首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemokines are a family of related proteins that regulate leukocyte infiltration into inflamed tissue and play important roles in many disease processes. Chemokines are divided into two major groups, CC or CXC, based on their sequence around the amino terminal cysteines. We report the PCR cloning of a novel human chemokine termed BRAK for its initial isolation from breast and kidney cells. This novel chemokine is distantly related to other CXC chemokines (30% identity with MIP-2alpha and beta) and shares several biological activities. BRAK is expressed ubiquitously and highly in normal tissue. However, it was expressed in only 2 of 18 cancer cell lines. BRAK is located on human chromosome 5q31.  相似文献   

2.
Chemokines are involved in recruitment and activation of hematopoietic cells at sites of infection and inflammation. The M3 gene of gammaHV68, a gamma-2 herpesvirus that infects and establishes a lifelong latent infection and chronic vasculitis in mice, encodes an abundant secreted protein during productive infection. The M3 gene is located in a region of the genome that is transcribed during latency. We report here that the M3 protein is a high-affinity broad-spectrum chemokine scavenger. The M3 protein bound the CC chemokines human regulated upon activation of normal T-cell expressed and secreted (RANTES), murine macrophage inflammatory protein 1alpha (MIP-1alpha), and murine monocyte chemoattractant protein 1 (MCP-1), as well as the human CXC chemokine interleukin-8, the murine C chemokine lymphotactin, and the murine CX(3)C chemokine fractalkine with high affinity (K(d) = 1. 6 to 18.7 nM). M3 protein chemokine binding was selective, since the protein did not bind seven other CXC chemokines (K(d) > 1 microM). Furthermore, the M3 protein abolished calcium signaling in response to murine MIP-1alpha and murine MCP-1 and not to murine KC or human stromal cell-derived factor 1 (SDF-1), consistent with the binding data. The M3 protein was also capable of blocking the function of human CC and CXC chemokines, indicating the potential for therapeutic applications. Since the M3 protein lacks homology to known chemokines, chemokine receptors, or chemokine binding proteins, these studies suggest a novel herpesvirus mechanism of immune evasion.  相似文献   

3.
Novel chicken CXC and CC chemokines   总被引:4,自引:0,他引:4  
Upon stimulation with lipopolysaccharide (LPS) the chicken macrophage cell line HD-11 secretes factors with cytokine activity. To characterize these molecules, representational difference analysis with RNA of LPS-induced and uninduced HD-11 cells was performed. Two cDNA clones were isolated that code for polypeptides with structural features of chemokines. cDNA K60 codes for a novel CXC chemokine of 104 residues including a putative signal peptide of 20 amino acids at the N-terminus. It is 67% identical to the previously cloned chicken chemokine 9E3/CEF4. K60 exhibits a similar degree of sequence identity to human interleukin 8 and other related CXC chemokines (about 50%), rendering straight-forward predictions of its biological properties difficult. cDNA K203 codes for a novel CC chemokine of 89 amino acids including a putative N-terminal signal peptide of 21 residues. It is 43% identical to a previously characterized chicken protein with homology to mammalian macrophage inflammatory protein 1beta (MIP-1beta). K203 exhibits about 50% sequence identity to human MIP-1beta and other related CC chemokines.  相似文献   

4.
Chemokines are small peptides involved in the recruitment of various cell types into inflammatory sites. They are divided into four sub-families depending on the presence of amino acids separating the cysteine residues in their N-terminal region. These are the alpha (CXC), beta (CC), gamma (C) and delta (CX)C) chemokines. In addition, five CXC chemokine (CXCR1-5), nine CC chemokine (CCR1-9), one C chemokine (XCR1) and one C-X3C chemokine (CX3CR1) receptors have been identified. These receptors belong to the seven transmembrane spanning domain family, and are coupled to the heterotrimeric guanine nucleotide binding (G) proteins. Chemokines activate various immune cells, and in particular the anti-viral/anti-tumour effectors, the natural killer (NK) cells by activating members of the heterotrimeric G proteins. The importance of the family of chemokines is highlighted by the ability of its members to inhibit the replication of HIV-1 strains in CD4+ cells, where chemokine receptors act as HIV-1 co-receptors. This review discusses the intracellular signalling pathways induced by chemokines in NK and other cell types, and the relationships to HIV-1 signalling in these cells.  相似文献   

5.
Yang JY  Spanaus KS  Widmer U 《Cytokine》2000,12(2):101-109
By homology search of expressed sequence tags (EST) in GenBank a novel member of the CC chemokine family was identified. The full-length sequence of this liver-specific CC chemokine (LCC-1) predicted a mature protein of 97 amino acids with 31-48% identity to other CC chemokines. There was a characteristic amino acid C-term extension when aligned with other chemokines. Northern blot analysis from a panel of human tissues revealed that LCC-1 mRNA expression is restricted to adult and fetal liver. Different polyadenylation results in two mRNA species of 1.5 kb and 0.5 kb in size. LCC-1 is constitutively expressed in human HepG2 hepatoma cells and is induced by hypoxic exposure. The promoter region of the LCC-1 gene contains potential HIF-1 binding sites. The EST for LCC-1 has been previously mapped to the CC chemokine cluster on human chromosome 17q11.2. The organization of the LCC-1 gene (scya16) into three exons interrupted by two introns is identical to that found for other members of the CC chemokine family.  相似文献   

6.
7.
Chemokines are a family of small cytokines that regulate leukocyte migration. Based on the arrangement of the first two cysteine residues, chemokines are classified into four groups called CXC(α), CC(β), C, and CX(3)C. In this study, we identified a CC chemokine, CsCCK1, from half-smooth tongue sole (Cynoglossus semilaevis) and analyzed its biological activity. The deduced amino acid sequence of CsCCK1 contains 111 amino acid residues and is phylogenetically belonging to the CCL19/21/25 group of CC chemokines. CsCCK1 possesses a DCCL motif that is highly conserved among CC chemokines. Quantitative real time RT-PCR analysis showed that the expression of CsCCK1 was relatively abundant in immune organs under normal physiological conditions and was upregulated by experimental infection of a bacterial pathogen. Purified recombinant CsCCK1 (rCsCCK1) induced chemotaxis in peripheral blood leukocytes (PBL) of both tongue sole and turbot (Scophthalmus maximus) in a dose-dependent manner. Mutation of the CC residues in the DCCL motif by serine substitution completely abolished the biological activity of rCsCCK1. When rCsCCK1, but not the mutant protein, was added to the cell culture of PBL, it enhanced cellular resistance against intracellular bacterial infection. Taken together, these results indicate that CsCCK1 is a functional CC chemokine whose biological activity depends on the DCCL motif and that CsCCK1 plays a role in host immune defense against bacterial infection.  相似文献   

8.
Peatman E  Liu Z 《Immunogenetics》2007,59(8):613-623
Chemokines are a superfamily of cytokines responsible for regulating cell migration under both inflammatory and physiological conditions. CC chemokines are the largest subfamily of chemokines, with 28 members in humans. A subject of intense study in mammalian species, the known functional roles of CC chemokines ligands in both developmental and disease conditions continue to expand. They are also an important family for the study of gene copy number variation and tandem duplication in mammalian species. However, little is known regarding the evolutionary origin and status of these ligands in primitive vertebrates such as teleost fish. In this paper, we review the evolution of the teleost fish CC chemokine gene family, noting evidence of widespread tandem gene duplications and examining the implications of this phenomenon on immune diversity. Through extensive phylogenetic analysis of the CC chemokine sets of four teleost species, zebrafish, catfish, rainbow trout, and Atlantic salmon, we identified seven large groups of CC chemokines. It appeared that several major groups of CC chemokines are highly related including the CCL19/21/25 group, the CCL20 group, CCL27/28 group, and the fish-specific group. In the three remaining groups that contained the largest number of members, the CCL17/22 group, the MIP group, and the MCP group, similarities among species members were obscured by rapid, tandem duplications that may contribute to immune diversity.  相似文献   

9.
Chemokines are important mediators of cell migration during inflammation and normal leukocyte trafficking. Inflammatory chemokines are induced in multiple cell types at sites of infection. Here, we describe a novel bovine CC chemokine, designated regakine-1, that is constitutively present at high concentrations in plasma. Cloning of its gene revealed an expected two intron/three exon organization, with a rather long first intron. In addition to a 21-residue signal peptide, the coding sequence corresponded to a 71-residue secreted protein. However, the natural regakine-1 protein missed the COOH-terminal lysine residue. Regakine-1 has only weak sequence similarity (<50% identical residues) with other animal or human chemokines. Northern blot analysis demonstrated regakine-1 RNA expression in spleen and lung. At physiological concentrations (30-100 ng/mL), natural 7.5 kDa regakine-1 stimulated gelatinase B release from neutrophils and chemoattracted immature myeloid HL-60 cells, as well as mature granulocytes. Regakine-1 was more potent on human myeloid cells than the human plasma CC chemokine hemofiltrate CC chemokine-1 (HCC-1). Moreover, regakine-1 synergized with the bacterial peptide N-formylmethionylleucylphenylalanine (fMLP), yielding a 10-fold increase in neutrophil chemotactic response above their additive effect. Regakine-1 did not compete with interleukin-8 (IL-8) for binding to neutrophils, nor did it affect fMLP-induced calcium signaling, suggesting that regakine-1 recognizes a different receptor. In view of its high constitutive plasma concentration, regakine-1 is believed to recruit myeloid cells into the circulation, whereas its synergy with other neutrophil chemoattractants suggests that it also enhances the inflammatory response to infection.  相似文献   

10.
11.
Chemokines are small, inducible, structurally related proteins that guide cells expressing the right chemokine receptors to sites of immune response. They have been identified and studied extensively in mammals, but little is known about their presence in other vertebrate groups. Here we describe seven new chemokines in bony fish and one in a cartilaginous fish, as well as one chemokine receptor in a jawless vertebrate. All eight chemokines belong to the SCYA (CC) subfamily characterized by four conserved cysteine residues of which the first two are adjacent. The chemokine receptor is of the CXCR4 type. Phylogenetic analysis does not reveal any clear evidence of orthology of fish and human chemokines. Although the divergence of the subfamilies began before the fish-tetrapod split, much of the divergence within the subfamilies took place separately in the two vertebrate groups. The existence of a chemokine receptor in the lamprey indicates that chemokines are apparently also present in the Agnatha.  相似文献   

12.
Chemokines are small proteins (70-100 amino acids) which play an important role in recruitment and activation of leucocytes to migrate to the site of inflammation. Based on the position of the first two conserved cysteines, chemokines are classified into four subfamilies: C, CC, CXC and CX3C. To date, many members of CC and CXC have been found and studied extensively [1]. Chemokines exert effects on their target cell via chemokine receptors, which are G-protein coupled receptors containing seven transmembrane domains with an extracellular N-terminus and an intracellular C-terminus [2]. Interleukin 8 (IL-8) belongs to the CXC chemokine subfamily. It can activate and attract migratory neutrophils to an inflammation site. Two IL-8 receptors, CXCR1 and CXCR2, have been identified in mammals [3-6]; both of these receptors have high affinity for IL-8 and are expressed on the neutrophil. CXCR1 just binds IL-8; however, CXCR2 binds IL-8 and other structurally related chemokines such as growth-related oncogene (GRO) a, GRObeta, GROgamma, neutrophil-activating peptide-2 (NAP-2) and epithelial cell-derived neutrophil activating peptide-78 (ENA-78) [7, 8]. Several studies on fish chemokine receptors have been reported [9-11]. Thus far, however, IL-8 and CXCR1 and CXCR2 proteins from rainbow trout have not been reported: however, the sequence of a rainbow trout IL-8 has been noted (GenBank Accession No. AJ279069 [12]). Cloning of the IL-8 receptor is important to study the function of IL-8/CXCR1 and (CXCR2) in inflammation and signal transduction in fish. This paper reports the molecular cloning and genomic structure of an IL-8 receptor-like gene from four homozygous clones of rainbow trout: Oregon State University (OSU), Hot Creek (HC), Arlee (AR) and Swanson (SW).  相似文献   

13.
Chemokines, a superfamily of chemotactic cytokines involved in recruitment, activation, and adhesion of a variety of leukocyte types to inflammatory foci, are a crucial component of the immune system of Sarcopterygiian vertebrates. Although all mammalian chemokines are believed to have been found, the status of these molecules in Actinopterygii was unknown until recently. The identification of chemokines in fish species has been complicated by low sequence conservation and confusion over expected numbers. Earlier discoveries of single fish chemokines coupled with rapidly expanding genetic resources in these species have recently provided a foundation for large-scale in silico discoveries of these important immune regulators. We report here the identification and expression analysis of 12 new CC chemokine sequences from catfish. When added to our previous report of 14 catfish CC chemokines, the number of CC chemokines in catfish now stands at 26, two more than known from humans. Establishing orthologous relationships among the majority of catfish CC chemokines, a newly available set of chicken CC chemokines, and their mammalian counterparts remain difficult, suggesting high levels of duplication and divergence within individual species.  相似文献   

14.
 A phylogeny of mammalian chemokines revealed two major clusters, corresponding to the CC and CXC chemokines; the C chemokines appeared to be more closely related to the former. In a phylogeny of chemokine receptors, there were also two major clusters: one containing CC chemokine receptors plus other receptors of unknown function and another containing CXC receptors and other receptors of unknown function. However, within the CC receptors, there was not a close correspondence between the phylogenies of chemokines and their receptors. The CC chemokines contained two major subfamilies: (1) the MIP subfamily (including MIP-1α, MIP-1β, and RANTES); and (2) the MCP subfamily (including MCP-1,-2,-3, and -4 and eotaxin). Receptors having preferred ligands in the MCP subfamily did not constitute a monophyletic group but rather evolved twice independently. Reconstruction of ancestral amino acid sequences suggested that these two groups of MCP receptors did not convergently evolve any amino acid residues; rather, they convergently lost sequence features found in the third and fourth extracellular domains of known receptors for MIP-subfamily chemokines. Received: 1 May 1998 / Revised: 3 July 1998  相似文献   

15.
Chemokines play a key role in the recruitment of activated CD4(+) T cells and eosinophils into the lungs in animal models of airway inflammation. Inhibition of inflammation by N-terminally modified chemokines is well-documented in several models but is often reported with limited dose regimens. We have evaluated the effects of doses ranging from 10 ng to 100 micro g of two CC chemokine receptor antagonists, Met-RANTES/CC chemokine ligand 5 (CCL5) and aminooxypentane-RANTES/CCL5, in preventing inflammation in the OVA-sensitized murine model of human asthma. In the human system, aminooxypentane-RANTES/CCL5 is a full agonist of CCR5, but in the murine system neither variant is able to induce cellular recruitment. Both antagonists showed an inverse bell-shaped inhibition of cellular infiltration into the airways and mucus production in the lungs following allergen provocation. The loss of inhibition at higher doses did not appear to be due to partial agonist activity because neither variant showed activity in recruiting cells into the peritoneal cavity at these doses. Surprisingly, neither was able to bind to the major CCR expressed on eosinophils, CCR3. However, significant inhibition of eosinophil recruitment was observed. Both analogues retained high affinity binding for murine CCR1 and murine CCR5. Their ability to antagonize CCR1 and CCR5 but not CCR3 was confirmed by their ability to prevent RANTES/CCL5 and macrophage inflammatory protein-1beta/CCL4 recruitment in vitro and in vivo, while they had no effect on that induced by eotaxin/CCL11. These results suggest that CCR1 and/or CCR5 may be potential targets for asthma therapy.  相似文献   

16.
Liu L  Fujiki K  Dixon B  Sundick RS 《Cytokine》2002,17(2):71-81
An activation-specific cDNA library was made from phytohaemagglutinin (PHA)-activated haematopoietic cells of the rainbow trout (Oncorhynchus mykiss) using the technique of suppression subtractive hybridization. Several immune system genes were identified, including an interleukin (IL)1 receptor related protein and two invariant chain-like proteins. Many clones showed no similarity by BLAST search, but had AU-rich elements. These fragments were labelled and used for hybridization with a PHA-activated head kidney cDNA library. Several immune system genes were isolated by this technique, including a tumour necrosis factor (TNF) decoy receptor and a novel chemokine, designated trout chemokine 2. The TNF receptor is 285 amino acids in length and is 32-36% identical to a brook trout and human homologue. The CC chemokine is 44% identical at the amino acid level to a carp CC chemokine and approximately 20% identical to several mammalian CC chemokines. However, it has a 91 amino acid stalk-like structure at its COOH end, which is similar to the glycosylated stalk of fractalkine, a mammalian CX(3)C chemokine. In summary, AU-rich fragments obtained from an activation-specific library proved useful as hybridization probes for isolating trout immune system genes.  相似文献   

17.
Adoptive immunotherapy of cancer patients with cytolytic T lymphocytes (CTL) has been hampered by the inability of the CTL to home into tumors in vivo. Chemokines can attract T lymphocytes to the tumor site, as demonstrated in animal models, but the role of chemokines in T-lymphocyte trafficking toward human tumor cells is relatively unexplored. In the present study, the role of chemokines and their receptors in the migration of a colon carcinoma (CC) patient’s CTL toward autologous tumor cells has been studied in a novel three-dimensional organotypic CC culture. CTL migration was mediated by chemokine receptor CXCR3 expressed by the CTL and CXCL11 chemokine secreted by the tumor cells. Excess CXCL11 or antibodies to CXCL11 or CXCR3 inhibited migration of CTL to tumor cells. T cell and tumor cell analyses for CXCR3 and CXCL11 expression, respectively, in ten additional CC samples, may suggest their involvement in other CC patients. Our studies, together with previous studies indicating angiostatic activity of CXCL11, suggest that CXCL11 may be useful as an immunotherapeutic agent for cancer patients when transduced into tumor cells or fused to tumor antigen-specific Ab.  相似文献   

18.
19.
CC chemokine receptor 7 (CCR7), which regulates the trafficking of leucocytes to the secondary lymphoid organs, has two endogenous chemokine ligands: CCL19 and CCL21. Although both ligands possess similar affinities for the receptor and similar abilities to promote G protein activation and chemotaxis, they share only 25% sequence identity. Here, we show that substituting N-terminal six amino acids of CCL21 (SDGGAQ) for the corresponding N-terminal domain of CCL19 (GTNDAE) results in a chimeric chemokine that exhibits high affinity binding and G protein activation of CCR7. These data demonstrate that despite dissimilar sequences, the amino terminal hexapeptide of these two chemokines is capable of performing similar roles resulting in receptor activation.  相似文献   

20.
Chemokines and chemokine receptors play a critical role in the host defense against viruses by mobilizing leukocytes to sites of infection, injury and inflammation. In order to replicate successfully within their host organisms, viruses have devised novel strategies for exploiting or subverting chemokine networks. This review summarizes various mechanisms that are currently known to be used by viruses for modulating chemokine activities including viral homologs of chemokines and chemokine receptors and soluble viral chemokine binding proteins. Insight into these strategies is providing a wealth of information on viral-host interactions, the function of chemokines in host defense and may help to generate novel anti-chemokine agents for treating against viral diseases or inflammatory disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号