首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Selection on Wing Allometry in Drosophila Melanogaster   总被引:3,自引:2,他引:1       下载免费PDF全文
K. E. Weber 《Genetics》1990,126(4):975-989
Five bivariate distributions of wing dimensions of Drosophila melanogaster were measured, in flies 1) subjected to four defined environmental regimes during development, 2) taken directly from nature in seven U.S. states, 3) selected in ten populations for change in wing form, and 4) sampled from 21 long inbred wild-type lines. Environmental stresses during development altered both wing size and the ratios of wing dimensions, but regardless of treatment all wing dimensions fell near a common allometric baseline in each bivariate distribution. The wings of wild-caught flies from seven widely separated localities, and of their laboratory-reared offspring, also fell along the same baselines. However, when flies were selected divergently for lateral offset from these developmental baselines, response to selection was rapid in every case. The mean divergence in offset between oppositely selected lines was 14.68 SD of the base population offset, after only 15 generations of selection at 20%. Measurements of 21 isofemale lines, founded from wild-caught flies and maintained in small populations for at least 22 years, showed large reductions in phenotypic variance of offsets within lines, but a large increase in the variance among lines. The variance of means of isofemale lines within collection localities was ten times the variance of means among localities of newly established wild lines. These observations show that much additive genetic variance exists for individual dimensions within the wing, such that bivariate developmental patterns can be changed in any direction by selection or by drift. The relative invariance of the allometric baselines of wing morphology in nature is most easily explained as the result of continuous natural selection around a local optimum of functional design.  相似文献   

2.
Macdonald SJ  Long AD 《Genetics》2004,167(4):2127-2131
To extend results from laboratory genetic mapping experiments to natural populations it is necessary to estimate the phenotypic effects attributable to laboratory-identified genetic factors in nature. We retested a polymorphism found to be strongly associated with an increase of 0.35 sternopleural bristles in laboratory strains in two large samples of wild-caught Drosophila melanogaster. Despite >90% power to detect effects as low as 0.27 bristles (<1% of the total variation in bristle number) we did not replicate the association in nature. Potential explanations for this result are explored.  相似文献   

3.
We test the hypothesis that naturally occurring nonsynonymous variants in the Delta ligand of the Notch signaling pathway contribute to standing variation in sternopleural and/or abdominal bristle number in Drosophila melanogaster, for both a large cohort of wild-caught flies and previously described laboratory lines. We sequenced the transcribed region of Delta for 16 naturally occurring chromosomes and 65 SNPs, including 7 nonsynonymous SNPs (nsSNPs), were observed. Identified nsSNPs and 6 additional common SNPs, all located in exon 6 and the 3' UTR, were genotyped in 2060 wild-caught flies using an OLA-based methodology and genotyped in 38 additional natural chromosomes via DNA sequencing. None of the genotyped nsSNPs were significantly associated with natural variation in bristle number as assessed by a permutation test. A 95% upper bound on the additive genetic variance attributable to each genotyped SNP in the large natural cohort is <2% of the total phenotypic variation. Results suggest that two previously detected genotype/phenotype associations between bristle number and variants in the introns of Delta cannot be explained by linkage disequilibrium between these variants and nearby nonsynonymous variants. Unidentified regulatory variants more parsimoniously explain previous observations.  相似文献   

4.
Bubliy OA  Loeschcke V 《Heredity》2002,89(1):70-75
A half-sib analysis was used to investigate genetic variation for three morphological traits (thorax length, wing length and sternopleural bristle number) and two life-history traits (developmental time and larva-to-adult viability) in Drosophila melanogaster reared at a standard (25 degrees C) and a low stressful (13 degrees C) temperature. Both phenotypic and environmental variation showed a significant increase under stressful conditions in all traits. For estimates of genetic variation, no statistically significant differences were found between the two environments. Narrow heritabilities tended to be higher at 13 degrees C for sternopleural bristle number and viability and at 25 degrees C for wing length and developmental time, whereas thorax length did not show any trend. However, the pattern of genetic variances and evolvability indices (coefficient of genetic variation and evolvability), considered in the context of literature evidence, indicated the possibility of an increase in additive genetic variation for the morphological traits and viability and in nonadditive genetic variation for developmental time. The data suggest that the effect of stressful temperature may be trait-specific and this warns against generalizations about the behaviour of genetic variation under extreme conditions.  相似文献   

5.
Imasheva AG  Bubliy OA 《Hereditas》2003,138(3):193-199
Effects of three different larval densities (low, intermediate and high) on phenotypic and genetic variation of four morphological traits (thorax and wing length, sternopleural and abdominal bristle number) were studied in Drosophila melanogaster using the isofemale line technique. Phenotypic variation was found to increase at high larval density in all traits examined. Environmental variance for three traits (exception was sternopleural bristle number) and fluctuating asymmetry for both bilateral traits were also increased under high density conditions. For estimates of genetic variability (among isofemale lines variance, heritability and evolvability), no statistically significant differences among density regimes were detected. However, the trends in changes of these estimates across densities indicated a possibility for enhanced genetic variation under larval crowding for all traits except abdominal bristle number. For the latter trait, genetic variation seemed not to be dependent on density regime. Generally, two metric traits (thorax and wing length) were more affected by larval crowding than two meristic ones (sternopleural and abdominal bristle number). The Results are in complete agreement with those previously obtained for D. melanogaster using extreme temperatures as stress-factors.  相似文献   

6.
Variation in thorax length, wing length and sternopleural bristle number was examined in Drosophila melanogaster reared in stressful and nonstressful environments using paternal half-sib design. Low concentration of yeast in the medium was used as a stress factor. Phenotypic variation of thorax length and wing length was higher under poor nutrition than in the control; in bristle number, phenotypic variation was relatively stable regardless of the environment. Heritability of all the traits analyzed was generally lower under nutritional stress. Heritability changes in thorax length and wing length were mainly due to an increase in the environmental variance under stress, whereas in bristle number, stress resulted in a decrease in genetic variation. Genetic variance in thorax length was higher under poor nutrition; in wing length, no difference in genetic variance between environments was found.  相似文献   

7.
Wakefield  Jennie  Harris  Kristie  Markow  Therese Ann 《Genetica》1993,89(1-3):235-244
Two strains ofDrosophila melanogaster, one outbred, recently derived from nature, and the other created by intensive directional selection on phototactic behavior for 19 years, were used to test the hypothesis that developmental stability is influenced by parental age. Three characters were examined: sternopleural bristle number, wing length, and wing area. The results do not support any relationship between parental age, either young or old, and developmental stability in offspring.  相似文献   

8.
Drosophila falleni belongs to the quinaria species group, whose species vary considerably in patterns of wing and abdominal pigmentation. Drosophila falleni itself exhibits substantial variation among wild flies in abdominal spotting patterns. A selection experiment revealed that natural populations of D. falleni harbor high levels of genetic variation for spot number: in 10 generations of selection modal spot number within populations declined from 18 (the modal number in wild-caught females) to as low as zero. Rearing flies at different temperatures shows that some of the variation among wild flies is likely to reflect variation in the environmental conditions under which they developed. Fitness assays did not reveal any cost of reduced spot number with respect to development time, adult survival, or female fecundity. However, spotless flies were almost twice as susceptible to infection by the nematode parasite Howardula aoronymphium. Thus, selection exerted by nematode parasites may influence pigmentation patterns and other, genetically correlated traits in natural populations D. falleni.  相似文献   

9.
Starting from a completely homozygous population of Drosophila melanogaster, lines were derived and independently maintained by a single brother-sister mating in each generation. Two bilateral traits--sternopleural bristle number and wing length--were individually scored on the right-(R) and left-hand (L) sides. Directional (DA) and fluctuating (FA) asymmetries were represented by the signed (R-L) and unsigned magnitude of R-L difference, respectively. Mutational variances (the mutational rate of input of genetic variation) and heritabilities (the mutational variance scaled by the environmental variance) of R, L, (R-L) and magnitude of R-L were calculated from the between-line divergence after a number of generations of mutation accumulation (bristle number: 171 lines, 122 generations; wing length: 148 lines, 170 generations). Mutational heritabilities of R and L were all significant, ranging from 0.73 x 10(-3)-2.10 x 10(-3). Those of (R-L) and magnitude of R-L were two orders of magnitude smaller and nonsignificant, ranging from -1.95 x 10(-5)-5.49 x 10(-5). These results imply that mutations affecting the DA or FA of bristle number and wing length have not been fixed in the lines or alternatively, that their effects were too small to be detected. In the population under study, the data strongly suggest that FA reflects only developmental noise due to non-genetic processes.  相似文献   

10.
C. Lai  TFC. Mackay 《Genetics》1990,124(3):627-636
To determine the ability of the P-M hybrid dysgenesis system of Drosophila melanogaster to generate mutations affecting quantitative traits, X chromosome lines were constructed in which replicates of isogenic M and P strain X chromosomes were exposed to a dysgenic cross, a nondysgenic cross, or a control cross, and recovered in common autosomal backgrounds. Mutational heritabilities of abdominal and sternopleural bristle score were in general exceptionally high-of the same magnitude as heritabilities of these traits in natural populations. P strain chromosomes were eight times more mutable than M strain chromosomes, and dysgenic crosses three times more effective than nondysgenic crosses in inducing polygenic variation. However, mutational heritabilities of the bristle traits were appreciable for P strain chromosomes passed through one nondysgenic cross, and for M strain chromosomes backcrossed for seven generations to inbred P strain females, a result consistent with previous observations on mutations affecting quantitative traits arising from nondysgenic crosses. The new variation resulting from one generation of mutagenesis was caused by a few lines with large effects on bristle score, and all mutations reduced bristle number.  相似文献   

11.
Drosophila serrata occurs along the eastern coast of Australia with a southern range boundary near Sydney. To compare levels of phenotypic variation in marginal and central populations, we examined morphological variation in populations of this species from the southern range boundary and two more northerly populations. The populations differed for wing traits and there was an increase in wing size in the marginal locations which persisted under laboratory culture. The means of wing and bristle traits increased under laboratory culture, whereas wing trait coefficients of variation and variances decreased. Heritability estimates for wing size traits tended to be lower in the field compared with the laboratory, whereas bristle and crossvein length heritabilities were similar across environments. There was evidence for heritable variation in wing and bristle traits in both the marginal and more northern populations, suggesting that genetic variation was not limiting in marginal populations. Fluctuating asymmetry (FA) was also assessed as a measure of genomic and environmental stress. There were no consistent differences among populations for the FA of individual traits, or for a total FA score summed across traits. FA levels in field parents and laboratory‐reared progeny were similar. Overall, the results do not support the conjecture that levels of phenotypic and genetic variability differ between central and marginal D. serrata populations.  相似文献   

12.
Macdonald SJ  Pastinen T  Long AD 《Genetics》2005,171(4):1741-1756
The Enhancer of split complex [E(spl)-C] in Drosophila encompasses a variety of functional elements controlling bristle patterning and on the basis of prior work is a strong candidate for harboring alleles having subtle effects on bristle number variation. Here we extend earlier studies identifying associations between complex phenotypes and polymorphisms segregating among inbred laboratory lines of Drosophila and test the influence of E(spl)-C on bristle number variation in a natural cohort. We describe results from an association mapping study using 203 polymorphisms spread throughout the E(spl)-C genotyped in 2000 wild-caught Drosophila melanogaster. Despite power to detect associations accounting for as little as 2% of segregating variation for bristle number, and saturating the region with single-nucleotide polymorphisms (SNPs), we identified no single SNP marker showing a significant (additive over loci) effect after correcting for multiple tests. Using a newly developed test we conservatively identify six regions of the E(spl)-C in which the insertion of transposable elements as a class contributes to variation in bristle number, apparently in a sex- or trait-limited fashion. Finally, we carry out all possible 20,503 two-way tests for epistasis and identify a slight excess of marginally significant interactions, although none survive multiple-testing correction. It may not be straightforward to extend the results of laboratory-based association studies to natural populations.  相似文献   

13.
A. C. James  RBR. Azevedo    L. Partridge 《Genetics》1995,140(2):659-666
We examined 20 Drosophila melanogaster populations collected from a 2600-km north-south transect in Australia. In laboratory culture at constant temperature and standard larval density, a genetic cline in thorax length and wing area was found, with both traits increasing with latitude. The cline in wing area was based on clines in both cell size and cell number, but was primarily determined by changes in cell number. Body size and larval development time were not associated among populations. We discuss our results in the context of selection processes operating in natural and experimental populations.  相似文献   

14.
15.
We examined the relationship of three aspects of development, phenotypic plasticity, genetic correlations among traits, and developmental noise, for thorax length, wing length, and number of sternopleural bristles in Drosophila melanogaster. We used 14 lines which had previously been selected on either thorax length or plasticity of thorax length in response to temperature. A half-sib mating design was used and offspring were raised at 19° C or 25° C. We found that genetic correlations were stable across temperatures despite the large levels of plasticity of these traits. Plasticities were correlated among developmentally related traits, thorax and wing length, but not among unrelated traits, lengths and bristle counts. Amount of developmental noise, measured as fluctuating asymmetry and within-environmental variation, was positively correlated with amount of plasticity only for some traits, thorax length and bristle number, and only at one temperature, 25° C.  相似文献   

16.
The genetic variabilities of sternopleural and abdominal bristle numbers existing in local natural populations were assessed. Using second chromosome lines of Drosophila melanogaster extracted from three natural populations in Japan (the Ishigakijima, Ogasawara and Aomori populations), experiments were conducted to estimate the components of genetic variances, additive and dominance variances. The following results were obtained: For both sternopleural and abdominal bristle numbers, the additive genetic variances (sigma 2A) were much larger than the dominance variances (sigma 2D) especially in the southern populations. For example, in the Ishigakijima population, for females sternopleural bristle numbers of the inversion-free chromosome group, the additive and dominance variances were estimated to be 1.255 +/- 0.2034 and 0.0552 +/- 0.0180, respectively. The magnitudes of the estimates of additive genetic variances were nearly equal from north to south. By comparing the additive genetic variances of the inversion-free chromosome group with those of the In(2L)t-carrying chromosome group, it was inferred that sufficient number of generations to achieve the equilibrium state has not passed since the introduction of a single or a small number of the In(2L)t-carrying chromosomes to the Ishigakijima population.  相似文献   

17.
Genetic variability of quantitative traits was investigated in aMoroccan population of Drosophila melanogaster, with an isofemale line design. Results were compared with data previously obtained from French populations. Although the environmental and thermal conditions are very different in France and Morocco, only two significant differences were observed: a shorter wing and a lighter abdomen pigmentation in Morocco. It is, therefore, concluded that Moroccan D. melanogaster are quite typical temperate flies, belonging to the Palaearctic region, and very different from the ancestral Afrotropical populations. Almost all traits were genetically variable, as shown by significant intraclass correlations among lines. Genetic correlations were highly significant among three size-related traits, while much lower between size and bristle numbers. Fluctuating asymmetry was greater for abdominal bristles than for sternopleural bristles. Sex dimorphism, analysed as a female/male ratio, was identical in French and Moroccan populations. Examination of the thorax length/thorax width ratio showed that the thorax is more elongated in females. Sexual dimorphism of wing length was significantly more correlated to thorax width than to thorax length. The results illustrate the value of measuring numerous quantitative traits on the same flies for characterizing the genetic architecture of a natural population. In several cases, and especially for genetic correlations, some interesting suggestions could be made, which should be confirmed, or invalidated, by more extensive investigations.  相似文献   

18.
Selection for increased morphometric shape (ratio of wing length to thorax width) was compared between control (nonbottlenecked) populations and bottlenecked populations founded with two male–female pairs of flies. Contrary to neutral expectation, selectional response was not reduced in bottlenecked populations, and the mean realized heritabilities and additive genetic variances were higher for the bottlenecked lines than for the nonbottlenecked lines. Additive genetic variances based on these realized heritabilities were consistent with independent estimates of genetic variances based on parent–offspring covariances. Joint scaling tests applied to the crosses between selected lines and their controls revealed significant nonadditive components of genetic variance in the ancestor, which were not detected in the crosses involving bottlenecked lines. The nonbottlenecked lines responded principally by changes in one trait or the other (wing length or thorax width) but not in both, and regardless of which trait responded, larger trait size was dominant and epistatic to smaller size. Stabilizing selection for morphometric shape in the ancestor likely molded the genetic architecture to include nonadditive genetic effects.  相似文献   

19.
A. C. James  RBR. Azevedo    L. Partridge 《Genetics》1997,146(3):881-890
Field-collected Drosophila melanogaster from 19 populations in Eastern Australia were measured for body size traits, and the measurements were compared with similar ones on flies from the same populations reared under standard laboratory conditions. Wild caught flies were smaller, and latitudinal trends in size were greater. Reduced size was caused by fewer cells in the wing, and the steeper cline by greater variation in cell area. The reduction in size in field-collected flies may therefore have been caused by reduced nutrition, and the steeper cline may have been caused by an environmental response to latitudinal variation in temperature. No evidence was found for evolution of size traits in response to laboratory culture. The magnitude of phenotypic plasticity in response to temperature of development time, body size, cell size and cell number was examined for six of the populations, to test for latitudinal variation in plasticity. All characters were plastic in response to temperature. Total development time showed no significant latitudinal variation in plasticity, although larval development time showed a marginally significant effect, with most latitudinal variation at intermediate rearing temperatures. Neither thorax length nor wing size and its cellular components showed significant latitudinal variation in plasticity.  相似文献   

20.
The two sibling cosmopolitan species, Drosophila melanogaster and D. simulans, are able to proliferate under very different climatic conditions. This has resulted in local adaptations, which are often arranged in latitudinal clines. Such clines are documented for body weight, wing and thorax length, sternopleural and abdominal bristle number, ovariole number and thoracic pigmentation. The overall magnitude of geographical differentiation is, however, much less in D. simulans than in D. melanogaster, and latitudinal clines are less pronounced. The fact that natural populations live under different climates raises the problem of interaction between temperature and phenotype. The reaction norms of morphometrical traits have been investigated as a function of growth temperature. The shapes of the response curves vary according to the investigated trait. They are generally curvilinear and can be described by calculating characteristic values after polynomial adjustments. For a given trait, the reaction norms of the two species are similar in their shape, although some significant differences may be observed. Within each species, significant differences are also observed between geographic populations: reaction norms are not parallel and the divergence is better marked when more distant populations (e.g., temperate and tropical) are compared. It thus appears that besides mean trait value, phenotypic plasticity is also a target of natural selection. A specific analysis of wing shape variation according to growth temperature was also undertaken. Reaction norms with different shapes may be observed in various parts of the wing: the major effect is found between the basis and the tip of the wing, but in a similar way in the two species. By contrast, some ratios, called wing indices by taxonomists, may exhibit completely different reaction norms in the two species. For a single developmental temperature (25 degrees C) the phenotypic variability of morphometrical traits is generally similar in the two species, and also the genetic variability, estimated by the intraclass correlation. A difference exists, however, for the ovariole number which is less variable in D. simulans. Variance parameters may vary according to growth temperature, and a detailed analysis was made on wing dimensions. An increase of environmental variability at extreme, heat or cold temperatures, has been found in both species. Opposite trends were, however, observed for the genetic variability: a maximum heritability in D. simulans at middle temperatures, corresponding to a minimum heritability in D. melanogaster. Whether such a difference exists for other traits and in other populations deserves further investigations. In conclusion, morphometrical analyses reveal a large amount of significant differences which may be related to speciation and to the divergence of ecological niches. Within each species, numerous geographic variations are also observed which, in most cases, reflect some kinds of climatic adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号