首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glutamine-dependent activity of Serratia marcescens anthranilate synthase was inactivated by pyridoxal 5′-phosphate and sodium cyanide. The reaction was specific in that the ammonia-dependent activity of the enzyme was unaffected. The inactivation was stable to dilution or dialysis but was reversed by dithiothreitol. The enzyme contains dissimilar subunits designated anthranilate synthase components I (AS I) and II (AS II). Incorporation of [14C]NaCN demonstrates that modification was limited to one to two residues per AS I · AS II protomer. An active site cysteine is involved in the glutamine-dependent activity. Modification by pyridoxal 5′-phosphate and NaCN blocked affinity labeling of the active site cysteine by the glutamine analog 6-diazo-5-oxo-l-norleucine and reduced alkylation of the active site cysteine by iodoacetamide. These results suggest modification is at the glutamine active site. Initial modification by iodoacetamide did not prevent pyridoxal 5′-phosphate-dependent incorporation of 14CN showing that the pyridoxal 5′-phosphate modification did not involve the essential cysteinyl residue. These results suggest that modification of a lysyl residue in the glutamine active site of anthranilate synthase reduces the reactivity of the essential cysteinyl residue resulting in the loss of the amidotransferase activity.  相似文献   

2.
Yeast hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1), a homodimer, was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The reaction followed pseudo-first-order kinetics over a wide range of the inhibitor concentration. The second-order-rate constant for the inactivation of hexokinase was estimated to be 45 M-1.s-1. Hexokinase was protected more by sugar substrates than by nucleoside triphosphates during inactivation by o-phthalaldehyde. Absorption spectrum (lambda max 338 nm), and fluorescence excitation (lambda max 363 nm) and emission (lambda max 403 nm) spectra of the hexokinase-o-phthalaldehyde adduct were consistent with the formation of an isoindole derivative. These results also suggest that sulfhydryl and epsilon-amino functions of the cysteine and lysine residues, respectively, participating in the isoindole formation are about 3 A apart in the native enzyme. About 2 mol of the isoindole per mol of hexokinase dimer were formed following complete loss of the phosphotransferase activity. Chemical modification of hexokinase by iodoacetamide in the presence of mannose resulted in the modification of six sulfhydryl groups per mol of hexokinase with retention of the phosphotransferase activity. Subsequent reaction of the iodoacetamide modified hexokinase with o-phthalaldehyde resulted in complete loss of the phosphotransferase activity with concomitant modification of the remaining two sulfhydryl groups of hexokinase. Chemical modification of hexokinase by iodoacetamide in the absence of mannose resulted in complete inactivation of the enzyme. The iodoacetamide inactivated hexokinase failed to react with o-phthalaldehyde as evidenced by the absence of a fluorescence emission maximum characteristic of the isoindole derivative. The holoenzyme failed to react with [5'-(p-fluorosulfonyl)benzoyl]adenosine. The dissociated hexokinase could be inactivated by [5'-(p-fluorosulfonyl)benzoyl]adenosine; the degree of inactivation paralleled the extent of reaction between o-phthalaldehyde and the nucleotide-analog modified enzyme. Thus, it is concluded that two cysteines and lysines at or near the active site of the hexokinase were involved in reaction with o-phthalaldehyde following complete loss of the phosphotransferase activity. An important finding of this investigation is that the lysines, involved in isoindole formation, located at or near the active site are probably buried.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
A fluorescent chemoaffinity label o-phthalaldehyde (OPTA) was used to ascertain the conformational flexibility and polarity at the active site of xylanase I (Xyl I). The kinetics of inactivation of Xyl I with OPTA revealed that complete inactivation occurred due to the binding of one molecule of OPTA to the active site of Xyl I. The formation of a single fluorescent isoindole derivative corroborated these findings. OPTA has been known to form a fluorescent isoindole derivative by crosslinking the proximal thiol and amino groups of cysteine and lysine. The involvement of cysteine in the formation of a Xyl I-isoindole derivative has been negated by fluorometric and chemical modification studies on Xyl I with group-specific reagents and by amino-acid analysis. The kinetic analysis of diethylpyrocarbonate-modified Xyl I established the presence of an essential histidine at or near the catalytic site of Xyl I. Modification of histidine and lysine residues by diethylpyrocarbonate and 2,4,6-trinitrobenzenesulfonic acid, respectively, abolished the ability of the enzyme to form an isoindole derivative with OPTA, indicating that histidine and lysine participate in the formation of the isoindole complex. A mechanism for the reaction of OPTA with histidine and lysine residues present in the protein structure has been proposed. Experimental evidence presented here suggests for the first time that the active site of Xyl I is conformationally more flexible and more easily perturbed in the presence of denaturants than the molecule as a whole. The changes in the fluorescence emission maxima of a model compound (isoindole adduct) in solvents of different polarity were compared with the fluorescence behaviour of the Xyl I-isoindole derivative, leading to the conclusion that the active site is located in a microenvironment of low polarity.  相似文献   

4.
P J Andree  A Zantema 《Biochemistry》1978,17(5):778-783
The reaction of glutamate dehydrogenase with two different stable nitroxides (spin labels) is reported. The two compounds contain a carbonyl and an iodoacetamide group as their reactive parts. The carbonyl compound inactivates the enzyme by the formation of a 1:1 covalent complex after NaBH4 reduction of an intermediate Schiff's base. Evidence indicates that the enzyme is modified at lysine-126 in the active site. The electron spin resonance (ESR) spectrum of spin-labeled enzyme indicates a high degree of immobilization of the nitroxide. The binding of reduced coenzyme NADPH is reflected by a change (immobilization) of the ESR spectrum. Nuclear relaxation of bound substrate, oxidized coenzyme, and inhibitor by the paramagnetic group is observed. This shows the existence of a binding site for these compounds close to the active site. The distances of selected protons of the binding ligands to the nitroxide are calculated. The iodoacetamide spin label reacts with several groups, one of which is not a sulfhydryl. The reaction of this particular group causes inactivation of the enzyme. Protection against this inactivation could be achieved with certain ligands. Only enzyme that was spin labeled without such protection caused paramagnetic relaxation of bound substrate and coenzyme.  相似文献   

5.
Anish R  Rao M 《Biochimie》2007,89(12):1489-1497
A bifunctional high molecular weight (Mr, 64,500 Da) beta-1-3, 1-4 glucan 4-glucanohydrolase was purified to homogeneity from Thermomonospora sp., exhibiting activity towards lichenan and xylan. A kinetic method was used to analyze the active site that hydrolyzes lichenan and xylan. The experimental data was in agreement with the theoretical values calculated for a single active site. Probing the conformation and microenvironment at active site of the enzyme by fluorescent chemo-affinity label, OPTA resulted in the formation of an isoindole derivative with complete inactivation of the enzyme to hydrolyse both lichenan and xylan confirmed the results of kinetic method. OPTA forms an isoindole derivative by cross-linking the proximal thiol and amino groups. The modification of cysteine and lysine residues by DTNB and TNBS respectively abolished the ability of the enzyme to form an isoindole derivative with OPTA, indicating the participation of cysteine and lysine in the formation of isoindole complex.  相似文献   

6.
H Zeidan  P Han  J Johnson 《FEBS letters》1985,192(2):294-298
The local environment of the essential sulfhydryl groups in chicken liver fructose-1,6-bisphosphatase has been investigated by ESR techniques using a series of iodoacetamide spin labels, varying in chain length between the iodoacetate and nitroxide free radical group. The ESR spectrum of spin-labeled chicken liver fructose-1,6-bisphosphatase showed that the sites of labeling were highly immunobilized when the enzyme was chemically modified by spin label iodoacetate, suggesting that the sulfhydryl groups of the protein are in a small, confined environment. From the change in the ESR spectra of these nitroxides as a function of chain length, we conclude that the sulfhydryl group is located in a cleft approx. 10.5A in depth.  相似文献   

7.
Ficin was alkylated with a series of haloacetamide spin labels with various distances between the spin probes and reactive groups. From the relation of these distances to the tau c values of the labels incorporated into protein, it was estimated that the depth of the active site hole of ficin is ca. 8 A. The results are somewhat different from those reported previously for papain (S. Nakayama et al. (1981) Biochem. Biophys. Res. Commun. 98, 471-475). Examination of the pH dependence of the ESR spectra for ficin and papain alkylated with an iodoacetamide or a maleimide spin label suggested that these enzymes have an amino acid residue of pKa 4 (probably a histidine residue) around the active site cysteine and that the active site conformations change at around pH 5.  相似文献   

8.
Na+/K+-ATPase in membranous preparations from the rectal gland of Squalus acanthias has been spin-labelled either on Class I -SH groups, which maintain overall ATPase activity, or on Class II -SH groups, for which only phosphorylation activity is preserved. Labelling of the Class I groups requires solubilization of the membranes and subsequent reconstitution by precipitation with Mn2+ in order to remove contaminating peripheral proteins, which are also labelled. Control experiments with preparations in which the Class II groups are labelled demonstrate that the mobility and aggregation state of the enzyme in the reconstituted membranes are similar to those in the native membrane. Both the conventional maleimide nitroxide derivative and a new benzoylvinyl nitroxide derivative have been used for the labelling. The segmental mobility of the labels and the overall rotational diffusion of the labelled protein have been investigated using saturation transfer ESR spectroscopy. The benzoylvinyl spin-label derivative offers particular advantages for the study of the protein rotational mobility in that the segmental mobility is considerably reduced relative to that observed with the maleimide derivative. This is especially the case for the Class I groups, where the maleimide label exhibits pronounced segmental mobility. Comparison of the results from the two labels indicates that the integral of the saturation-transfer spectrum is much more sensitive to segmental motion than are the diagnostic line-height ratios. This fact allows a better level of discrimination between the two types of motion. The results from the benzoylvinyl nitroxide-labelled Class I groups suggest that the Na+/K+-ATPase is probably present as an (alpha beta)2-diprotomer (or higher oligomer) in the native membrane.  相似文献   

9.
Pig kidney 3,4-dihydroxyphenylalanine (Dopa) decarboxylase is inactivated by iodoacetamide following pseudo-first order reaction kinetics. The apparent first order rate constant for inactivation is proportional to the concentration of iodoacetamide and a second order rate constant of 37 M-1 min-1 is obtained at pH 6.8 and 25 degrees C. Cyanogen bromide fragmentation of iodo(1-14C)acetamide - modified inactivated Dopa decarboxylase followed by trypsin digestion yields a single radioactive peptide. Automated Edman degradation reveals a heptapeptide sequence which contains labeled carboxyamidomethylcysteine. This finding and the results of the incorporation of the label from ido (1-14C)acetamide into the enzyme clearly indicate that the modification of 1 mol of SH per mol of enzyme dimer is responsible for the inactivation process. The labeled peptide, which was located by means of limited proteolysis on the fragment corresponding to the COOH-terminal third of the enzyme, has been aligned with a 7 amino acid stretch of Drosophila enzyme. Although this region appears highly conserved in the Dopa decarboxylase enzymes, the cysteinyl residue is not conserved. This observation together with the spectral binding properties of the iodoacetamide inactivated enzyme argue against a functional role for the modifiable cysteine in the mechanism of action of pig kidney enzyme. It is suggested that the loss of pig kidney decarboxylase activity produced by iodoacetamide modification might be attributable to steric hindrance. This could be due to the presence of the bulky acetamidic group on a cysteine residue at, or near, the active center or in a site of strategic importance to the maintenance of the active site topography.  相似文献   

10.
Two different spin labels, N-(1-oxyl-2,2,5,5-tetramethyl-3-pyrrolidinyl)iodoacetamide (IPSL) and (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl) methanethiosulfonate (MTSSL), and two different fluorescent labels 5-((((2-iodoacetyl)amino)-ethyl)amino)naphtalene-1-sulfonic acid (IAEDANS) and 6-bromoacetyl-2-dimetylaminonaphtalene (BADAN), were attached to the introduced C79 in human carbonic anhydrase (HCA II) to probe local structural changes upon unfolding and aggregation. HCA II unfolds in a multi-step manner with an intermediate state populated between the native and unfolded states. The spin label IPSL and the fluorescent label IAEDANS reported on a substantial change in mobility and polarity at both unfolding transitions at a distance of 7.4-11.2 A from the backbone of position 79. The shorter and less flexible labels BADAN and MTSSL revealed less pronounced spectroscopic changes in the native-to-intermediate transition, 6.6-9.0 A from the backbone. At intermediate guanidine (Gu)-HCl concentrations the occurrence of soluble but irreversibly aggregated oligomeric protein was identified from refolding experiments. At approximately 1 M Gu-HCl the aggregation was found to be essentially complete. The size and structure of the aggregates could be varied by changing the protein concentration. EPR measurements and line-shape simulations together with fluorescence lifetime and anisotropy measurements provided a picture of the self-assembled protein as a disordered protein structure with a representation of both compact as well as dynamic and polar environments at the site of the molecular labels. This suggests that a partially folded intermediate of HCA II self-assembles by both local unfolding and intermolecular docking of the intermediates vicinal to position 79. The aggregates were determined to be 40-90 A in diameter depending on the experimental conditions and spectroscopic technique used.  相似文献   

11.
Conformation and microenvironment at the active site of 1,4-beta-D-glucan glucanohydrolase was probed with fluorescent chemo-affinity labeling using o-phthalaldehyde. OPTA has been known to form a fluorescent isoindole derivative by cross-linking the proximal thiol and amino groups of cysteine and lysine. Modification of lysine of the enzyme by TNBS and of cysteine residue by PHMB abolished the ability of the enzyme to form an isoindole derivative with OPTA. Kinetic analysis of the TNBS and PHMB-modified enzyme suggested the presence of essential lysine and cysteine residues, respectively, at the active site of the enzyme. The substrate protection of the enzyme with carboxymethylcellulose (CMC) confirmed the involvement of lysine and cysteine residues in the active site of the enzyme. Multiple sequence alignment of peptides obtained by tryptic digestion of the enzyme showed cysteine is one of the conserved amino acids corroborating the chemical modification studies.  相似文献   

12.
The active site lysyl residue (K239) of the thermostable aspartate aminotransferase [EC 2.6.1.1] was replaced by cysteinyl residue by means of site-directed mutagenesis. The K239C mutant enzyme obtained was catalytically inactive. The reaction of the cysteinyl residue of the K239C mutant enzyme with ethylenimine led to the formation of S-(beta-aminoethylcysteinyl (SAEC) residue. The K239SAEC mutant enzyme obtained showed about 25% of the activity of wild-type enzyme, and absorbed at 375 nm, which suggested the internal Schiff base formation.  相似文献   

13.
The active site metal in horse liver alcohol dehydrogenase has been studied by metal-directed affinity labeling of the native zinc(II) enzyme and that substituted with cobalt(II) or cadmium(II). Reversible binding of bromoimidazolyl propionic acid to the cobalt enzyme blueshifts the visible absorption band originating from the catalytic cobalt atom at 655 to 630 nm. Binding of imidazole to the cobalt(II) enzyme redshifts the 655 nm band to 667 nm. Addition of bromoimidazolyl propionic acid blueshifts this 667 nm band back to 630 nm. This proves direct binding of the label to the active site metal in competition with imidazole. The affinity of the label for the reversible binding site in the three enzymes follows the order Zn ? Cd ? Co. After reversible complex formation, bromoimidazolyl propionic acid alkylates cysteine-46, one of the protein ligands to the active site metal. The nucleophilic reactivity of this metal-mercaptide bond in each reversible complex follows the order Co ? Zn ? Cd.  相似文献   

14.
A low molecular weight 1,4-beta-D-glucan glucohydrolase from an extracellular culture filtrate of Thermomonospora sp. was purified to homogeneity. The molecular weight of the purified enzyme was 14.2 kDa by MALDI-TOF analysis and is in agreement with SDS-PAGE and gel filtration chromatography. The purified enzyme exhibited both endocarboxymethyl cellulase and endoxylanase activities. A kinetic method was employed to study the active site of the enzyme that hydrolyzes both carboxymethyl cellulose and xylan. The experimental data coincide well with the theoretical values calculated for the case of a single active site. Conformation and microenvironment at the active site was probed with fluorescent chemo-affinity labeling using o-phthalaldehyde as the chemical initiator. Formation of isoindole derivative resulted in complete inactivation of the enzyme to hydrolyze both xylan and CMC as judged by fluorescence studies corroborating a single active site for the hydrolysis of xylan and CMC.  相似文献   

15.
Chaperonins are molecules that assist proteins during folding and protect them from irreversible aggregation. We studied the chaperonin GroEL and its interaction with the enzyme human carbonic anhydrase II (HCA II), which induces unfolding of the enzyme. We focused on conformational changes that occur in GroEL during formation of the GroEL-HCA II complex. We measured the rate of GroEL cysteine reactivity toward iodo[2-(14)C]acetic acid and found that the cysteines become more accessible during binding of a cysteine free mutant of HCA II. Spin labeling of GroEL with N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide revealed that this additional binding occurred because buried cysteine residues become accessible during HCA II binding. In addition, a GroEL variant labeled with 6-iodoacetamidofluorescein exhibited decreased fluorescence anisotropy upon HCA II binding, which resembles the effect of GroES/ATP binding. Furthermore, by producing cysteine-modified GroEL with the spin label N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide and the fluorescent label 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid, we detected increases in spin-label mobility and fluorescence intensity in GroEL upon HCA II binding. Together, these results show that conformational changes occur in the chaperonin as a consequence of protein substrate binding. Together with previous results on the unfoldase activity of GroEL, we suggest that the chaperonin opens up as the substrate protein binds. This opening mechanism may induce stretching of the protein, which would account for reported unfoldase activity of GroEL and might explain how GroEL can actively chaperone proteins larger than HCA II.  相似文献   

16.
We reported earlier (Schloss, J. V., and Hartman, F. C. (1977) Biochem. Biophys. Res. Commun. 77, 230-236) that N-bromoacetylethanolamine phosphate is an affinity label for spinach ribulosebisphosphate carboxylase/oxygenase. We now show inactivation to be correlated directly with the alkylation either of a single lysyl residue (in the presence of Mg2+) or of 2 different cysteinyl residues (in the absence of Mg2+), consistent with the likelihood that these residues are located in the active site region. This proposition is further supported by the demonstration that the residues are protected from alkylation by substrate, a competitive inhibitor, or the transition state analog 2-carboxyribitol bisphosphate. Tryptic peptides that contain the modified residues have been isolated and sequenced. One of the 2 cysteinyl residues that are subject to alkylation is only 3 residues distant in sequence from the lysyl residue modified by bromoacetylethanolamine phosphate. This lysyl residue is identical with 1 of the 2 lysyl residues alkylated by the previously described affinity label, 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate (Stringer, C. D., and Hartman, F. C. (1978) Biochem. Biophys, Res. Commun. 80, 1043-1048).  相似文献   

17.
The spinach ribulose 1,5-bisphosphate carboxylase/oxygenase was labelled with o-phthalaldehyde, which forms a stable fluorescent isoindole adduct at the active site. The fluorescence behaviour of the labelled enzyme after activation to different levels by Mg2+ was compared with that of a synthetic isoindole adduct of o-phthalaldehyde, namely 1-(hydroxyethylthio)-2-beta hydroxyethylisoindole in solvents of different pH and polarity. The results suggest that the microenvironment at the catalytically incompetent active site of the unactivated Rubisco is highly acidic (pH less than 2) in nature. The activation by Mg2+ results in the conformational change such that the effective pH at the active site increases to greater than 8. The polarity of the active site of the activated enzyme was found to be similar to that of a mixture of hexane and toluene.  相似文献   

18.
2-N3-SL-ATP [2-azido-2',3'-O-(1-oxyl-2,2,5,5-tetramethyl-3-carbonyl-pyrroline) adenosine triphosphate], a photoaffinity spin-labeled derivative of ATP with a nitroxide moiety attached to the ribose ring and an azido group attached to C2 of the adenine ring, was used to study the nucleotide-binding site stoichiometry of sarcoplasmic reticulum (SR) Ca2+-ATPase. The label was shown to bind at the catalytic site of the enzyme, even though the rate of hydrolysis was poor. A maximal binding ratio of 1 mol/mol of ATPase was found. The ESR spectra showed signals from spin-spin interactions between two radicals corresponding to a distance of about 15 A between labels bound to adjacent sites on the enzyme. This indicates that the minimal functional unit of the Ca2+-ATPase is a dimer with the nucleotide-binding sites in close proximity.  相似文献   

19.
R N Puri  D Bhatnagar  R Roskoski 《Biochemistry》1985,24(23):6499-6508
The catalytic subunit of adenosine cyclic 3',5'-monophosphate dependent protein kinase from bovine skeletal muscle was rapidly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The reaction followed pseudo-first-order kinetics, and the second-order rate constant was 1.1 X 10(2) M-1 s-1. Absorbance and fluorescence spectroscopic data were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme). The reaction between the catalytic subunit and o-phthalaldehyde was not reversed by the addition of reagents containing free primary amino and sulfhydryl functions following inactivation. The reaction, however, could be arrested at any stage during its progress by the addition of an excess of cysteine or less efficiently by homocysteine or glutathione. The catalytic subunit was protected from inactivation by the presence of the substrates magnesium adenosine triphosphate and an acceptor serine peptide substrate. The decrease in fluorescence emission intensity of incubation mixtures containing iodoacetamide- or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified catalytic subunit and o-phthalaldehyde paralleled the loss of phosphotransferase activity. Catalytic subunit denatured with urea failed to react with o-phthalaldehyde. Inactivation of the catalytic subunit by o-phthalaldehyde is probably due to the concomitant modification of lysine-72 and cysteine-199. The proximal distance between the epsilon-amino function of the lysine and the sulfhydryl group of the cysteine residues involved in isoindole formation in the native enzyme is estimated to be approximately 3 A. The molar transition energy of the catalytic subunit-o-phthalaldehyde adduct was 121 kJ/mol and compares favorably with a value of 127 kJ/mol for the 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl)isoindole in hexane, indicating that the active site lysine and cysteine residues involved in formation of the isoindole derivative of the catalytic subunit are located in a hydrophobic environment. o-Phthalaldehyde probably acts as an active site specific reagent for the catalytic subunit.  相似文献   

20.
ZntA from Escherichia coli is a P-type ATPase that confers resistance to Pb(II), Zn(II), and Cd(II) in vivo. We had previously shown that purified ZntA shows ATP hydrolysis activity with the metal ions Pb(II), Zn(II), and Cd(II). In this study, we utilized the acylphosphate formation activity of ZntA to further investigate the substrate specificity of ZntA. The site of phosphorylation was Asp-436, as expected from sequence alignments. We show that in addition to Pb(II), Zn(II), and Cd(II), ZntA is active with Ni(II), Co(II), and Cu(II), but not with Cu(I) and Ag(I). Thus, ZntA is specific for a broad range of divalent soft metal ions. The activities with Ni(II), Co(II), and Cu(II) are extremely low; the activities with these non-physiological substrates are 10-20-fold lower compared with the values obtained with Pb(II), Zn(II), and Cd(II). Similar results were obtained with DeltaN-ZntA, a ZntA derivative lacking the amino-terminal metal binding domain. By characterizing the acylphosphate formation reaction in ZntA in detail, we show that a step prior to enzyme phosphorylation, most likely the metal ion binding step, is the slow step in the reaction mechanism in ZntA. The low activities with Ni(II), Co(II), and Cu(II) are because of a further decrease in the rate of binding of these metal ions. Thus, metal ion selectivity in ZntA and possibly other P1-type ATPases is based on the charge and the ligand preference of particular metal ions but not on their size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号