首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanobacteria synthesize several types of bioactive secondary metabolites. Anabaena strain 90 produces three types of bioactive peptides, microcystins (inhibitors of protein phosphatases 1 and 2A), anabaenopeptilides, and anabaenopeptins (serine protease inhibitors). To investigate the role of the anabaenopeptilides in Anabaena, wild-type strain 90 (WT) and its anabaenopeptilide deficient mutant (MU) were cultured with various light and phosphate levels to evaluate the effects and coeffects of these growth factors on the concentrations of the three classes of peptides and the growth characteristics. WT and MU grew in comparable ways under the different growth conditions. The total peptide concentration in WT was significantly higher than that in MU (2.5 and 1.4 microg/mg [dry weight], respectively). Interestingly, the average concentration of anabaenopeptins was significantly higher in MU than in WT (0.59 and 0.24 microg/mg [dry weight], respectively). The concentration of microcystins was slightly but not statistically significantly higher in MU than in WT (1.0 and 0.86 microg/mg [dry weight], respectively). In WT, the highest peptide concentrations were usually found after 13 days in cultures grown at medium light intensities (23 micromol m(-2) s(-1)) and with the highest phosphate concentrations (2,600 microg liter(-1)). In MU, the highest peptide concentrations were found in 13-day-old cultures grown at medium light intensities (23 micromol m(-2) s(-1)) and with phosphate concentrations greater than 100 microg liter(-1). The higher concentrations of anabaenopeptins in MU may compensate for the absence of anabaenopeptilides. These findings clearly indicate that these compounds may have some linked function in the producer organism, the nature of which remains to be discovered.  相似文献   

2.
This study investigated the effects of light intensity, temperature, and phosphorus limitation on the peptide production of the cyanobacteria Microcystis PCC 7806 and Anabaena 90. Microcystis PCC 7806 produced two microcystin variants and three cyanopeptolins, whereas Anabaena 90 produced four microcystin variants, three anabaenopeptins, and two anabaenopeptilides. Microcystin and cyanopeptolin contents varied by a factor 2–3, whereas the anabaenopeptins and anabaenopeptilides of Anabaena varied more strongly. Under phosphorus limitation, peptide production rates increased with the specific growth rate. The response of peptide production to light intensity and temperature was more complex: in many cases peptide production decreased with specific growth rate. We observed compensatory changes of different peptide variants: decreased cyanopeptolin A and C contents were accompanied by increased cyanopeptolin 970 contents, and decreased anabaenopeptin A and C contents were accompanied by increased anabaenopeptilide 90B contents. Compensatory dynamics in peptide production may enable cyanobacteria to sustain stable peptide levels in a variable environment.  相似文献   

3.
The major cyclic peptide cyanopeptolin 1138, produced by Planktothrix strain NIVA CYA 116, was characterized and shown to be structurally very close to the earlier-characterized oscillapeptin E. A cyanopeptolin gene cluster likely to encode the corresponding peptide synthetase was sequenced from the same strain. The 30-kb oci gene cluster contains two novel domains previously not detected in nonribosomal peptide synthetase gene clusters (a putative glyceric acid-activating domain and a sulfotransferase domain), in addition to seven nonribosomal peptide synthetase modules. Unlike in two previously described cyanopeptolin gene clusters from Anabaena and Microcystis, a halogenase gene is not present. The three cyanopeptolin gene clusters show similar gene and domain arrangements, while the binding pocket signatures deduced from the adenylation domain sequences and the additional tailoring domains vary. This suggests loss and gain of tailoring domains within each genus, after the diversification of the three clades, as major events leading to the present diversity. The ABC transporter genes associated with the cyanopeptolin gene clusters form a monophyletic clade and accordingly are likely to have evolved as part of the functional unit. Phylogenetic analyses of adenylation and condensation domains, including domains from cyanopeptolins and microcystins, show a closer similarity between the Planktothrix and Microcystis cyanopeptolin domains than between these and the Anabaena domain. No clear evidence of recombination between cyanopeptolins and microcystins could be detected. There were no strong indications of horizontal gene transfer of cyanopeptolin gene sequences across the three genera, supporting independent evolution within each genus.  相似文献   

4.
The major cyclic peptide cyanopeptolin 1138, produced by Planktothrix strain NIVA CYA 116, was characterized and shown to be structurally very close to the earlier-characterized oscillapeptin E. A cyanopeptolin gene cluster likely to encode the corresponding peptide synthetase was sequenced from the same strain. The 30-kb oci gene cluster contains two novel domains previously not detected in nonribosomal peptide synthetase gene clusters (a putative glyceric acid-activating domain and a sulfotransferase domain), in addition to seven nonribosomal peptide synthetase modules. Unlike in two previously described cyanopeptolin gene clusters from Anabaena and Microcystis, a halogenase gene is not present. The three cyanopeptolin gene clusters show similar gene and domain arrangements, while the binding pocket signatures deduced from the adenylation domain sequences and the additional tailoring domains vary. This suggests loss and gain of tailoring domains within each genus, after the diversification of the three clades, as major events leading to the present diversity. The ABC transporter genes associated with the cyanopeptolin gene clusters form a monophyletic clade and accordingly are likely to have evolved as part of the functional unit. Phylogenetic analyses of adenylation and condensation domains, including domains from cyanopeptolins and microcystins, show a closer similarity between the Planktothrix and Microcystis cyanopeptolin domains than between these and the Anabaena domain. No clear evidence of recombination between cyanopeptolins and microcystins could be detected. There were no strong indications of horizontal gene transfer of cyanopeptolin gene sequences across the three genera, supporting independent evolution within each genus.  相似文献   

5.
The cyclic decapeptide antibiotic tyrocidine is produced by Bacillus brevis ATCC 8185 on an enzyme complex comprising three peptide synthetases, TycA, TycB, and TycC (tyrocidine synthetases 1, 2, and 3), via the nonribosomal pathway. However, previous molecular characterization of the tyrocidine synthetase-encoding operon was restricted to tycA, the gene that encodes the first one-module-bearing peptide synthetase. Here, we report the cloning and sequencing of the entire tyrocidine biosynthesis operon (39.5 kb) containing the tycA, tycB, and tycC genes. As deduced from the sequence data, TycB (404,562 Da) consists of three modules, including an epimerization domain, whereas TycC (723,577 Da) is composed of six modules and harbors a putative thioesterase domain at its C-terminal end. Each module incorporates one amino acid into the peptide product and can be further subdivided into domains responsible for substrate adenylation, thiolation, condensation, and epimerization (optional). We defined, cloned, and expressed in Escherichia coli five internal adenylation domains of TycB and TycC. Soluble His6-tagged proteins, ranging from 536 to 559 amino acids, were affinity purified and found to be active by amino acid-dependent ATP-PPi exchange assay. The detected amino acid specificities of the investigated domains manifested the colinear arrangement of the peptide product with the respective module in the corresponding peptide synthetases and explain the production of the four known naturally occurring tyrocidine variants. The Km values of the investigated adenylation domains for their amino acid substrates were found to be comparable to those published for undissected wild-type enzymes. These findings strongly support the functional integrities of single domains within multifunctional peptide synthetases. Directly downstream of the 3' end of the tycC gene, and probably transcribed in the tyrocidine operon, two tandem ABC transporters, which may be involved in conferring resistance against tyrocidine, and a putative thioesterase were found.  相似文献   

6.
The combinatorial reorganization of distinct modules of multimodular peptide synthetases is of increasing interest for the generation of new peptides with optimized bioactive properties. Each module is at least composed of enzymatic domains responsible for the adenylation, thioester formation, and condensation of an amino acid residue of the final peptide product. We analyzed various possible fusion sites for the recombination of peptide synthetases and evaluated the impact of different recombination strategies on the amino acid adenylation and acyl-thioester formation activities of peptide synthetase modules. Hybrid bimodular peptide synthetases were generated by recombination of the corresponding reading frames encoding for L-glutamic acid- and L-leucine-specific modules of surfactin synthetase SrfA-A at presumed inner- and intradomainic regions. We demonstrate that fusions at a previously postulated hinge region, dividing the amino acid adenylating domains of peptide synthetase modules into two subdomains, and at the highly conserved 4'-phosphopantetheine binding motif in acyl-thioester forming domains resulted in enzymatically active hybrid domains. By contrast, most manipulations in condensation domains like deletions, the complete exchange or the construction of chimeric domains considerably reduced or completely abolished the amino acid adenylation and thioester formation activity of the hybrid module.  相似文献   

7.
8.
Many species of Trichoderma have attracted interest as agents for the biological control of soil borne fungal pathogens of a range of crop plants. Research on the biochemical mechanisms associated with this application has focused on the ability of these fungi to produce enzymes which lyse fungal cell walls, and antifungal antibiotics. An important group of the latter are the non-ribosomal peptides called peptaibols. In this study Trichoderma asperellum, a strain used in biological control in Malaysia, was found to produce the peptaibol, trichotoxin. This type of peptide molecule is synthesised by a peptide synthetase (PES) enzyme template encoded by a peptide synthetase (pes) gene. Using nucleotide sequences amplified from adenylation (A-) domains as probes, to hybridise against a lambda FIXII genomic library from T. asperellum, 25 clones were recovered. These were subsequently identified as representative of four groups based on their encoding properties for specific amino acid incorporation modules in a PES. This was based on analysis of their amino acid sequences which showed up to 86% identity to other PESs including TEX 1.  相似文献   

9.
Peptide-synthetase-encoding DNA fragments were isolated by a PCR-based approach from the chromosome of Microcystis aeruginosa K-139, which produces cyclic heptapeptides, 7-desmethylmicrocystin-LR and 3,7-didesmethylmicrocystin-LR. Three open reading frames (mcyA, mcyB, mcyC) encoding microcystin synthetases were identified in the gene cluster. Sequence analysis indicated that McyA (315 kDa) consists of two modules with an N-methylation domain attached to the first and an epimerization domain attached to the second; McyB (242 kDa) has two modules, and McyC (147 kDa) contains one module with a putative C-terminal thioesterase domain. Conserved amino acid sequence motifs for ATP binding, ATP hydrolysis, adenylate formation, and 4'-phosphopantetheine attachment were identified by sequence comparison with authentic peptide synthetase. Insertion mutations in mcyA, generated by homologous recombination, abolished the production of both microcystins in M. aeruginosa K-139. Primer extension analysis demonstrated light-dependent mcy expression. Southern hybridization and partial DNA sequencing analyses of six microcystin-producing and two non-producing Microcystis strains suggested that the microcystin-producing strains contain the mcy gene and the non-producing strains can be divided into two groups, those possessing no mcy genes and those with mcy genes.  相似文献   

10.
ABSTRACT: BACKGROUND: Pelgipeptin, a potent antibacterial and antifungal agent, is a non-ribosomally synthesised lipopeptide antibiotic. This compound consists of a beta-hydroxy fatty acid and nine amino acids. To date, there is no information about its biosynthetic pathway. RESULTS: A potential pelgipeptin synthetase gene cluster (plp) was identified from Paenibacillus elgii B69 through genome analysis. The gene cluster spans 40.8 kb with eight open reading frames. Among the genes in this cluster, three large genes, plpD, plpE, and plpF, were shown to encode non-ribosomal peptide synthetases (NRPS), with one, seven, and one module(s), respectively. Bioinformatic analysis of the substrate specificity of all nine adenylation domains indicated that the sequence of the NRPS modules is well collinear with the order of amino acids in pelgipeptin. Additional biochemical analysis of four recombinant adenylation domains (PlpD A1, PlpE A1, PlpE A3, and PlpF A1) provided further evidence that the plp gene cluster involved in pelgipeptin biosynthesis. CONCLUSIONS: In this study, a gene cluster (plp) responsible for the biosynthesis of pelgipeptin was identified from the genome sequence of Paenibacillus elgii B69. The identification of the plp gene cluster provides an opportunity to develop novel lipopeptide antibiotics by genetic engineering.  相似文献   

11.
The cluster of microcystin synthetase genes from Anabaena strain 90 was sequenced and characterized. The total size of the region is 55.4 kb, and the genes are organized in three putative operons. The first operon (mcyA-mcyB-mcyC) is transcribed in the opposite direction from the second operon (mcyG-mcyD-mcyJ-mcyE-mcyF-mcyI) and the third operon (mcyH). The genes mcyA, mcyB, and mcyC encode nonribosomal peptide synthetases (NRPS), while mcyD codes for a polyketide synthase (PKS), and mcyG and mcyE are mixed NRPS-PKS genes. The genes mcyJ, mcyF, and mcyI are similar to genes coding for a methyltransferase, an aspartate racemase, and a D-3-phosphoglycerate dehydrogenase, respectively. The region in the first module of mcyB coding for the adenylation domain was found to be 96% identical with the corresponding part of mcyC, suggesting a recent duplication of this fragment and a replacement in mcyB. In Anabaena strain 90, the order of the domains encoded by the genes in the two sets (from mcyG to mcyI and from mcyA to mcyC) is colinear with the hypothetical order of the enzymatic reactions for microcystin biosynthesis. The order of the microcystin synthetase genes in Anabaena strain 90 differs from the arrangement found in two other cyanobacterial species, Microcystis aeruginosa and Planktothrix agardhii. The average sequence match between the microcystin synthetase genes of Anabaena strain 90 and the corresponding genes of the other species is 74%. The identity of the individual proteins varies from 67 to 81%. The genes of microcystin biosynthesis from three major producers of this toxin are now known. This makes it possible to design probes and primers to identify the toxin producers in the environment.  相似文献   

12.
Abstract Peptide synthetases are large multienzyme complexes that catalyze the non-ribosomal synthesis of a structurally diverse family of bioactive peptides. They possess a multidomain structure and employ the thiotemplate mechanism to activate, modify and link together by amide or ester bonds the constituent amino acids of the peptide product. The domains, which represent the functional building units of peptide synthetases, appear to act as independent enzymes whose specific linkage order forms the protein-template that defines the sequence of the incorporated amino acids. Two types of domains have been characterized in peptide synthetases of bacterial and fungal origin: type I comprises about 600 amino acids and contains at least two modules involved in substrate recognition, adenylation and thioester formation, whereas type II domains carry in addition an insertion of about 430 amino acids that may function as a N-methyltransferase module. The role of other genes associated with bacterial opérons encoding peptide synthetases is also discussed.  相似文献   

13.
14.
Five rough colony mutants of Mycobacterium smegmatis mc2155 were produced by transposon mutagenesis. The mutants were unable to synthesize glycopeptidolipids that are normally abundant in the cell wall of wild-type M. smegmatis. The glycopeptidolipids have a lipopeptide core comprising a fatty acid amide linked to a tetrapeptide that is modified with O-methylated rhamnose and O-acylated 6-deoxy talose. Compositional analysis of lipids extracted from the mutants indicated that the defect in glycopeptidolipid synthesis occurred in the assembly of the lipopeptide core. No other defects or compensatory changes in cell wall structure were detected in the mutants. All five mutants had transposon insertions in a gene encoding an enzyme belonging to the peptide synthetase family. Targeted disruption of the gene in the wild-type strain gave a phenotype identical to that of the five transposon mutants. The M. smegmatis peptide synthetase gene is predicted to encode four modules that each contain domains for cofactor binding and for amino acid recognition and adenylation. Three modules also have amino acid racemase domains. These data suggest that the common lipopeptide core of these important cell wall glycolipids is synthesized by a peptide synthetase.  相似文献   

15.
Linear gramicidin is a membrane channel forming pentadecapeptide that is produced via the nonribosomal pathway. It consists of 15 hydrophobic amino acids with alternating l- and d-configuration forming a beta-helix-like structure. It has an N-formylated valine and a C-terminal ethanolamine. Here we report cloning and sequencing of the entire biosynthetic gene cluster as well as initial biochemical analysis of a new reductase domain. The biosynthetic gene cluster was identified on two nonoverlapping fosmids and a 13-kilobase pair (kbp) interbridge fragment covering a region of 74 kbp. Four very large open reading frames, lgrA, lgrB, lgrC, and lgrD with 6.8, 15.5, 23.3, and 15.3 kbp, were identified and shown to encode nonribosomal peptide synthetases with two, four, six, and four modules, respectively. Within the 16 modules identified, seven epimerization domains in alternating positions were detected as well as a putative formylation domain fused to the first module LgrA and a putative reductase domain attached to the C-terminal module of LgrD. Analysis of the substrate specificity by phylogenetic studies using the residues of the substrate-binding pockets of all 16 adenylation domains revealed a good agreement of the substrate amino acids predicted with the sequence of linear gramicidin. Additional biochemical analysis of the three adenylation domains of modules 1, 2, and 3 confirmed the colinearity of this nonribosomal peptide synthetase assembly line. Module 16 was predicted to activate glycine, which would then, being the C-terminal residue of the peptide chain, be reduced by the adjacent reductase domain to give ethanolamine, thereby releasing the final product N-formyl-pentadecapeptide-ethanolamine. However, initial biochemical analysis of this reductase showed only a one-step reduction yielding the corresponding aldehyde in vitro.  相似文献   

16.
Serrawettin W1 produced by Serratia marcescens is a surface active exolipid having various functions supporting behaviors of bacteria on surface environments. Through the genetic analyses of serrawettin-less mutants of S. marcescens 274, the swrW gene encoding putative serrawettin W1 synthetase was identified. Homology analysis of the putative SwrW demonstrated the presence of condensation, adenylation, thiolation, and thioesterase domains which are characteristic for nonribosomal peptide synthetase (NRPS). NRPSs have been known as multi-modular enzymes. Linear alignment of these modules specifying respective amino acids will enable peptide bond formation resulting in a specific amino acid sequence. Putative SwrW was uni-modular NRPS specifying only L-serine. Possible steps in this simple unimodular NRPS for biosynthesis of serrawettin W1 [ cyclo-(D-3-hydroxydecanoyl-L-seryl) (2) ] were predicted by referring to the ingenious enzymatic activity of gramicidin S synthetase (multi-modular NRPS) of Brevibacillus brevis.  相似文献   

17.
Cloning, sequencing, and characterization of the iturin A operon   总被引:23,自引:0,他引:23       下载免费PDF全文
Bacillus subtilis RB14 is a producer of the antifungal lipopeptide iturin A. Using a transposon, we identified and cloned the iturin A synthetase operon of RB14, and the sequence of this operon was also determined. The iturin A operon spans a region that is more than 38 kb long and is composed of four open reading frames, ituD, ituA, ituB, and ituC. The ituD gene encodes a putative malonyl coenzyme A transacylase, whose disruption results in a specific deficiency in iturin A production. The second gene, ituA, encodes a 449-kDa protein that has three functional modules homologous to fatty acid synthetase, amino acid transferase, and peptide synthetase. The third gene, ituB, and the fourth gene, ituC, encode 609- and 297-kDa peptide synthetases that harbor four and two amino acid modules, respectively. Mycosubtilin, which is produced by B. subtilis ATCC 6633, has almost the same structure as iturin A, but the amino acids at positions 6 and 7 in the mycosubtilin sequence are D-Ser-->L-Asn, while in iturin A these amino acids are inverted (i.e., D-Asn-->L-Ser). Comparison of the amino acid sequences encoded by the iturin A operon and the mycosubtilin operon revealed that ituD, ituA, and ituB have high levels of homology to the counterpart genes fenF (79%), mycA (79%), and mycB (79%), respectively. Although the overall level of homology of the amino acid sequences encoded by ituC and mycC, the counterpart of ituC, is relatively low (64%), which indicates that there is a difference in the amino acid sequences of the two lipopeptides, the levels of homology between the putative serine adenylation domains and between the asparagine adenylation domains in the two synthetases are high (79 and 80%, respectively), implying that there is an intragenic domain change in the synthetases. The fact that the flanking sequence of the iturin A synthetase coding region was highly homologous to the flanking sequence that of xynD of B. subtilis 168 and the fact that the promoter of the iturin A operon which we identified was also conserved in an upstream sequence of xynD imply that horizontal transfer of this operon occurred. When the promoter was replaced by the repU promoter of the plasmid pUB110 replication protein, production of iturin A increased threefold.  相似文献   

18.
The Bacillus subtilis strain ATCC 21332 produces the lipoheptapeptide surfactin, a highly potent biosurfactant synthesized by a large multimodular peptide synthetase. We report the genetic engineering of the surfactin biosynthesis resulting in the production of a novel lipohexapeptide with altered antimicrobial activities. A combination of in vitro and in vivo recombination approaches was used to construct a modified peptide synthetase by eliminating a large internal region of the enzyme containing a complete amino acid incorporating module. The remaining modules adjacent to the deletion were recombined at different highly conserved sequence motifs characteristic of amino acid incorporating modules of peptide synthetases. The primary goal of this work was to identify permissive fusion sites suitable for the engineering of peptide synthetase genes by genetic recombination. Analysis of the rearranged enzymes after purification from B. subtilis and from the heterologous host Escherichia coli revealed that the selection of the recombination site is of crucial importance for a successful engineering. Only the recombination at a specific HHII x DGVS sequence motif resulted in an active peptide synthetase. The expected lipohexapeptide was produced in vivo and first evidence of a reduced toxicity against erythrocytes and an enhanced lysis of Bacillus licheniformis cells was shown.  相似文献   

19.
Syringopeptin is a necrosis-inducing phytotoxin, composed of 22 amino acids attached to a 3-hydroxy fatty acid tail. Syringopeptin, produced by Pseudomonas syringae pv. syringae, functions as a virulence determinant in the plant-pathogen interaction. A 73,800-bp DNA region was sequenced, and analysis identified three large open reading frames, sypA, sypB, and sypC, that are 16.1, 16.3, and 40.6 kb in size. Sequence analysis of the putative SypA, SypB, and SypC sequences determined that they are homologous to peptide synthetases, containing five, five, and twelve amino acid activation modules, respectively. Each module exhibited characteristic domains for condensation, aminoacyl adenylation, and thiolation. Within the aminoacyl adenylation domain is a region responsible for substrate specificity. Phylogenetic analysis of the substrate-binding pockets resulted in clustering of the 22 syringopeptin modules into nine groups. This clustering reflects the substrate amino acids predicted to be recognized by each of the respective modules based on placement of the syringopeptin NRPS (nonribosomal peptide synthetase) system in the linear (type A) group. Finally, SypC contains two C-terminal thioesterase domains predicted to catalyze the release of syringopeptin from the synthetase and peptide cyclization to form the lactone ring. The syringopeptin synthetases, which carry 22 NRPS modules, represent the largest linear NRPS system described for a prokaryote.  相似文献   

20.
The chromosomal region of Bacillus subtilis comprising the entire srfA operon, sfp and about four kilo-bases in between have been completely sequenced and functionally characterized. The srfA gene codes for three large subunits of surfactin synthetase, 402, 401 and 144 kDa, respectively, arranged in a series of seven amino acid activating domains which, as shown in the accompanying communication, recognize and bind the seven amino acids of the surfactin peptide. The srfA amino acid activating domains share homologies with similar domains of other peptide synthetases; in particular, regions can be identified which are more homologous in domains activating the same amino acid. A fourth gene in srfA encodes a polypeptide homologous to grsT. Four genes are positioned between srfA and sfp, the disruption of which does not affect surfactin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号