首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An immobilized enzyme reactor system for converting poorly soluble substrate is proposed. In this stirred batch reactor, the solid substrate and immobilized enzyme suspensions are separated by a microporous filter. The advantage of separating the solid substrate from immobilized enzyme is that the fouling and breakage of the immobilized enzyme usually encountered in the stirred tank reactor can be prevented. Pressure swing can be applied to enhance the mass transfer between the two compartments. The hydrolytic reaction converting the poorly soluble substrate p-hydroxyphenylhydantoin (pHPH) into soluble N-carbamoyl-p-d-hydroxyphenylglycine (CpHPG) by immobilized d-hydantoinase is carried out in this reactor. The performance of this pressure-swing reactor is studied by simulation using a simple kinetic model. The pressure-swing operation increases the overall production rate significantly. The pressure swing also makes the reactor perform better for converting the solid substrate at higher concentration.  相似文献   

2.
The effect of substrate protection on enzyme deactivation was studied in a differential bed and a packed bed reactor using a commercial immobilized glucose isomerase (Swetase, Nagase Co.). Experimental data obtained from differential bed reactor were analyzed based on Briggs-Haldane kinetics in which enzyme deactivation accompanying the protection of substrate was considered. The deactivation constant of the enzyme-substrate complex was found to be about half of that of the free enzyme. The mathematical analysis describing the performance of a packed bed reactor under the considerations of the effects of substrate protection, diffusion resistance, and enzyme deactivation was studied. The system equations for the packed bed reactor were solved using an orthogonal collocation method. The presence of substrate protection and the diffusion effect within the enzyme particles resulted in an axial variation of effectiveness factor, eta(D), along the length of the packed bed. The axial distribution profile of eta(D) was found to be dependent on the operation temperature, Based on the effect of substrate protection, a better substrate feed policy could be theoretically found for promoting productivity in long-term operation. (c) 1993 John Wiley & Sons, Inc.  相似文献   

3.
Although reactions in substrate suspension are employed in industry for several bioconversion processes, there appears to be no quantitative model available in the literature to rationalize the optimization of these processes. We present a simple model that incorporates the kinetics of substrate dissolution and a simultaneous enzymatic reaction. The model was tested in the alpha-chymotrypsin-catalyzed hydrolysis of an aqueous suspension of dimethyl benzylmethylmalonate to a homogeneous solution of enantiomerically pure monoester. This reaction occurs in the bulk phase, so catalysis by enzyme absorbed at the solid-liquid interface plays no role. The value of the parameters in the model (i.e., the mass transfer coefficient of substrate dissolution (k(L)), the substrate solubility, and the rate constant for the enzymatic reaction) were determined in separate experiments. Using these parameter values, the model gave a good quantitative prediction of the rate of the overall dissolution-reaction process. When the particle size distribution is known, k(L) may also be calculated instead. The model seems to be applicable also for other poorly soluble substrates, other enzymes, and other solvents. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 433-440, 1997.  相似文献   

4.
An automation system for a solid substrate pilot bioreactor is described. The performance of the system in real time experiments is discussed and future improvements are proposed. Good control of temperature and water content of the solid bed was achieved, although the system is not fully automatic and needs human supervision.  相似文献   

5.
Enzymes that exhibit superior catalytic activity, stability and substrate specificity are highly desirable for industrial applications. These goals prompted the designed substrate specificity of Bacillus stearothermophilus d-hydantoinase toward the target substrate hydroxyphenylhydantoin (HPH). Positions crucial to substrate specificity were selected using structural and mechanistic information on the structural loops at the active site. The size and hydrophobicity of the involved amino acids were rationally changed, and the substrate specificities of the designed d-Hyd mutants were investigated. As a result, M63I/F159S exhibited about 200-fold higher specificity for HPH than the wild-type enzyme. Systematic mutational analysis and computational modeling also supported the rationale used in the design.  相似文献   

6.
Investigations of invertase (EC 3.2.1.26) immobilized inside modified nylon tubes showed that between 4% and 20% (w/w) of the protein exposed to binding sites on the tube was immobilized. An enhanced activity consistent with enzyme purification during immobilization was also evident, suggesting that, in scaled-up commercial applications, nylon tube invertase would be a more economical converter of sucrose than the free enzyme. The quantity and specific activity of the immobilized protein were not stochiometrical with the amount used in the coupling solution and, in the system studied, a concentration of 2 mg ml?1 was optimal. Km and Vmax values confirmed higher rates of immobilized invertase catalysis when the rates of substrate flow through the reactor were higher. Higher rates of substrate flow imply a shortened residence time in the reactor and would lower the fractional conversion per pass of the substrate, reducing the efficiency of the reactor in flow-through situations. Thus, these higher catalysis rates, attributable at the higher flow rates to a reduction of the diffusion barrier between enzyme and substrate, would not translate into improved economy in the commercial flow-through processes at which the reactor is aimed.  相似文献   

7.
Summary In the solid substrate fermentation of cooked yellow corn grits with Rhizopus oligosporus in a rocking drum fermenter, temperature was controlled by blowing air through the substrate, forcing water evaporation. The rate of evaporation was controlled by the relative humidity of the air, according to the rate of heat generation during fermentation. Moisture content was maintained constant by spraying cold water on the substrate regulated by the water balance equation of the system. Both controls were operated by computer programs. The rocking motion in the reactor allowed even distribution of air and water in the substrate without disturbing the growing mycelia.  相似文献   

8.
Summary An immobilized enzymatic reaction in a packed-bed reactor is investigated in this paper. The thermal denaturation of immobilized enzyme caused by excessive reacting temperature rise is considered. An unsteady state dispersion model is employed to examine the dynamic behaviors of the substrate concentration, temperature and enzyme activity along the reactor. Also included in the present paper is the effect of substrate inhibition which occurs rather frequently in many enzymatic reactions. Comparison of results of the immobilized enzymatic reactions with and without substrate inhibitions are made to show the extent the substrate inhibition affects the enzymatic reaction. Furthermore, the effects of heat reaction and the Peclet number which characterize the reaction and flow behaviors, respectively, on the system considered are analyzed in detail.  相似文献   

9.
Whole cells of Pichia polymorpha have been shown to possess inulinase (2, 1-β-d-fructan fructanohydrolase, EC 3.2.1.7) activity. This activity was slightly different from that of the purified enzyme: optimum pH was modified, optimum temperature was higher and thermal stability was improved. Whole cell immobilization by adsorption on beech wood-shavings was straightforward. A reactor of this type permits the bioconversion of inulin into d-fructose (and d-glucose) with sufficient cell growth to ensure the stability of the system. A chicory extract was hydrolysed completely to a high fructose syrup during an experiment lasting 75 days.  相似文献   

10.
Summary Saccharomyces cerevisiae yeast immobilized in calcium alginate gel beads was employed in packed-bed column reactors for continuous ethanol production from glucose or cane molasses, and for beer fermentation from barley malt wort. With properly balanced nutrient content or periodical regeneration of cells by nutrient addition and aeration, ethanol production could be maintained for several months. About 7 percent (w/v) ethanol content could be easily maintained with cane molasses diluted to about 17.5 percent (w/v) of total reducing sugars at about 4 to 5 h residence time. Beer of up to 4.5 percent (wv) of ethanol could be produced from barley wort at about 2 h residence time without any addition of nutrients.  相似文献   

11.
Continuous immobilized cell reactor for amide hydrolysis   总被引:1,自引:1,他引:0  
Summary This article deals with continuous hydrolysis of acrylamide into acrylic acid using the wild-typeBrevibacterium sp. R312 which can hydrolyze all water-soluble amides into their corresponding acids. Biotransformation has been carried out in a fluidized bed reactor specially designed to obtain good contact conditions between cells entrapped into small calcium alginate beads (2–3 mm) and low-concentration acrylamide solutions (10–40g·l–1). Different flow rates, biocatalyst loads and substrate concentrations have been investigated. Kinetic constants for the immobilized enzyme have been identified. It appears that the Michaelis constant does not change with operating conditions and remains roughly equal to the value obtained for free cells. In contrast, the maximum rate of hydrolysis is considerably decreased, as if only cells on the outskirts of beads were involved in the transformation. On the whole it is proved that corynebacteria cells could be usefully used for the bioconversion of amides in a continuous immobilized cell reactor; the higher the solid hold-up and/or the smaller the beads, the more efficient the biological transformation.  相似文献   

12.
A differential microrecirculation reactor was developed for kinetic analysis of both soluble and immobilized enzymes. The reactor system was easliy fabricated with in the laboratory from readily available materials. The disposable, small reactors allowed for in situ weight determination of the enzyme beads. Routinely, only a 1 ml liquid volume of substrate was used for each kinetic assay. The reactor system was also used for determination of partition coefficients. Both uses of the reactor system required only 5–10 min for completion of a given determination.  相似文献   

13.
d-Hydantoinase from the lentil, Lens esculenta, seed is quite unstable, and has been immobilized on Diethyl amino ethyl (DEAE) cellulose by an adsorption and cross-linking method. The immboilized d-hydantoinase exhibited 80% enzyme activity and contained 86% protein. The immobilization of the enzyme preparation does not change its optimum pH, temperature or affinity constant, but increases its shelf-life, thermostability and stability in various organic solvents. This immobilized d-hydantoinase can be used effectively for the production of d-amino acids from the corresponding hydantoins and may therefore be of use in the chemical and pharmaceutical industries. Received: 28 April 1998 / Received last revision: 10 July 1998 / Accepted: 10 July 1998  相似文献   

14.
Summary The flow behaviour of calcium alginate beads in an airlift reactor (ALR) with external loop was dependent on the airflow rate into and the amount of beads in the reactor. The performance of immobilizedArthrobacter simplex for the 1-dehydrogenation of hydrocortisone in the ALR compared favourably to that in a stirred tank reactor. The physical stability of the calcium alginate beads was significantly greater in the ALR.  相似文献   

15.
This numerical study evaluates the momentum and mass transfer in an immobilized enzyme reactor. The simulation is based on the solution of the three-dimensional Navier-Stokes equation and a scalar transport equation with a sink term for the transport and the conversion of substrate to product. The reactor consists of a container filled with 20 spherical enzyme carriers. Each of these carriers is covered with an active enzyme layer where the conversion takes place. To account for the biochemical activity, the sink term in the scalar transport equation is represented by a standard Michaelis-Menten approach. The simulation gives detailed information of the local substrate and product concentrations with respect to external and internal transport limitations. A major focus is set on the influence of the substrate transport velocity on the catalytic process. For reactor performance analysis the overall and the local transport processes are described by a complete set of dimensionless variables. The interaction between substrate concentration, velocity, and efficiency of the process can be studied with the help of these variables. The effect of different substrate inflow concentrations on the process can be seen in relation to velocity variations. The flow field characterization of the system makes it possible to understand fluid mechanical properties and its importance to transport processes. The distribution of fluid motion through the void volume has different properties in different parts of the reactor. This phenomenon has strong effects on the arrangement of significantly different mass transport areas as well as on process effectiveness. With the given data it is also possible to detect zones of high, low, and latent enzymatic activity and to determine whether the conversion is limited due to mass transfer or reaction resistances.  相似文献   

16.
The hydrolysis of lactose by immobilized beta-galactosidase was studied in a continuous-flow capillary bed reactor operating at 30 degrees C. Solutions containing 50, 100, and 150 g lactose and 0.5 g sodium acetate/L were fed to the reactor. Lactose conversions ranging from 24% to greater than 99% were achieved at reactor space times ranging from 0.06 to 6.3 min. These conversion data were successfully modeled in terms of a plug flow reactor model and a form of Michaelis-Menten kinetics which included competitive inhibition by both the alpha and beta forms of galactose.  相似文献   

17.
Summary Yeast cells (Saccharomyces cerevisiae) were immobilized in pectin gel, incubated 12 h at 30°C and then used for the continuous production of ethanol employing a wedge-shaped horizontal reactor and sugar cane molasses as the carbon source. Under steady state conditions the mean residence time was 1.6 h and the volumetric productivity 40 g EtOH/hl. The gas evolved was easily released. Successive batch incubation in a synthetic medium substantially restored the fermentative capacity of the beads already used in the continuous assay.Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN, México D.F.Member of the Scientific Researcher's Career of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.  相似文献   

18.
19.
Based on the kinetic constants determined and the mathematical model of the reactor system developed, the performance of axial flow packed bed continuous enzyme reactor system was studied experimentally and also simulated with the aid of a computer for ultimate objective of optimization of the glucose isomerase reactor system.A reactor model was established analogous to heterogeneous catalytic reactor model taking into account the effect of fluid mass transfer and reversible kinetics. The investigated catalyst system consists of immobilized Streptomyces bambergiensis cells containing the enzyme glucose isomerase, which catalyzes the isomerization of glucose to fructose.List of Symbols A 0, A 1, A 2 parameters in axial dispersion reactor model - c go, cg, cgemol m–3 glucose concentration at time t=0, at any time and at equilibrium conditions - c gsmol m–3 glucose concentration at particle surface - C dimensionless glucose concentration - d pm particle diameter - d rm diameter of reactor tube - Da Damkohler number - D eff m2 s–1 effective glucose diffusion coefficient in Ca-alginate gel beads - k fm s–1 film transfer coefficient - K e equilibrium constant - K mg, Kmfmol m–3 Michaelis-Menten constant for glucose and fructose, respectively - K mmol m–3 modified Michaelis-Menten constant - K dimensionless parameter - K * dimensionless parameter - L m length of reactor tube - Pe Peclet number - Pe p particle Peclet number - Q m3 s–1 volumetric flow rate - (-r g) mol m–3 s–1 reaction rate - Re p Reynolds particle number - Sc Schmidt number - Sh Sherwood number - t s time - v 0 m s–1 linear superficial fluid velocity - V mg, Vmfmol g–1 s–1 maximal reaction rate for glucose and fructose, respectively - V mmol m–3 s–1 modified maximal reaction rate for glucose - V mg x mol m–2 s–1 maximal reaction rate for glucose - X g, Xge glucose conversion and glucose conversion at equilibrium conditions - X normalized conversion - Y dimensionless glucose concentration - void fraction of fixed bed - effectiveness factor of biocatalyst - Pa s kinematic viscosity of substrate - 1 s first absolute weighted moment - 2 s2 second central weighted moment - gkg m–3 substrate density - pkg m–3 particle density - 2 dimensionless variance of RTD curve - s residence time  相似文献   

20.
Experimental runs on the inversion of sucrose by means of immobilized beta-fructooxidase are reported. External mass-transfer and axial dispersion phenomena have been analyzed. It has been observed that external mass-transfer plays a significative role in the overall kinetics, while axial dispersion phenomena are negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号