelet 5-HT transporter, blocked NEM-induced stimulation of 5-HT transport. The kinetics of 5-HT uptake indicated that NEM (50 μM) markedly increased the maximal rate of 5-HT transport (Vmax control = 28.4±1.4 pmol/108 platelets/4 min vs Vmax NEM = 64.5±9.5 pmol/108 platelets/4 min but had no significant effect on the Km value. Platelet Na+ K+ ATPase activity was determined by measuring 86Rb+ uptake. Platelet 86Rb+ uptake showed a biphasic response to NEM, with low concentrations (25–100 μM) significantly stimulating and high concentrations (400 μM) inhibiting uptake. These changes in platelet 86Rb+ uptake paralleled the biphasic changes in 5-HT transport. In the presence of fluoxetine, 5-HT transport was markedly inhibited but no change in the ability of NEM to stimulate 86Rb+ uptake was observed. These data suggest that low concentrations of NEM activate plasma membrane Na+ K+ ATPase which results in a marked stimulation of platelet 5-HT transport.  相似文献   

17.
Potassium uptake and release in roots and translocation to the shoots were studied in 14-day-old winter wheat ( Tritictum aestivum L. cv. Martonvásári 8) of different K status. Transport processes were measured in the growth solutions for 5 h ensuring near-equilibrium conditions. The uptake showed three phases: (1) at low external K+ concentrations it increased with increasing concentrations and culminated at 0.1 m M : (2) between 0.1 and 1 m M it decreased, and (3) it increased again above 1 m M : The release of K+ showed a constant low level below 1 m M while paralleling the uptake above that. The uncoupler 2,4-dinitrophenol inhibited uptake phases (1) and (2), whereas it did not affect either phase (3) or K+ release. Translocation showed similar patterns. It is concluded that phases (1) and (2) depend on metabolic energy while phase (3) is mostly passive. It is emphasized that different types of regulation seem to operate in the transport mechanism: i.e. limitation by transport sites, control by negative feedback and by K+/K+ exchange, respectively.  相似文献   

18.
Soil contamination with radiocaesium (Cs) has a long-term radiological impact because it is readily transferred through food chains to human beings. Plant uptake is the major pathway for the migration of radiocaesium from soil to human diet. The plant-related factors that control the uptake of radiocaesium are reviewed. Of these, K supply exerts the greatest influence on Cs uptake from solution. It appears that the uptake of radiocaesium is operated mainly by two transport pathways on plant root cell membranes, namely the K(+) transporter and the K(+) channel pathway. Cationic interactions between K and Cs on isolated K-channels or K transporters are in agreement with studies using intact plants. The K(+) transporter functioning at low external potassium concentration (often <0.3 mM) shows little discrimination against Cs(+), while the K(+) channel is dominant at high external potassium concentration with high discrimination against Cs(+). Caesium has a high mobility within plants. Although radiocaesium is most likely taken up by the K transport systems within the plant, the Cs:K ratio is not uniform within the plant. Difference in internal Cs concentration (when expressed on a dry mass basis) may vary by a factor of 20 between different plant species grown under similar conditions. Phytoremediation may be a possible option to decontaminate radiocaesium-contaminated soils, but its major limitation is that it takes an excessively long time (tens of years) and produces large volumes of waste.  相似文献   

19.
The influence of external sodium concentration on potassium (depolarizing agent)-stimulated calcium uptake and Ca+-dependent acetylcholine release by rat cerebral cortex synaptosomes has been studied. It was found that increased sodium concentration decreases both the Ca2+ uptake and the acetylcholine release, whereas a low external sodium concentration is stimulatory.  相似文献   

20.
During growth on low-K+ medium (1 mM K+), Methanobacterium thermoautotrophicum accumulated K+ up to concentration gradients ([K+]intracellular/[K+]extracellular) of 25,000- to 50,000-fold. At these gradients ([K+]extracellular of < 20 microM), growth ceased but could be reinitiated by the addition of K+ or Rb+. During K+ starvation, the levels of a protein with an apparent molecular weight of 31,000 increased about sixfold. The protein was associated with the membrane and could be extracted by detergents. Cell suspensions of M. thermoautotrophicum obtained after K+-limited growth catalyzed the transport of both K+ and Rb+ with apparent Km and Vmax values of 0.13 mM and 140 nmol/min/mg, respectively, for K+ and 3.4 mM and 140 nmol/min/mg, respectively, for Rb+. Rb+ competitively inhibited K+ uptake with an inhibitor constant of about 10 mM. Membranes of K+-starved cells did not exhibit K+-stimulated ATPase activity. Immunoblotting with antisera against Escherichia coli Kdp-ATPase did not reveal any specific cross-reactivity against membrane proteins of K+-starved cells. Cells of M. thermoautotrophicum grown at a high potassium concentration (50 mM) catalyzed K+ and Rb+ transport at similar apparent Km values (0.13 mM for K+ and 3.3 mM for Rb+) but at significantly lower apparent Vmax values (about 60 nmol/min/mg for both K+ and Rb+) compared with K+-starved cells. From these data, it is concluded that the archaeon M. thermoautotrophicum contains a low-affinity K+ uptake system which is overproduced during growth on low-K+ medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号