首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integrins and PI3K/Akt are important mediators of the signal transduction pathways involved in tumor angiogenesis and cell survival after exposure to ionizing radiation. Selective targeting of either integrins or PI3K/Akt can radiosensitize tumors. In this study, we tested the hypothesis that the combined inhibition of integrin alphanubeta3 by cRGD and PI3K/Akt by LY294002 would significantly enhance radiation-induced inhibition of angiogenesis by vascular endothelial cells. Treatment with cRGD inhibited the adhesion and tube formation of human umbilical vein endothelial cells (HUVECs). The inhibitory effect was further increased when cRGD and LY294002 were applied simultaneously. Both radiation and cRGD induced Akt phosphorylation, up-regulated COX2 expression, and increased PGE2 production in HUVECs. Treatment with LY294002 effectively inhibited radiation- and cRGD-induced Akt phosphorylation and up-regulation of COX2 and increased apoptosis of HUVECs. The combined use of cRGD and LY294002 enhanced radiation-induced cell killing. The clonogenic survival of HUVECs was decreased from 34% with 2 Gy radiation to 4% with these agents combined. These results demonstrate that combined use of ionizing radiation, cRGD and LY294002 inhibited multiple signaling transduction pathways involved in tumor angiogenesis and enhanced radiation-induced effects on vascular endothelial cells.  相似文献   

2.
Integrin alpha x (ITGAX), a member of the integrin family, usually serves as a receptor of the extracellular matrix. Recently, accumulating evidence suggests that ITGAX may be involved in angiogenesis in dendritic cells. Herein, we report a direct role of ITGAX in angiogenesis during tumor development. Overexpression of ITGAX in human umbilical vein endothelial cells (HUVECs) enhanced their proliferation, migration, and tube formation and promoted xenograft ovarian tumor angiogenesis and growth. Further study showed that overexpression of ITGAX activated the PI3k/Akt pathway, leading to the enhanced expression of c-Myc, vascular endothelial growth factor-A (VEGF-A), and VEGF receptor 2 (VEGFR2), whereas, the treatment of cells with PI3K inhibitor diminished these effects. Besides, c-Myc was observed to bind to the VEGF-A promoter. By Co-Immunoprecipitation (Co-IP) assay, we manifested the interaction between ITGAX and VEGFR2 or the phosphorylated VEGFR2. Immunostaining of human ovarian cancer specimens suggested that endothelial cells of micro–blood vessels displayed strong expression of VEGF-A, c-Myc, VEGFR2, and the PI3K signaling molecules. Also, overexpression of ITGAX in HUVECs could stimulate the spheroid formation of ovarian cancer cells. Our study uncovered that ITGAX stimulates angiogenesis through the PI3K/Akt signaling–mediated VEGFR2/VEGF-A overexpression during cancer development.  相似文献   

3.
4.
Role of autophagy in angiogenesis in aortic endothelial cells   总被引:1,自引:0,他引:1  
Angiogenesis plays critical roles in the recovery phase of ischemic heart disease and peripheral vascular disease. An increase in autophagy is protective under hypoxic and chronic ischemic conditions. In the present study we determined the role of autophagy in angiogenesis. 3-Methyladenine (3-MA) and small interfering RNA (siRNA) against ATG5 were used to inhibit autophagy induced by nutrient deprivation of cultured bovine aortic endothelial cells (BAECs). Assays of BAECs tube formation and cell migration revealed that inhibition of autophagy by 3-MA or siRNA against ATG5 reduced angiogenesis. In contrast, induction of autophagy by overexpression of ATG5 increased BAECs tube formation and migration. Additionally, inhibiting autophagy impaired vascular endothelial growth factor (VEGF)-induced angiogenesis. However, inhibition of autophagy did not alter the expression of pro-angiogenesis factors such as VEGF, platelet-derived growth factor, or integrin αV. Furthermore, autophagy increased reactive oxygen species (ROS) formation and activated AKT phosphorylation. Inhibition of autophagy significantly decreased the production of ROS and activation of AKT but not of extracellular regulated kinase, whereas overexpression of ATG5 increased cellular ROS production and AKT activation in BAECs. Inhibition of AKT activation or ROS production significantly decreased the tube formation induced by ATG5 overexpression. Here we report a novel observation that autophagy plays an important role in angiogenesis in BAECs. Induction of autophagy promotes angiogenesis while inhibition of autophagy suppresses angiogenesis, including VEGF-induced angiogenesis. ROS production and AKT activation might be important mechanisms for mediating angiogenesis induced by autophagy. Our findings indicate that targeting autophagy may provide an important new tool for treating cardiovascular disease.  相似文献   

5.
Argonaute2 (Ago2), a component protein of RNA-induced silencing complex, plays a central role in RNA interference. We focused on the involvement of Ago2 in angiogenesis. Human umbilical vein endothelial cells (HUVECs) stimulated with several growth factors such as vascular endothelial growth factor were used for angiogenesis assays. We applied polycation liposomes for transfection of small interfering RNA (siRNA) to determine the biological effects of siRNA for Ago2 (siAgo2) on HUVECs. The proliferation study indicated that siAgo2 significantly suppressed the growth of HUVECs compared with control siRNA. TUNEL staining showed a certain population of HUVECs treated with siAgo2 underwent apoptosis. Furthermore, the treatment with siAgo2 suppressed the tube formation of HUVECs and significantly reduced the length of the tubes. These present data demonstrate that siAgo2 inhibited indispensable events of angiogenesis in vitro. This is the first report suggesting that Ago2 is required for angiogenesis.  相似文献   

6.
Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLCβ2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLCβ2/Ca2+ signal transduction in endothelial cells.  相似文献   

7.
Proangiogenesis is generally regarded as an effective approach for treating ischemic heart disease. Vascular endothelial growth factor (VEGF)-A is a strong and essential proangiogenic factor. Reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy are implicated in the process of angiogenesis. This study is designed to clarify the regulatory mechanisms underlying VEGF-A, ROS, ER stress, autophagy, and angiogenesis in acute myocardial infarction (AMI). A mouse model of AMI was successfully established by occluding the left anterior descending coronary artery. Compared with the sham-operated mice, the microvessel density, VEGF-A content, ROS production, expression of vascular endothelial cadherin, positive expression of 78 kDa glucose-regulated protein/binding immunoglobulin protein (GRP78/Bip), and LC3 puncta in CD31-positive endothelial cells of the ischemic myocardium were overtly elevated. Moreover, VEGF-A exposure predominantly increased the expression of beclin-1, autophagy-related gene (ATG) 4, ATG5, inositol-requiring enzyme-1 (IRE-1), GRP78/Bip, and LC3-II/LC3-I as well as ROS production in the human umbilical vein endothelial cells (HUVECs) in a dose and time-dependent manner. Both beclin-1 small interfering RNA and 3-methyladenine treatment predominantly mitigated VEGF-A-induced tube formation and migration of HUVECs, but they failed to elicit any notable effect on VEGF-A-increased expression of GRP78/Bip. Tauroursodeoxycholic acid not only obviously abolished VEGF-A-induced increase of IRE-1, GRP78/Bip, beclin-1 expression, and LC3-II/LC3-I, but also negated VEGF-A-induced tube formation and migration of HUVECs. Furthermore, N-acetyl- l -cysteine markedly abrogated VEGF-A-increased ROS production, IRE-1, GRP78/Bip, beclin-1 expression, and LC3-II/LC3-I in the HUVECs. Taken together, our data demonstrated that increased spontaneous production of VEGF-A may induce angiogenesis after AMI through initiating ROS–ER stress-autophagy axis in the vascular endothelial cells.  相似文献   

8.
Human umbilical cord vascular endothelial cells (HUVECs) cultured without serum and fibroblast growth factor-2 is an in vitro model of ischemic conditions. Our previous study showed that ethyl 3-(o-chlorophenyl)-5-methyl-1-phenyl-1H-pyrazole-4-carboxylate (MPD) could inhibit apoptosis of HUVECs in this model. In this study, we investigated the effect of MPD on angiogenesis and the possible mechanisms. Capillary-like tube formation assay on Matrigel and cell migration assay were performed to investigate the effect of MPD on angiogenesis. The reactive oxygen species (ROS) and interferon-inducible protein 10 (IP-10) levels were respectively evaluated by intracellular ROS assay and western blot analysis. MPD at 5 and 10 ??M promoted vascular structure formation and HUVEC migration in an in vitro ischemic model. MPD promoted angiogenesis through elevating ROS levels and depressing IP-10 level. ROS seemed to be necessary for angiogenesis, and a high level of IP-10 inhibited angiogenesis in ischemic state. ROS provide clues for seeking new key factors involved in angiogenesis. IP-10 may become a new target for future therapeutic intervention. MPD is a good tool for investigating the mechanism of angiogenesis, and MPD might be useful in the development of new drugs in therapy of ischemic diseases.  相似文献   

9.
Neuromedin B (NMB) is one of the bombesin-like peptides in mammals. Recently, bombesin-like peptides have been characterized as growth factors in highly vascularized tumors. In this study, we report that NMB potently stimulates in vivo neovascularization in a mouse Matrigel plug and the sprouting of endothelial cells ex vivo in rat aortic rings. In addition, NMB increases the migration and tube formation in human umbilical vein endothelial cells (HUVECs). Moreover, treatment of HUVECs with NMB activates the extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS) and increases the level of NO production in a dose- and time-dependent manner. Furthermore, ERK activation and angiogenic sprouting in response to NMB are significantly blocked by the MEK inhibitor. Inhibition of phosphatidylinositol 3-kinase (PI3K) suppresses the NMB-stimulated tubular formation of HUVECs, along with reduction in the phosphorylation of Akt and eNOS. Taken together, these results indicate that NMB is a novel angiogenic peptide, and its angiogenic activity is mediated by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent pathways. This study suggests that NMB may play important roles in mediating a variety of pathophysiological angiogenesis.  相似文献   

10.
Angiogenesis is critical for re‐establishing the blood supply to the surviving myocardium after myocardial infarction (MI). Long non‐coding RNA ANRIL (lncRNA‐ANRIL) has been reported to regulate endothelial functions in cardiovascular diseases. This study was to determine the role of lncRNA‐ANRIL in Akt regulation and cardiac functions after MI. Human umbilical vein endothelial cells (HUVECs) were exposed to oxygen‐glucose deprivation (OGD) to mimic in vivo ischaemia. The MI model in mice was induced by ligating left anterior descending coronary artery. OGD remarkably decreased lncRNA‐ANRIL expression level, reduced the phosphorylated levels of Akt and eNOS proteins, and inhibited NO release and cell viability, which were duplicated by shRNA‐mediated gene knockdown of lncRNA‐ANRIL. Conversely, all these effects induced by OGD were abolished by adenovirus‐mediated overexpression of lncRNA‐ANRIL in HUVECs. Further, OGD impaired cell migrations and tube formations in HUVECs, which were reversed by lncRNA‐ANRIL overexpression or Akt up‐regulation. RNA immunoprecipitation analysis indicated that the affinity of lncRNA‐ANRIL to Akt protein was increased in OGD‐treated cells. In animal studies, adenovirus‐mediated lncRNA‐ANRIL overexpression increased the phosphorylated levels of Akt and eNOS, promoted post‐ischaemic angiogenesis and improved heart functions in mice with MI surgery. LncRNA‐ANRIL regulates Akt phosphorylation to improve endothelial functions, which promotes angiogenesis and improves cardiac functions in mice following MI. In this perspective, targeting lncRNA‐ANRIL/Akt may be considered to develop a drug to treat angiogenesis‐related diseases.  相似文献   

11.
Human CD93, an epidermal growth factor (EGF)-like domain containing transmembrane protein, is predominantly expressed in the vascular endothelium. Studies have shown that AA4, the homolog of CD93 in mice, may mediate cell migration and angiogenesis in endothelial cells. Soluble CD93 has been detected in the plasma of healthy individuals. However, the role of soluble CD93 in the endothelium remains unclear. Recombinant soluble CD93 proteins with EGF-like domains (rCD93D123, with domains 1, 2, and 3; and rCD93D23, with domains 2 and 3) were generated to determine their functions in angiogenesis. We found that rCD93D23 was more potent than rCD93D123 in stimulating the proliferation and migration of human umbilical vein endothelial cells (HUVECs). Production of matrix-metalloproteinase 2 increased after the HUVECs were treated with rCD93D23. Further, in a tube formation assay, rCD93D23 induced cell differentiation of HUVECs through phosphoinositide 3-kinase/Akt/endothelial nitric oxide synthase and extracellular signal-regulated kinases-1/2 signaling. Moreover, rCD93D23 promoted blood vessel formation in a Matrigel-plug assay and an oxygen-induced retinopathy model in vivo. Our findings suggest that the soluble EGF-like domain containing CD93 protein is a novel angiogenic factor acting on the endothelium.  相似文献   

12.
Glucagon-like peptide-1 (GLP-1) and its analogues have a beneficial role in cardiovascular system. Here, we aimed to investigate whether liraglutide, a GLP-1 analogue, modulated angiogenesis impaired by palmitic acid (PA) in cultured human umbilical vein endothelial cells (HUVECs). Cells were incubated with liraglutide (3–100 nmol/L) in the presence of PA (0.5 mmol/L), and endothelial tube formation was observed and quantified. The protein levels of signaling molecules were analyzed and the specific inhibitors were used to identify the signaling pathways through which liraglutide affected angiogenesis. Results showed that liraglutide ameliorated endothelial tube formation impaired by PA in HUVECs in a dose-dependent manner. Meanwhile, liraglutide increased the phosphorylation of Akt and forkhead box O1 (Foxo1), and upregulated the levels of guanosine 5′-triphosphate cyclohydrolase 1 (GTPCH1) and endothelial nitric oxide synthase (eNOS) in PA-impaired HUVECs. Notably, addition of the PI3K inhibitor LY294002, Foxo1 nuclear export inhibitor trifluoperazine dihydrochloride (TFP), GTPCH1 inhibitor 2,4-diamino-6-hydroxypyrimidine (DAHP) or NOS inhibitor N-nitro-l-arginine-methyl ester (L-NAME) eliminated the angiogenic effect of liraglutide. Moreover, either LY294002 or TFP abolished the liraglutide-induced upregulation of GTPCH1 and eNOS protein levels. In conclusion, liraglutide restores angiogenesis in PA-impaired HUVECs. The effect is mediated via upregulation of GTPCH1 and eNOS levels in a PI3K/Akt-Foxo1-dependent mechanism.  相似文献   

13.
Recent studies have demonstrated that reactive oxygen species (ROS) mediate myocardial ischemia-reperfusion (I/R) and angiogenesis via the mitogen-activated protein kinases and the serine-threonine kinase Akt/protein kinase B pathways. NADPH oxidases are major sources of ROS in endothelial cells and cardiomyocytes. In the present study, we investigated the role of NADPH oxidase-derived ROS in hypoxia-reoxygenation (H/R)-induced Akt and ERK1/2 activation and angiogenesis using porcine coronary artery endothelial cells (PCAECs) and a mouse myocardial I/R model. Our data demonstrate that exposure of PCAECs to hypoxia for 2 h followed by 1 h of reoxygenation significantly increased ROS formation. Pretreatment with the NADPH oxidase inhibitors, diphenyleneiodonium (DPI, 10 microM) and apocynin (Apo, 200 and 600 microM), significantly attenuated H/R-induced ROS formation. Furthermore, exposure of PCAECs to H/R caused a significant increase in Akt and ERK1/2 activation. Exposure of PCAEC spheroids and mouse aortic rings to H/R significantly increased endothelial spheroid sprouting and vessel outgrowth, whereas pharmacological inhibition of NADPH oxidase or genetic deletion of the NADPH oxidase subunit, p47(phox) (p47(phox-/-)), significantly suppressed these changes. With the use of a mouse I/R model, our data further show that the increases in myocardial Akt and ERK1/2 activation and vascular endothelial growth factor (VEGF) expression were markedly blunted in the p47(phox-/-) mouse subjected to myocardial I/R compared with the wild-type mouse. Our findings underscore the important role of NADPH oxidase and its subunit p47(phox) in modulating Akt and ERK1/2 activation, angiogenic growth factor expression, and angiogenesis in myocardium undergoing I/R.  相似文献   

14.
Glycation of extracellular matrix proteins has been demonstrated to contribute to the pathogenesis of vascular complications. However, no previous report has shown the role of glycated fibronectin (FN) in vascular endothelial growth factor (VEGF)‐induced angiogenesis. Thus, this study aimed to investigate the effects of glycated FN on VEGF signalling and to clarify the molecular mechanisms involved. FN was incubated with methylglyoxal (MGO) in vitro to synthesize glycated FN, and human umbilical vein endothelial cells (HUVECs) were seeded onto unmodified and MGO‐glycated FN. Then, VEGF‐induced angiogenesis and VEGF‐induced VEGF receptor‐2 (VEGFR‐2) signalling activation were measured. The results demonstrated that normal FN‐positive bands (260 kD) vanished and advanced glycation end products (AGEs) appeared in MGO‐glycated FN and glycated FN clearly changed to a higher molecular mass. The glycation of FN inhibited VEGF‐induced VEGF receptor‐2 (VEGFR‐2), Akt and ERK1/2 activation and VEGF‐induced cell migration, proliferation and tube formation. The glycation of FN also inhibited the recruitment of c‐Src to VEGFR‐2 by sequestering c‐Src through receptor for AGEs (RAGE) and the anti‐RAGE antibody restored VEGF‐induced VEGFR‐2, Akt and ERK1/2 phosphorylation, endothelial cell migration, proliferation and tube formation. Furthermore, the glycation of FN significantly inhibited VEGF‐induced neovascularization in the Matrigel plugs implanted into subcutaneous tissue of mice. Taken together, these data suggest that the glycation of FN may inhibit VEGF signalling and VEGF‐induced angiogenesis by uncoupling VEGFR‐2‐c‐Src interaction. This may provide a novel mechanism for the impaired angiogenesis in diabetic ischaemic diseases.  相似文献   

15.
Adipose tissue is highly vascularized and requires the angiogenic properties for its mass growth. Visfatin has been recently characterized as a novel adipokine, which is preferentially produced by adipose tissue. In this study, we report that visfatin potently stimulates in vivo neovascularization in chick chorioallantoic membrane and mouse Matrigel plug. We also demonstrate that visfatin activates migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVECs). Moreover, visfatin evokes activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) in endothelial cells, which is closely linked to angiogenesis. Inhibition of ERK activation markedly decreases visfatin-induced tube formation of HUVECs and visfatin-stimulated endothelial cell sprouting from rat aortic rings. Taken together, these results demonstrate that visfatin promotes angiogenesis via activation of mitogen-activated protein kinase ERK-dependent pathway and suggest that visfatin may play important roles in various pathophysiological angiogenesis including adipose tissue angiogenesis.  相似文献   

16.
17.
18.
It is known that irisin increases total body energy expenditure, decreases body weight, and enhances insulin sensitivity. Although previous studies have demonstrated that irisin induces vascular endothelial cell (EC) angiogenesis, the molecular mechanisms underlying irisin-induced angiogenesis under conditions reflecting atherosclerosis are not known. The aim of the present study is to investigate whether irisin could inhibit oxidized low-density lipoprotein (oxLDL) impaired angiogenesis. We investigated the effect of irisin on angiogenesis in vitro by evaluating cell viability, cell migration, and the capacity to form capillary-like tubes using human umbilical vein endothelial cells and human microvascular endothelial cells (HUVECs and HMEC-1) that were treated with oxLDL. We also evaluated the effects of irisin on angiogenesis in vivo by Matrigel plug angiogenesis assay and in a chicken embryo membrane (CAM) model. Our results demonstrated that irisin increased oxLDL-treated EC viability as well as migration and tube formation. Moreover, oxLDL inhibited angiogenic response in vivo, both in the Matrigel plug angiogenesis assay and in the CAM model, and was attenuated by irisin. Furthermore, irisin decreased apoptosis, inflammatory cytokines, and intracellular reactive oxygen species (ROS) levels in oxLDL-treated EC. In addition, we found that irisin upregulated pAkt/mTOR/Nrf2 in oxLDL-treated EC. Both mTOR/Nrf2 shRNA and LY294002 could inhibit the protective effect of irisin. Taken together these results, they suggested that irisin attenuates oxLDL-induced vascular injury by activating the Akt/mTOR/Nrf2 pathway. Our findings suggest that irisin attenuates oxLDL-induced blood vessel injury.  相似文献   

19.
The availability of oxygen (O(2)) is a critical parameter affecting vascular tube formation. In this study, we hypothesize that dissolved oxygen (DO) levels in collagen gels change during the three-dimensional (3D) culture of human umbilical vein endothelial cells (HUVECs) in atmospheric conditions and that such changes affect the kinetics of tube formation through the production of reactive oxygen species (ROS). We demonstrate a decrease in O(2) tension during 3D cultures of HUVECs. Noninvasive measurements of DO levels during culture under atmospheric conditions revealed a profound decrease that reached as low as 2% O(2) at the end of 24 h. After media replacement, DO levels rose rapidly and equilibrated at ~15% O(2), creating a reoxygenated environment. To accurately estimate DO gradients in 3D collagen gels, we developed a 3D mathematical model and determined the Michaelis-Menten parameters, V(max) and K(m), of HUVECs in collagen gels. We detected an increase in ROS levels throughout the culture period. Using diphenyliodonium to inhibit ROS production resulted in the complete inhibition of tube formation. Interference RNA studies further showed that hypoxia-inducible factors (HIFs)-1α and -2α are not involved in the formation of 3D tubes in collagen gels. We conclude that ROS affect the tubulogenesis process through HIFα-independent pathways, where the levels of ROS are influenced by the uncontrolled variations in DO levels. This study is the first demonstration of the critical and unexpected role of O(2) during 3D in vitro culture models of tubulogenesis in atmospheric conditions.  相似文献   

20.
Angiogenesis, the process of new blood vessels formation, is a critical step for wound healing, tumour growth and metastasis, diabetic retinopathy, psoriasis, etc. The present study was designed to investigate whether c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for regulating basic fibroblastic growth factor (bFGF)-induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Our results showed that bFGF-induced HUVECs proliferation, migration and tube formation with a concentration-dependent manner. Further results showed that bFGF induced the phosphorylation of JNK/SAPK at 15 min. Both JNK/SAPK inhibitor SP600125 and JNK/SAPK peptide inhibitor 420116 could inhibit bFGF-induced HUVECs proliferation, migration and tube formation, so did JNK/SAPK-specific siRNA. Moreover, when HUVECs were stimulated with bFGF, upstream signals of JNK/SAPK, SEK1/MKK4 and MKK7 were both activated at 2 min. In summary, our results indicate that JNK/SAPK signal pathway plays an important role in regulating bFGF-mediated angiogenesis in HUVECs, which may therefore be a new therapeutic approach for the treatment of angiogenesis-associated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号