首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
In the present paper, an experiment was conducted to study the effects of soil moisture content on dry nursery seedling quality in Guangzhou in 1995. Through comparing the difference of dry nursery seedlings and wet nursery seedlings, we found a close relationship between soil moisture content and seedling growth. The seedling emergence of dry nursery seedling was more even, tidy and faster, and the survival rate was higher than that of wet nursery seedling. Dry nursery seedlings had small plant stature, slow leaf stretching speed and low individual seedling dry weight, but had high dry/fresh weight ratio. This was abeneficial factor for seedlings to recover from transplanting shock more quickly. As com-pared with the wet nursery seedlings, dry nursery seedlings had poor rooting ability,but had more vigorous white roots and fewer rust roots. It was the possibly important reasonfor dry nursery seedlings to form strong“explosive force”.  相似文献   

2.
Spodoptera exigua Hübner (Lepidoptera: Noctuidae), can overwinter as pupae at depths of 0- to 5-cm beneath the ground. In order to understand the effect of soil moisture on the overwintering success of this species, we tested the supercooling point and survival of pupae, and the growth rate of prepupae that were exposed to different temperature and soil moisture in the laboratory. Results showed that supercooling points, body water contents, and survivals after the different pre-treatments were not significantly affected by the soil moisture. The developmental progress of prepupae, survival of prepupae and pupae were negatively correlated with soil moisture as well as the delay of exposure time, which supports the hypothesis that soil moisture acts as a developmental modulator. We presumed that the delay of pupation and lower prepupae survival under higher soil moisture was due to lack of a complete pupal chamber for protection at low temperatures. Low pupal survival was likely attributed to lack of oxygen in the soil, especially under the condition of higher soil moisture. We suggest that using strategies of irrigation and soil tillage during winter may decrease the overwintering population of S. exigua from the perspective of integrated pest management.  相似文献   

3.
Summary Seeds of the Panamanian shrub, Hybanthus prunifolius (Schult.) Schulze (Violaceae) are dispersed at different times in different years ((March to June) and are exposed to the irregular rainfall of the dry season in some years. Fluctuations in soil moisture in the dry season represent suboptimal conditions for germination and seedling survival. There are no mechanisms to prevent germination prior to the arrival of consistent rains in the wet season.Among three natural cohorts of seeds followed in two years, the cohort experiencing the longest time from sowing to consistent rains had the highest germination, but it also had the longest time lag from sowing to, beginning of germination, longest germination period, and lowest survival of seedlings 3 months after sowing.Seeds were also induced experimentally to germinate under 14 different moisture patterns. The patterns encompassed 1) varying lengths of moisture before a dry period, 2) inconsistent moisture, and 3) varying lengths of dryness prior to any moisture.Mortality of seeds by fungal infection occurred if the wet period was delayed. But germination was less affected by fluctuations than was seedling survival. Length of the first wet period and frequency of occurrence of the wet period both affected germination levels. Survival and development of seedlings was influenced by the number of days exposed to dry conditions and by the stage of development at the beginning of the dry period. Young seedlings suffered attrition due to drought stress, and older seedlings died from fungal attack.Results from field and experimental sowing of seeds both indicate that this perennial species has minimal defense against germination when conditions are suboptimal for seedling survival. Undoubtedly there is more recruitment in some years than in others.  相似文献   

4.
b
Onthophagus binodis produced many brood balls from a dung pad in soil of 4% moisture, but few at 2% or 1% (wilting point 3.5%). Euoniticellus intermedius produced consistently high numbers of brood balls at all 3 soil moistures. At the 2 drier levels O. binodis placed brood balls only in the soil moistened by the dung, but E. intermedius always placed brood balls throughout the available soil. E. intermedius in dry soil produced clumps averaging 8.7 brood balls and lined the walls of the tunnels with dung, thus preventing their collapse. In moist soil both species produced brood balls singly in tunnels throughout the available soil.  相似文献   

5.
Extreme climatic events have the potential to affect plant communities around the world, and especially in the Mediterranean basin, where the frequency of milder and drier summers is expected to be altered under a global-change scenario. We experimentally investigated the effect of three contrasting climatic scenarios on the diversity and abundance of the natural woody-recruit bank among three characteristic habitats in a Mediterranean-type ecosystem: forest, shrubland, and bare soil. The climatic scenarios were dry summers (30% summer rainfall reduction), wet summers (simulating summer storms), and current climatic conditions (control). Seedling emergence and survival after the first summer was recorded during 4 consecutive years. The wet summer boosted abundance and diversity at emergence and summer survival, rendering the highest Shannon H??index. By contrast, the dry summer had no effect on emergence, although survival tended to decline. Nonetheless, the habitat had a key role, bare soil showing almost null recruitment whatever the climatic scenario, and forest keeping the highest diversity in all of them. Our results show that recruit-bank density and diversity depends heavily on extreme climatic events. Community dynamics will depend not only on increased drought but also on the balance between dry and wet years.  相似文献   

6.
Field observations have shown that rhizosheaths of grasses formed under dry conditions are larger, more coherent, and more strongly bound to the roots than those formed in wet soils. We have quantified these effects in a model system in which corn (Zea mays L.) primary roots were grown through a 30-cm-deep prepared soil profile that consisted of a central, horizontal, "dry" (9% water content) or "wet" (20% water content) layer (4 cm thick) sandwiched between damp soil (15-17% water content). Rhizosheaths formed in dry layers were 5 times the volume of the subtending root. In wet layers, rhizosheaths were only 1.5 times the root volume. Fractions of the rhizosheath soil were removed from individual roots by three successive treatments; sonication, hot water, and abrasion. Sonication removed 50 and 90% of the soil from rhizosheaths formed in dry and wet soils, respectively. After the heat treatment, 35% of the soil still adhered to those root portions where rhizosheaths had developed in dry soil, compared with 2% where sheaths had formed in wet soil. Root hairs were 4.5 times more abundant and were more distorted on portions of roots from dry layers than from wet layers. Drier soil enhanced adhesiveness of rhizosheath mucilages and stimulated the formation of root hairs; both effects stabilize the rhizosheath. Extensive and stable rhizosheaths may function in nutrient acquisition in dry soils.  相似文献   

7.
A 3-yr study (1996-1998) was conducted to evaluate the effects of MON810 Bt corn on Helicoverpa zea (Boddie) emergence and to determine whether delayed larval development as a result of Bt intoxication results in higher levels of diapause induction and pupal mortality. In the 1997 study, there was no difference in prepupal mortality between corn types, although significantly more prepupae from Bt plots than from non-Bt plots died in emergence buckets before constructing pupal chambers in 1998. In all years, significantly fewer moths emerged from prepupae collected from Bt plots, suggesting that effects of the expressed Cry1Ab extended to the prepupal and pupal stages. Late plantings of corn showed the greatest reductions in moth emergence from Bt corn because environmental conditions were more conducive to trigger diapause at the time H. zea was developing in these plantings. This was supported by a significantly greater proportion of diapausing pupae remaining in the ground in the late plantings of both Bt and non-Bt corn. For April and early May plantings, larval feeding on Bt corn delayed the time to pupation, although there was no significant difference in moth emergence between corn types for those larvae that successfully pupated. Although Bt expression had less impact on the proportion of moths emerging, the actual number of moths emerging from Bt corn was significantly reduced because fewer larvae reached pupation. Delays in adult emergence, along with significant reductions in adult emergence from MON810 Bt corn, should reduce the rates of colonization in soybean and other late host crops but may also result in asynchrony of mating between individuals emerging from Bt and non-Bt corn. This, in turn, may contribute to the evolution of resistance to Bt corn.  相似文献   

8.
9.
This research was conducted in the northern Australian savannah at Boodjamulla National Park where cyanobacterial crusts dominate the soil and rock surfaces in between tussock grasses. It is widely accepted that terrestrial cyanobacteria are drought tolerant and rapidly recommence photosynthesis once moisture is available. Initial tests at the research site indicated that cyanobacteria did not respond to rehydration during the dry season, even after several days. We hypothesised that resurrection had not taken place and new growth from survival cells had to take place during the follow-up wet season. To further understand the desiccation–resurrection processes we tested photosystem II (PSII) responses both during the dry and wet seasons. In the 2009 dry season after 125 days without rain, crust samples were regularly rehydrated. Over the 10 day trial cyanobacteria did not recover PSII activity or CO2-uptake. Although new colonies of Nostoc grew other cyanobacteria remained inactive, even though liverworts and lichens in the same crusts had responded within 24 h. Dry season cyanobacterial crusts were collected in 2010 then reintroduced into their natural environment and exposed to rainfall during the 2011 wet season. Within 24 h PSII in cyanobacteria from a range of crust types had resurrected and CO2-uptake was verified, although different crust types responded at significantly different rates. These are the first studies that have demonstrated that PSII does not respond to rainfall during the dry season and cyanobacterial function appears controlled by other environmental conditions. It is likely that mass extracellular polysaccharide (EPS) production during the wet season, once dry, protects cyanobacteria from premature resurrection in the dry season. We propose that EPS regulates moisture penetration, thus the resurrection of PSII at the onset of the wet season, at which time moisture and humidity alters the rheological properties of EPS permitting rehydration.  相似文献   

10.
This investigation was performed to study the effect on plant water relations and growth when some of roots grow into dry soil. Common spring water (Triticum aestivum) plants were grown from seed in soil in 1.2 m long PVC (polyvinyl chloride) tubes. Some of the tubes had a PVC partition along their center so that plants developed a split root system (SPR). Part of the roots grew in fully irrigated soil on one side of the partition while the rest of the roots grew into a very dry (-4.1 MPa) soil on the other side of the partition. Split root plants were compared with plants grown from emergence on stored soil moisture (STOR) and with plants that were fully irrigated as needed (IRR). The experiment was duplicated over two temperature regimes (10°/20°C and 15°/25°C, night/day temperatures) in growth chambers. Data were collected on root dry matter distribution, soil moisture status, midday leaf water potential (LWP), leaf relative water content (RWC) and parameters of plant growth and yield.Some roots were found in the dry side of SPR already at 21 DAE (days after emergence) at a soil depth of 15 to 25 cm. Soil water potential around these roots was -0.7 to -1.0 MPa at midday, as compared with the initial value of -4.1 MPa. Therefore, water apparently flowed from the plant into the dry soil, probably during the night. Despite having most of their roots (around 2/3 of the total) in wet soil, SPR plants developed severe plant water stress, even in comparison with STOR plants. Already at 21 DAE, SPR plants had a LWP of -1.5 to -2.0 MPa, while IRR and STOR had a LWP of -0.5 MPa or higher. As a consequence of their greater plant water stress, SPR as compared with IRR plants were lower in tiller number, ear number, shoot dry matter, root dry matter, total biomass, plant height and grain yield and had more epicuticular wax on their leaves.It was concluded that the exposure of a relatively small part of a plant root system to a dry soil may result in a plant-to-soil water potential gradient which may cause severe plant water stress, leading to reduced plant growth and yield.  相似文献   

11.
Laboratory experiments have shown appreciable losses of ammonia after injection of anhydrous ammonia into dry and wet soils. In this study losses of ammonia injected into a moist (tension 10 kPa), dry (tension 160 kPa) and a wet (tension 1.6 kPa) sandy loam were measured under field conditions using wind tunnels. Losses were insignificant from a moist soil. However losses from a dry and a wet soil were 20% and 50% of injected ammonia, respectively. From the dry soil, losses of gaseous ammonia took place within the first hours after injection, which indicates a rapid transport through cracks and voids. From the wet soil, 20% of the injected ammonia was lost more gradually between 6 h and 6 d. This indicates that upward movement of water due to evaporation may be the cause of these ammonia losses which proceeded for longer periods.  相似文献   

12.
Contarinia nasturtii (Kieffer) (Diptera: Cecidomyiidae), a common insect pest in Europe and a new invasive pest in North America, causes severe damage to cruciferous crops. Currently, many counties in Canada and the United States in which C. nasturtii has not been previously reported are at risk of being infested by C. nasturtii. Effectiveness of chemical control is limited, especially under high population pressure in fields, because the cryptic habits of C. nasturtii protect them from insecticidal sprays. Alternative management strategies against C. nasturtii that are needed to protect crucifers and soil management for the pupal stage were studied as one option. Six different types of soils (loam fine sand, fine sand, clay loam, muck, Chenango shale loam, and silt loam soil) were collected from commercial cabbage fields in New York and studied in the laboratory for their impact on C. nasturtii pupation and emergence. The results indicated that extremely wet or dry soils significantly hindered C. nasturtii emergence, regardless of soil type, suggesting that soil type alone may not be a major factor regulating C. nasturtii abundance. Optimal moisture content for C. nasturtii emergence varied for different soils. Most C. nasturtii pupated within the top 1 cm of soil. Furthermore, we found that >5 cm of soil cover effectively reduced the emergence number and delayed the time of emergence. Based on these results, we suggest that soil manipulation (moisture content and cultivation practices) should be considered as an important component in an overall integrated pest management program for C. nasturtii.  相似文献   

13.
14.

Projected twenty first century increases in temperature and precipitation intensity in the U.S. Great Plains may alter playa wetland hydroperiods. Our objective was to identify favorable germination conditions for a common moist-soil grass, Barnyardgrass (Echinochloa crusgalli L.), by evaluating emergence and growth response to various environmental conditions specific to the Northern (Nebraska) and Southern (Texas) range of playas. We used a temperature-controlled growth chamber experiment to evaluate emergence and growth response of Barnyardgrass to three main effects: (i) weekly temperatures representing historical and future conditions under a moderate emissions scenario, (ii) dry, moist, and saturated soil moisture conditions, and (iii) various seed bank densities. In Nebraska samples, projected future temperatures reduced emergence percentage by up to 20%, but increased emergence percentage by up to 15% for Texas samples. For Nebraska samples, plants were 9.6 cm taller under field capacity moisture compared to saturated moisture. Texas plant height was driven by temperature, where historical conditions produced plants that were 13 cm shorter than future warm conditions. These effects may be exacerbated in natural settings over time and when inter-specific competition exists; thus, temperature, soil moisture, and seed bank densities may be important considerations when planning for playa management in future climate conditions.

  相似文献   

15.
The potential roles of seed and microsite limitation in local spatial spread of the invasive grass Microstegium vimineum were experimentally investigated in a woodland and open lawn in central New Jersey, USA. Plots (30 × 30 cm) in three sites previously unoccupied by M. vimineum for at least 8 years (woodland interior, woodland edge, and open lawn) were sown with ~262 M. vimineum seeds in early spring 2008. Seedling emergence, density, summer growth and autumn reproduction were compared to plots in a nearby control population where natural recruitment occurred. Seedling emergence was greatest in the open lawn (54% of seeds sown) where plants showed the greatest growth and reproduction due to high light availability. Seedling emergence was lowest in the woodland interior (24%) and edge sites (9%), and growth and reproduction were greatly reduced there (relative to the control). Plots in the open lawn supported a consistently high density of M. vimineum (>1,000 plants per m2) through the growing period (April to October). The number of seeds in both cleistogamous and chasmogamous spikelets was correlated with shoot dry mass and thus, total seed production was greatest in the sunny open lawn where plants were largest, despite high density there. Across all sites, plants in plots at the highest densities produced the most seeds. Total seed production correlated with levels of light, but not soil moisture. Both seed availability and microsite limitation may reduce the probability of establishment of new M. vimineum populations into previously unoccupied sites. Intraspecific density does not negatively affect survival or reproduction. Light and soil moisture can be limiting abiotic factors in some areas, but poor, natural seed dispersal limits the distribution of this invasive species on a local scale.  相似文献   

16.
Mordecai EA 《PloS one》2012,7(6):e39083
Survival of seeds in the seed bank is important for the population dynamics of many plant species, yet the environmental factors that control seed survival at a landscape level remain poorly understood. These factors may include soil moisture, vegetation cover, soil type, and soil pathogens. Because many soil fungi respond to moisture and host species, fungi may mediate environmental drivers of seed survival. Here, I measure patterns of seed survival in California annual grassland plants across 15 species in three experiments. First, I surveyed seed survival for eight species at 18 grasslands and coastal sage scrub sites ranging across coastal and inland Santa Barbara County, California. Species differed in seed survival, and soil moisture and geographic location had the strongest influence on survival. Grasslands had higher survival than coastal sage scrub sites for some species. Second, I used a fungicide addition and exotic grass thatch removal experiment in the field to tease apart the relative impact of fungi, thatch, and their interaction in an invaded grassland. Seed survival was lower in the winter (wet season) than in the summer (dry season), but fungicide improved winter survival. Seed survival varied between species but did not depend on thatch. Third, I manipulated water and fungicide in the laboratory to directly examine the relationship between water, fungi, and survival. Seed survival declined from dry to single watered to continuously watered treatments. Fungicide slightly improved seed survival when seeds were watered once but not continually. Together, these experiments demonstrate an important role of soil moisture, potentially mediated by fungal pathogens, in driving seed survival.  相似文献   

17.
粘虫飞行对生殖及寿命的影响   总被引:5,自引:3,他引:2  
该文报道了粘虫Mythimna separata(Walker)成虫飞行后产卵、交配及寿命的研究结果。1日龄成虫飞行6 h、12 h、18 h、24 h后的产卵前期均显著短于对照的,其中飞行6 h、12 h的比对照的短2天以上,产卵量均比对照的高。对1~5日龄成虫分别飞行23.5 h后的研究结果表明,1日龄飞行的产卵前期和上述结果相一致。2~4日龄飞行的与对照的没有显著差异,但产卵量则随飞行日龄的延迟而逐渐减少。5日龄飞行的产卵前期显著延长,产卵量已不到对照的一半。所有经过飞行的成虫产卵高峰日比对照的早1天。不同日龄成虫飞行时间、距离与成虫产卵量的关系为:1~3日龄飞行时间、距离长的个体产卵量也高;但4~5日龄的成虫飞行时间与距离越长,其产卵量越少,表现出明显的卵子发生飞行拮抗症(oogenesis-flight syndrome)。除了5日龄飞行的成虫交配率有所下降以外,所有经过飞行的成虫产卵历期、交配率及寿命与对照的没有显著差异。最后,根据这些结果,对粘虫迁飞的起飞时期,迁飞在粘虫生殖、种群动态及成灾规律中的作用进行了讨论。  相似文献   

18.
降雨量改变对常绿阔叶林干旱和湿润季节土壤呼吸的影响   总被引:1,自引:0,他引:1  
通过野外原位试验,研究降雨量改变对华西雨屏区常绿阔叶林干旱和湿润季节土壤呼吸速率的影响。采用LI-8100土壤碳通量分析系统(LI-COR Inc.,USA)测定干旱和湿润季节对照(CK)、增雨10%(LA)、增雨5%(TA)、减雨10%(LR)、减雨20%(MR)、减雨50%(HR)6个处理水平的土壤呼吸速率,并通过回归方程分析温度和湿度与土壤呼吸速率间的关系。结果表明:湿润季节土壤呼吸速率高于干旱季节,HR处理对干旱季节土壤呼吸速率影响较大,而LA处理对湿润季节土壤呼吸速率的影响较大。TA和LR处理使土壤呼吸的温度敏感性增加,而HR、LA和MR处理使土壤呼吸的温度敏感性降低,干旱季节Q10值高于湿润季节。各处理湿润季节土壤微生物量碳氮含量显著高于干旱季节,HR、MR和LA处理减少土壤微生物生物量碳、氮的含量,而TA和LR处理增加土壤微生物生物量碳、氮的含量。与湿润季节相比,干旱季节土壤水分对土壤呼吸速率的影响较大;而与土壤温度相比,土壤水分对土壤呼吸速率的影响较小。在降雨量改变的背景下,华西雨屏区常绿阔叶林无论是干旱还是湿润季节,适当增雨和减雨都会促进土壤呼吸速率,而较高量的增雨和减雨会抑制土壤呼吸速率。  相似文献   

19.
太湖流域丘陵区两种土地利用类型土壤水分分布控制因素   总被引:5,自引:0,他引:5  
徐飞  赖晓明  朱青  廖凯华 《生态学报》2016,36(3):592-599
为探究太湖流域丘陵区典型土地利用类型(如竹林地和茶园)土壤水分的控制因素,在不同深度土壤水分定期观测的基础上,根据前7d降雨量将研究时段划分为干旱状态和湿润状态,利用分类与回归树(CART)方法得出不同干湿状态下土壤水分分布的主控因子,并借助典范对应分析(CCA)定量分析不同土地利用类型、不同土壤深度土壤水分格局与环境因子关系。结果表明:(1)高程、土地利用类型和土层厚度对土壤水分分布的相对贡献率最大,但在不同干湿状态下其影响程度存在差异;(2)干旱状态时土壤水分主要受高程、坡度、地形湿度指数(TWI)和剖面曲率等地形因素的作用,而土层厚度和粘粒也分别为0—20 cm和20—40 cm深度土壤水分的主控因子;(3)在湿润状态下,茶园0—20 cm土壤水分的主控因素为地形因子,在20—40 cm则以土壤性质为主,竹林地两个深度的土壤水分受地形和土壤性质的作用都很强,其中20—40 cm深度土壤水分与环境因子的关系较0—20 cm深度更为复杂。  相似文献   

20.
E. Nieman 《BioControl》1991,36(1):69-76
A laboratory investigation was conducted on a pyraustid moth imported from South America for jointed cactus control. It was found that the moths were crepuscular, with females laying an average of 48±3.5 eggs over a period of 4–8 days. Larvae hatched out at night and usually tunnelled into the terminal ends of cactus cladodes at a site where young cactus growth occurred. The lifecycle was completed inside the cactus, pupation typically occurring in the dry husk of the cladode on which the egg was laid. Mass-rearing of the moth was easy if plants with young cactus growth were used.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号