首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA topoisomerase II alpha is required for chromatin condensation during prophase. This process is temporally linked with the appearance of mitosis-specific phosphorylation sites on topoisomerase IIalpha including one recognized by the MPM-2 monoclonal antibody. We now report that the ability of mitotic extracts to create the MPM-2 epitope on human topoisomerase II alpha is abolished by immunodepletion of protein kinase CK2. Furthermore, the MPM-2 phosphoepitope on topoisomerase II alpha can be generated by purified CK2. Phosphorylation of C-truncated topoisomerase II alpha mutant proteins conclusively shows, that the MPM-2 epitope is present in the last 163 amino acids. Use of peptides containing all conserved CK2 consensus sites in this region indicates that only the peptide containing Arg-1466 to Ala-1485 is able to compete with topoisomerase II alpha for binding of the MPM-2 antibody. Replacement of Ser-1469 with Ala abolishes the ability of the phosphorylated peptide to bind to the MPM-2 antibody while a peptide containing phosphorylated Ser-1469 binds tightly. Surprisingly, the MPM-2 phosphoepitope influences neither the catalytic activity of topoisomerase II alpha nor its ability to form molecular complexes with CK2 in vitro. In conclusion, we have identified protein kinase CK2 as a new MPM-2 kinase able to phosphorylate an important mitotic protein, topoisomerase II alpha, on Ser-1469.  相似文献   

2.
The protein kinase Akt (also known as protein kinase B) is a critical signaling hub downstream of various cellular stimuli such as growth factors that control cell survival, growth, and proliferation. The activity of Akt is tightly regulated, and the aberrant activation of Akt is associated with diverse human diseases including cancer. Although it is well documented that the mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of the Akt hydrophobic motif (Ser-473 in Akt1) is essential for full Akt activation, it remains unclear whether this phosphorylation has additional roles in regulating Akt activity. In this study, we found that abolishing Akt Ser-473 phosphorylation stabilizes Akt following agonist stimulation. The Akt Ser-473 phosphorylation promotes a Lys-48-linked polyubiquitination of Akt, resulting in its rapid proteasomal degradation. Moreover, blockade of this proteasomal degradation pathway prolongs agonist-induced Akt activation. These data reveal that mTORC2 plays a central role in regulating the Akt protein life cycle by first stabilizing Akt protein folding through the turn motif phosphorylation and then by promoting Akt protein degradation through the hydrophobic motif phosphorylation. Taken together, this study reveals that the Akt Ser-473 phosphorylation-dependent ubiquitination and degradation is an important negative feedback regulation that specifically terminates Akt activation.  相似文献   

3.
The nonerythrocyte isoform of the cytoskeletal protein 4.1R (4.1R) is associated with morphologically dynamic structures during cell division and has been implicated in mitotic spindle function. In this study, we define important 4.1R isoforms expressed in interphase and mitotic cells by RT-PCR and mini-cDNA library construction. Moreover, we show that 4.1R is phosphorylated by p34cdc2 kinase on residues Thr60 and Ser679 in a mitosis-specific manner. Phosphorylated 4.1R135 isoform(s) associate with tubulin and Nuclear Mitotic Apparatus protein (NuMA) in intact HeLa cells in vivo as well as with the microtubule-associated proteins in mitotic asters assembled in vitro. Recombinant 4.1R135 is readily phosphorylated in mitotic extracts and reconstitutes mitotic aster assemblies in 4.1R-immunodepleted extracts in vitro. Furthermore, phosphorylation of these residues appears to be essential for the targeting of 4.1R to the spindle poles and for mitotic microtubule aster assembly in vitro. Phosphorylation of 4.1R also enhances its association with NuMA and tubulin. Finally, we used siRNA inhibition to deplete 4.1R from HeLa cells and provide the first direct genetic evidence that 4.1R is required to efficiently focus mitotic spindle poles. Thus, we suggest that 4.1R is a member of the suite of direct cdc2 substrates that are required for the establishment of a bipolar spindle.  相似文献   

4.
The intermediate filament protein nestin is expressed during early stages of development in the central nervous system and in muscle tissues. Nestin expression is associated with morphologically dynamic cells, such as dividing and migrating cells. However, little is known about regulation of nestin during these cellular processes. We have characterized the phosphorylation-based regulation of nestin during different stages of the cell cycle in a neuronal progenitor cell line, ST15A. Confocal microscopy of nestin organization and (32)P in vivo labeling studies show that the mitotic reorganization of nestin is accompanied by elevated phosphorylation of nestin. The phosphorylation-induced alterations in nestin organization during mitosis in ST15A cells are associated with partial disassembly of nestin filaments. Comparative in vitro and in vivo phosphorylation studies identified cdc2 as the primary mitotic kinase and Thr(316) as a cdc2-specific phosphorylation site on nestin. We generated a phosphospecific nestin antibody recognizing the phosphorylated form of this site. By using this antibody we observed that nestin shows constitutive phosphorylation at Thr(316), which is increased during mitosis. This study shows that nestin is reorganized during mitosis and that cdc2-mediated phosphorylation is an important regulator of nestin organization and dynamics during mitosis.  相似文献   

5.
We have previously characterized the molecular and cellular mechanisms of alpha(2)-plasmin inhibitor (alpha(2)PI) deficiency. The mutant alpha(2)PI-Nara and alpha(2)PI-Okinawa proteins were found to be retained and degraded in cells stably expressing these mutant forms of alpha(2)PI. Degradation of the two mutant alpha(2)PI proteins, mediated by proteasomes, occurred after a lag time of 1.5 h during which glucose trimming took place. The mutant alpha(2)PI proteins were not ubiquitinated. Inhibition of mannosidase activity blocked the degradation of the mutant alpha(2)PI proteins without resulting in any changes in their binding to calnexin. Inhibition of glucose removal completely blocked the interaction between the alpha(2)PI proteins and the molecular chaperone calnexin. Under these conditions, mannose residues were removed from the oligosaccharides even when glucose residues were not processed. With mannose removal, the glucose-untrimmed mutant forms of alpha(2)PI, which failed to bind to calnexin, were degraded by proteasomes. The initiation of mannose trimming was a prerequisite for their degradation. Our findings show that modification of oligosaccharides of the mutant forms of alpha(2)PI determines their recognition by the degradation apparatus and that mannose trimming is important for targeting the mutant alpha(2)PI proteins for the degradation pathway.  相似文献   

6.
The onset and regulation of mitosis is dependent on phosphorylation of a wide array of proteins. Among the proteins that are phosphorylated during mitosis is histone H3, which is heavily phosphorylated on its N-terminal tail. In addition, large-scale mass spectrometry screens have revealed that histone H3 phosphorylation can occur at multiple sites within its globular domain, yet detailed analyses of the functions of these phosphorylations are lacking. Here, we explore one such histone H3 phosphorylation site, threonine 80 (H3T80), which is located on the nucleosome surface. Phosphorylated H3T80 (H3T80ph) is enriched in metazoan cells undergoing mitosis. Unlike H3S10 and H3S28, H3T80 is not phosphorylated by the Aurora B kinase. Further, mutations of T80 to either glutamic acid, a phosphomimetic, or to alanine, an unmodifiable residue, result in an increase in cells in prophase and an increase in anaphase/telophase bridges, respectively. SILAC-coupled mass spectrometry shows that phosphorylated H3T80 (H3T80ph) preferentially interacts with histones H2A and H4 relative to non-phosphorylated H3T80, and this result is supported by increased binding of H3T80ph to histone octamers in vitro. These findings support a model where H3T80ph, protruding from the nucleosome surface, promotes interactions between adjacent nucleosomes to promote chromatin compaction during mitosis in metazoan cells.  相似文献   

7.
The diverse forms of protein phosphatase 1 (PP1) in vivo result from the association of the catalytic subunit with different regulatory subunits. We recently have described that PP1alpha is a Ras-activated Bad phosphatase that regulates IL-2 deprivation-induced apoptosis. With the yeast two-hybrid system, GST fusion proteins, indirect immunofluorescence, and coimmunoprecipitation, we found that Bcl-2 interacts with PP1alpha and Bad. In contrast, Bad did not interact with 14-3-3 protein. Bcl-2 depletion decreased phosphatase activity and association of PP1alpha to Bad. Bcl-2 contains the RIVAF motif, analogous to the well characterized R/KXV/IXF consensus motif shared by most PP1-interacting proteins. This sequence is involved in the binding of Bcl-2 to PP1alpha. Disruption of Bcl-2/PP1alpha association strongly decreased Bcl-2 and Bad-associated phosphatase activity and formation of the trimolecular complex. These results suggest that Bcl-2 targets PP1alpha to Bad.  相似文献   

8.
The integrated stress response (ISR) integrates a broad range of environmental and endogenous stress signals to the phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 (eIF2 alpha). Although intense or prolonged activation of this pathway is known to induce apoptosis, the molecular mechanisms coupling stress-induced eIF2 alpha phosphorylation to the cell death machinery have remained incompletely understood. In this study, we characterized apoptosis initiation in response to classical activators of the ISR (tunicamycin, UVC, elevated osmotic pressure, arsenite). We found that all applied stress stimuli activated a mitochondrial pathway of apoptosis initiation. Rapid and selective down-regulation of the anti-apoptotic BCL-2 family protein MCL-1 preceded the activation of BAX, BAK, and caspases. Stabilization of MCL-1 blocked apoptosis initiation, while cells with reduced MCL-1 protein content were strongly sensitized to stress-induced apoptosis. Stress-induced elimination of MCL-1 occurred with unchanged protein turnover and independently of MCL-1 mRNA levels. In contrast, stress-induced phosphorylation of eIF2 alpha at Ser(51) was both essential and sufficient for the down-regulation of MCL-1 protein in stressed cells. These findings indicate that stress-induced phosphorylation of eIF2 alpha is directly coupled to mitochondrial apoptosis regulation via translational repression of MCL-1. Down-regulation of MCL-1 enables but not enforces apoptosis initiation in stressed cells.  相似文献   

9.
The zinc finger-containing protein A20 is a negative regulator of TNF-induced JNK (c-Jun-N-terminal kinase) and NFkappaB (nuclear factor kappaB) signaling. A20 is an unusual enzyme that contains both ubiquitinating and deubiquitinating activities. Although A20 is mostly localized in the cytosol, our recent studies reveal that a fraction of A20 can associate with a lysosome-interacting compartment in a manner that requires its carboxy terminal zinc fingers, but independent of its ubiquitin modifying activities. Whether the lysosome-associated A20 has a function in cellular signaling is unclear. Here, we demonstrate that A20 is capable of targeting an associated signaling molecule such as TRAF2 to the lysosomes for degradation. This process is dependent on the membrane tethering zinc finger domains of A20, but does not require A20 ubiquitin modifying activity. Our findings suggest a novel mode of A20 action that involves lysosomal targeting of signal molecules bound to A20.  相似文献   

10.
c-Jun is an immediate-early gene whose degradation by the proteasome pathway is required for an efficient transactivation. In this report, we demonstrated that the c-Jun coactivator, nascent polypeptide associated complex and coactivator alpha (alphaNAC) was also a target for degradation by the 26S proteasome. The proteasome inhibitor lactacystin increased the metabolic stability of alphaNAC in vivo, and lactacystin, MG-132, or epoxomicin treatment of cells induced nuclear translocation of alphaNAC. We have shown that the ubiquitous kinase glycogen synthase kinase 3beta (GSK3beta) directly phosphorylated alphaNAC in vitro and in vivo. Inhibition of the endogenous GSKappa3beta activity resulted in the stabilization of this coactivator in vivo. We identified the phosphoacceptor site in the C-terminal end of the coactivator, on position threonine 159. We demonstrated that the inhibition of GSK3beta activity by treatment of cells with the inhibitor 5-iodo-indirubin-3'-monoxime, as well as with a dominant-negative GSK3beta mutant, induced the accumulation of alphaNAC in the nuclei of cells. Mutation of the GSK3beta phosphoacceptor site on alphaNAC induced a significant increase of its coactivation potency. We conclude that GSK3beta-dependent phosphorylation of alphaNAC was the signal that directed the protein to the proteasome. The accumulation of alphaNAC caused by the inhibition of the proteasome pathway or the activity of GSK3beta contributes to its nuclear translocation and impacts on its coactivating function.  相似文献   

11.
In recent years, a large family of phosphoinositide 3-kinase (PI3K) isozymes has been characterized and cloned. Several of these PI3K enzymes have overlapping tissue distributions and it remains unclear if and how their 3-phosphoinositide products elicit differential, intracellular effects. One possibility is that the PI3K enzymes display a restricted distribution within the cell to produce their 3-phospholipid products in specific, subcellular compartments. In the present study we characterize the subcellular distribution of the novel class II PI3K isozyme PI3K-C2alpha in several mammalian cell types. Differential centrifugation of COS-1 and U937 cells together with Western blot analysis demonstrated that PI3K-C2alpha is constitutively associated with phospholipid membranes. Centrifugation of rat brain homogenates and Western blotting revealed that in contrast to the class IA PI3K enzymes, PI3K-C2alpha could be co-purified with a population of clathrin-coated vesicles (CCVs). Furthermore, a PI3K activity refractory to wortmannin treatment was detected in CCV preparations consistent with the presence of the PI3K-C2alpha isozyme. These biochemical observations were supported by immunofluorescence analysis that revealed PI3K-C2alpha to have a punctate distribution and an enrichment of immunoreactivity within a perinuclear site consistent with its presence in the endoplasmic reticulum or Golgi apparatus. Dual label immunofluorescence demonstrated that in this region, the distribution of PI3K-C2alpha closely paralleled that of gamma-adaptin, a component of the AP-1 adaptor that is present in the trans-Golgi and the trans-Golgi network (TGN) resident protein TGN-46. Neither the phospholipid association nor the subcellular localization of PI3K-C2alpha was dependent upon either its COOH-terminal PX or C2 domains. Mutants lacking these domains demonstrated a similar distribution to the wild type enzyme when expressed as recombinant proteins. Treatment of cells with brefeldin A disrupted the perinuclear staining pattern of both PI3K-C2alpha and the AP-1 complex demonstrating that the localization of both molecules at the TGN is dependent upon ADP-ribosylation factor GTPase activity.  相似文献   

12.
13.
The hMutS alpha (hMSH2-hMSH6) protein heterodimer plays a critical role in the detection of DNA mispairs in the mismatch repair (MMR) process. We recently reported that hMutS alpha proteins were degraded by the ubiquitin-proteasome pathway in a cell-type-dependent manner, indicating that one or several regulator(s) may interfere with hMutS alpha protein ubiquitination and degradation. On the other hand, we and others have shown that protein kinase C (PKC) is involved as a positive regulator of MMR activity. Here, we provide evidence that the atypical PKC zeta regulates ubiquitination, degradation, and levels of hMutS alpha proteins. Using both PKC zeta-transfected U937 and PKC zeta siRNA-transfected MRC-5 cell lines, we found that PKC zeta protein expression was correlated with that of hMutS alpha as well as with MMR activity, but was inversely correlated with hMutS alpha protein ubiquitination and degradation. Interestingly, PKC zeta interacts with hMSH2 and hMSH6 proteins and phosphorylates both. Moreover, in an in vitro assay PKCzeta mediates phosphorylation events decreasing hMutS alpha protein degradation via the ubiquitin-proteasome pathway. Altogether, our results indicate that PKC zeta modulates hMutS alpha stability and protein levels, and suggest a role for PKC zeta in genome stability by regulating MMR activity.  相似文献   

14.
During mitosis, the catalytic activity of protein-tyrosine phosphatase (PTP) alpha is enhanced, and its inhibitory binding to Grb2, which specifically blocks Src dephosphorylation, is decreased. These effects act synergistically to activate Src in mitosis. We show here that these effects are abrogated by mutation of Ser180 and/or Ser204, the sites of protein kinase C-mediated phosphorylation within PTPalpha. Moreover, either a Ser-to-Ala substitution or serine dephosphorylation specifically eliminated the ability of PTPalpha to dephosphorylate and activate Src even during interphase. This explains why the substitutions eliminated PTPalpha transforming activity, even though PTPalpha interphase dephosphorylation of nonspecific substrates was only slightly decreased. This occurred without change in the phosphorylation of PTPalpha at Tyr789, which is required for "phosphotyrosine displacement" during Src dephosphorylation. Thus, in addition to increasing PTPalpha nonspecific catalytic activity, Ser180 and Ser204 phosphorylation (along with Tyr789 phosphorylation) regulates PTPalpha substrate specificity. This involves serine phosphorylation-dependent differential modulation of the affinity of Tyr(P)789 for the Src and Grb2 SH2 domains. The results suggest that protein kinase C may participate in the mitotic activation of PTPalpha and Src and that there are intramolecular interactions between the PTPalpha C-terminal and membrane-proximal regions that are regulated, at least in part, by serine phosphorylation.  相似文献   

15.
We have successfully established a novel protein microarray-based kinase assay, which we applied to identify target proteins of the barley protein kinase CK2alpha. As a source of recombinant barley proteins we cloned cDNAs specific for filial tissues of developing barley seeds into an E. coli expression vector. By using robot technology, 21,500 library clones were arrayed in microtiter plates and gridded onto high-density filters. Protein expressing clones were detected using an anti-RGS-His6 antibody and rearrayed into a sublibrary of 4100 clones. All of these clones were sequenced from the 5'-end and the sequences were analysed by homology searches against protein databases. Based on these results we selected 768 clones expressing different barley proteins for protein purification. The purified proteins were robotically arrayed onto FAST slides. The generated protein microarrays were incubated with an expression library-derived barley CK2alpha in the presence of [gamma-33P]ATP, and signals were detected by X-ray film or phosphor imager. We were able to demonstrate the power of the protein microarray technology by identification of 21 potential targets out of 768 proteins including such well-known substrates of CK2alpha as high mobility group proteins and calreticulin.  相似文献   

16.
17.
Rhomboid-7 (rho-7) is a mitochondrial-specific intramembranous protease. The loss-of-function mutation rho-7 results in semi-lethality, while escapers have a reduced lifespan with several neurological disorders [1]. Here we show that general, or CNS-specific expression of rho-7 can rescue the lethality of rho-7. General, or CNS-specific over-expression of rho-7 in otherwise wild-type animals caused semi-lethality, with approximately 50% of the animals escaping this lethality, developing into adults displaying a shortened life span with larval locomotory problem. On a cellular level, over-expression resulted in severe depression of ATP levels and cytochrome c oxidase subunit II mRNA levels, a lowered number of mitochondria in neurons and aggregation of mitochondria in the brain indicating mitochondrial malfunction. Over-expression of rho-7 in developing eye discs resulted in an elevated apoptotic index. In the CNS, elevated levels of rho-7 were accompanied by both isoforms of Opa1-like, a dynamin-like GTPase, a mitochondrial component involved in regulating mitochondrial dynamics and function, including apoptosis. Most, but not all, of rho-7 over-expression phenotypes were suppressed by introducing a heterozygous mutation for Opa1-like. Our results suggest that rho-7 and Opa1-like function in a common molecular pathway affecting mitochondrial function and apoptosis in Drosophila melanogaster.  相似文献   

18.
DSG (15-deoxyspergualin), an immunosuppressant with tumoricidal properties, binds potently to the regulatory C-terminal 'EEVD' motif of Hsps (heat-shock proteins). In the present study we demonstrate that DSG inhibits eukaryotic protein synthesis by sequestering Hsp70 which is required for maintaining HRI (haem-regulated inhibitor), a kinase of the eIF2alpha (eukaryotic initiation factor 2alpha), inactive. DSG stalled initiation of protein synthesis through phosphorylation of HRI and eIF2alpha. Addition of a recombinant eIF2alpha (S51A) protein, which lacks the phosphorylation site, lowered the inhibitory potential of DSG in reticulocyte lysate. The inhibitory effect of DSG was also attenuated in HRI knockdown cells. Moreover, exogenous addition of Hsp70 or the peptide 'EEVD' reversed the inhibitory effect of DSG. Interestingly, the inhibitory effect of DSG in different mammalian cancer cells was found to negatively correlate with the amount of Hsp70 expressed in the cells, emphasizing the link with Hsp70 in DSG inhibition of eukaryotic translation.  相似文献   

19.
Beta-amyloid precursor protein (APP) is the precursor of beta-amyloid (Abeta), which is implicated in Alzheimer's disease pathogenesis. APP complements amyloid precursor-like protein 2 (APLP2), and together they play essential physiological roles. Phosphorylation at the Thr(668) residue of APP (with respect to the numbering conversion for the APP 695 isoform) and the Thr(736) residue of APLP2 (with respect to the numbering conversion for the APLP2 763 isoform) in their cytoplasmic domains acts as a molecular switch for their protein-protein interaction and is implicated in neural function(s) and/or Alzheimer's disease pathogenesis. Here we demonstrate that both APP and APLP2 can be phosphorylated by JNK at the Thr(668) and Thr(736) residues, respectively, in response to cellular stress. X11-like (X11L, also referred to as X11beta and Mint2), which is a member of the mammalian LIN-10 protein family and a possible regulator of Abeta production, elevated APP and APLP2 phosphorylation probably by facilitating JNK-mediated phosphorylation, whereas other members of the family, X11 and X11L2, did not. These observations revealed an involvement of X11L in the phosphorylation of APP family proteins in cellular stress and suggest that X11L protein may be important in the physiology of APP family proteins as well as in the regulation of Abeta production.  相似文献   

20.
Heat shock protein 90 (HSP90) targets a broad spectrum of client proteins with divergent modes of interaction and consequences. The homologous epidermal growth factor receptor (EGFR) and ERBB2 receptors as well as kinase-deficient mutants thereof differ in their requirement for HSP90 in the nascent versus mature state of the receptor. Specific features of the kinase domain have been implicated for the selective association of HSP90 with mature ERBB2. We evaluated the role of HSP90 for the homologous ERBB3 receptor. ERBB3 is naturally kinase deficient, a central mediator in cell survival and stress response and the primary dimerization partner for ERBB2 in signaling. Cellular studies indicate that, similar to EGFR, the geldanamycin (GA) sensitivity of ERBB3 and HSP90 binding resides in the nascent state and is dependent on the presence of the kinase domain of ERBB3. Furthermore, despite its intrinsic lack of kinase activity and in contrast to the reported GA sensitivity of mature and kinase-deficient EGFR, the GA sensitivity of the nascent state of ERBB3 appears to be exclusive. Geldanamycin disrupts the interaction of ERBB3 and HSP90 and inhibits ERBB3 maturation at an early stage of synthesis, prior to export from the ER. Studies with a photo-convertible fusion protein of ERBB3 suggest geldanamycin sensitivity at a later stage in maturation, possibly through the putative role of HSP90 in structural proofreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号