首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow cytometric cell division tracking using nuclei   总被引:1,自引:0,他引:1  
Hasbold J  Hodgkin PD 《Cytometry》2000,40(3):230-237
BACKGROUND: Labeling cells with 5-(and-6) carboxyfluorescein diacetate succinimidyl ester (CFSE) allows their subsequent division history to be determined by flow cytometry. Whether nuclei isolated from CFSE-labeled cells retain any or sufficient dye to reveal the same division history was unknown. If division tracking in nuclei were possible, it would enable the development of new methods for monitoring quantitative changes in nuclei components and how these might vary with successive divisions. METHODS: Nuclei from CFSE-labeled B cells were prepared by lysing whole cells with nonionic detergent Nonidet P-40 (NP-40). The purified nuclei were subsequently fixed with paraformaldehyde and permeabilized with Tween 20 in order to perform intranuclear staining. RESULTS: Purified nuclei displayed the equivalent asynchronous cell division profile as intact cells. Furthermore, the possibility of simultaneously monitoring division history with intranuclear staining was established by labeling bromodeoxyuridine (BrdU) incorporated into DNA during a brief pulse prior to harvesting cells. This result was verified with the staining of proliferating cell nuclear antigen (PCNA). In addition, aminoactinomycin D (7-AAD) staining established that cell cycle stage and cell division history could be simultaneously determined. CONCLUSIONS: Our results demonstrate that cell division history is retained in purified cell nuclei after CFSE labeling and can be used in combination with intranuclear immunofluorescent labeling and DNA staining to provide a comprehensive analysis of nuclei by flow cytometry. This method should prove useful for assessing differential nuclear translocation and accumulation of molecular components during consecutive division rounds and during different stages of the cell cycle.  相似文献   

2.
BACKGROUND: Changes in mitochondrial structure and size are observed in response to alterations in cell physiology. Flow cytometry provides a useful tool to study these changes in intact cells. We have used flow cytometry and digital fluorescence microscopy to analyze the variations in mitochondrial size in relation to specific phases of the cell cycle. METHODS: Supravital staining of rat fibroblasts was done with Hoechst 33342 and rhodamine 123, and cells were analyzed in a dual-laser flow cytometer. Synchronized cells at various stages of the cell cycle were analyzed for changes in mitochondrial size. These cells were also examined by electron microscopy, digital fluorescence microscopy and computerized image analysis to compare the lengths of the mitochondria. RESULTS: By using fluorescence pulse width analysis, we observed two populations of mitochondria in intact cells. The percentage of cells with small and large mitochondria at specific stages of the cell cycle indicated that mitochondrial size increases during the cell cycle; early G1 phase cells had the smallest mitochondria and the mitotic phase cells had the largest mitochondria. These results were confirmed by microscopic analysis of cells. CONCLUSIONS: Flow cytometry can distinguish the relative mitochondrial size in intact cells, and in combination with digital microscopy it can be used to study mitochondrial variation during the cell cycle.  相似文献   

3.
Nuclear protein and DNA content of HeLa cells was determined as a function of time following hyperthermia by staining isolated nuclei with two fluorescent dyes: fluorescein isothiocyanate (FITC) for protein content and propidium iodide (PI) for DNA content. Bivariate FITC and PI histograms were obtained by flow cytometry. Univariate flow cytometric analysis was shown to be inadequate for this study, because some of the nuclear protein changes were due to cell cycle redistribution. Posthyperthermia cell kinetics could be divided into two distinct phases: an early phase characterized by the removal of heat-induced excess nuclear proteins with little or no cell progression through the cell cycle; and a late phase characterized by a redistribution of cells in the cell cycle resulting in an accumulation of cells in G2. The duration of these phases was dependent upon the hyperthermia dose. In the early phase, the rate of removal of excess nuclear protein was found to vary with heating time and temperature for time-temperature combinations which resulted in the same amount of excess nuclear protein. In the late phase, the cells blocked in G2 did not reduce their nuclear protein levels back to control values.  相似文献   

4.
Various cytometric methods for analysis of regenerating rat liver growth (DNA ploidy distributions, binucleation, and DNA synthesis by in vivo BrdUrd incorporation) were evaluated. The overall hepatocellular growth rate (labeling index), the binucleation rate, and separate indices for mononuclear and binuclear cells could be measured simply by microscope counting of collagenase-isolated hepatocytes immunostained for BrdUrd. Flow cytometry of cells stained for BrdUrd and DNA provided labeling indices for the various hepatocellular DNA ploidy classes as well as for nonparenchymal cells (identified by their size-dependent light scatter), but could not distinguish between mononuclear and binuclear hepatocytes. Image cytometry, using fluorescence or Feulgen staining, was inferior to flow cytometry in terms of speed and DNA resolution, but allowed a complete analysis of all hepatocellular DNA ploidy and nuclearity classes. It may therefore be the method of choice, particularly for analysis of liver cell cultures from which single cells are not easily obtained. Fluorescence staining would seem to be preferable to Feulgen staining, since the latter could not be used simultaneously with BrdUrd staining and therefore required a two-step analysis. A non-immunological method, based on the ability of incorporated BrdUrd to quench DNA staining by a Hoechst dye, could only be applied to isolated nuclei, thus giving no information about binucleation. The latter method may be useful for analysis of tumors which are difficult to dissociate to intact whole cells.  相似文献   

5.
Plant DNA flow cytometry and estimation of nuclear genome size   总被引:25,自引:0,他引:25  
BACKGROUND: DNA flow cytometry describes the use of flow cytometry for estimation of DNA quantity in cell nuclei. The method involves preparation of aqueous suspensions of intact nuclei whose DNA is stained using a DNA fluorochrome. The nuclei are classified according to their relative fluorescence intensity or DNA content. Because the sample preparation and analysis is convenient and rapid, DNA flow cytometry has become a popular method for ploidy screening, detection of mixoploidy and aneuploidy, cell cycle analysis, assessment of the degree of polysomaty, determination of reproductive pathway, and estimation of absolute DNA amount or genome size. While the former applications are relatively straightforward, estimation of absolute DNA amount requires special attention to possible errors in sample preparation and analysis. SCOPE: The article reviews current procedures for estimation of absolute DNA amounts in plants using flow cytometry, with special emphasis on preparation of nuclei suspensions, stoichiometric DNA staining and the use of DNA reference standards. In addition, methodological pitfalls encountered in estimation of intraspecific variation in genome size are discussed as well as problems linked to the use of DNA flow cytometry for fieldwork. CONCLUSIONS: Reliable estimation of absolute DNA amounts in plants using flow cytometry is not a trivial task. Although several well-proven protocols are available and some factors controlling the precision and reproducibility have been identified, several problems persist: (1) the need for fresh tissues complicates the transfer of samples from field to the laboratory and/or their storage; (2) the role of cytosolic compounds interfering with quantitative DNA staining is not well understood; and (3) the use of a set of internationally agreed DNA reference standards still remains an unrealized goal.  相似文献   

6.
BACKGROUND: Methods widely used to detect apoptosis do not allow us to easily distinguish between nuclei from viable or necrotic cells. Even if apoptosis and necrosis seem to occur as alternatives at the single cell level, they could be present simultaneously in a cell population much more frequently than expected. For this reason, attention was focused on attempting to recognize, by multiparameter flow cytometry, the characteristics of viable cells and of apoptotic or necrotic dead cells. METHODS: Apoptosis and necrosis were induced in vitro in murine thymocytes and lymphocytes from adult peripheral blood by using dexamethasone or prostaglandin E2 treatment and heat shock at 60 degrees C or hydrogen peroxide, respectively. Traditional methods, such as DNA gel electrophoresis and propidium iodide staining followed by single-fluorescence analysis or annexin-V-fluorescein isothiocyanate plus propidium iodide staining by using flow cytometry, were compared with a new method. This method consisted of combined light-scatter and red fluorescence analysis by flow cytometry after isolation of nuclei by hypotonic solution as well as high-dose detergent treatment and DNA staining with propidium iodide. RESULTS: Results showed that, although traditional methods such as DNA-gel electrophoresis and single-parameter fluorescence flow cytometry analysis were unable, as expected, to discriminate among viability, apoptosis, and necrosis, our new method has enabled us to easily identify nuclei from viable, apoptotic, and necrotic cells. Results obtained by using our method were comparable to those obtained by using two-color analysis of cells after propidium iodide/annexin V staining. CONCLUSIONS: A highly reproducible, inexpensive, rapid, and easily accessible method of analysis has been developed for simultaneously detecting apoptosis and necro sis.  相似文献   

7.
BACKGROUND: Universal leukoreduction of blood components is becoming the standard of care. Flow cytometry methods are being used for quality control of the leukoreduction process. METHODS: We provide an atlas of atypical flow cytograms generated by a commercial LeucoCOUNT assay that was used to enumerate residual leukocytes in leukoreduced red blood cell components. Numeric results are derived from a flow cytogram generated by the assay. RESULTS: Three types of atypical flow cytogram patterns were observed during process validation or routine quality control of leukoreduced red blood cell components. (a) Fixation artifact: Fixation of control or test samples can alter the staining intensity compared with fresh cells. (b) "Rain" pattern: Flow cytometry methods count slightly damaged leukocytes not removed during leukoreduction. Slightly damaged leukocytes appear on a flow cytogram like "rain" falling from a well-defined "cloud" of intact residual leukocytes. Discrepancies between automated flow cytometry results and subjective manual counting methods can occur. (c) Autofluorescence-debris pattern: Cell debris and age-related changes in the sample can cause shifts in the fluorescence staining pattern, resulting in erroneous test results. CONCLUSION: Review of flow cytograms is essential for accurate reporting of flow cytometry-based methods for enumerating residual leukocytes in leukoreduced blood components.  相似文献   

8.
Sperm membrane integrity (SMI) is thought to be an important measure of stallion sperm quality. The objective was to compare three methods for evaluating SMI: flow cytometry using SYBR-14/propidium iodide (PI) stain; an automated cell counting device using PI stain; and eosin-nigrosin stain. Raw equine semen was subjected to various treatments containing 20 to 80% seminal plasma in extender, with differing sperm concentrations, to simulate spontaneous loss of SMI. The SMI was assessed immediately, and after 1 and 2 d of cooled storage. Agreement between methods was determined according to Bland-Altman methodology. Eosin-nigrosin staining yielded higher (2%) overall mean values for SMI than did flow cytometry. Flow cytometry yielded higher (6%) overall mean values for SMI than did the automated cell counter. As percentage of membrane-damaged sperm increased, agreement of SMI measurement between methods decreased. When semen contained 50-79% membrane-intact sperm, the 95% limits of agreement between SMI determined by flow cytometry and eosin-nigrosin staining were greater (range = −26.9 to 24.3%; i.e., a 51.2% span) than for SMI determined by flow cytometry and the automated cell counter (range = −3.1 to 17.0%; 20.1% span). When sperm populations contained <50% membrane-intact sperm, the 95% limits of agreement between SMI determined by flow cytometry and eosin-nigrosin staining were greater (range = −35.9 to 19.0%; 54.9% span) than for SMI determined by flow cytometry and the automated cell counter (range = −11.6 to 28.7%; 40.3% span). We concluded that eosin-nigrosin staining assessments of percent membrane-intact sperm agreed less with flow cytometry when <80% of sperm had intact membranes, whereas automated cell counter assessments of percent membrane-intact sperm agreed less with flow cytometry when <30% of sperm had intact membranes.  相似文献   

9.
BACKGROUND: Telomeres shorten during DNA replication; extensive erosion of telomeres likely promotes replicative senescence and chromosomal instability. Telomere length in individual cells has been quantified by flow cytometric analysis of fluorescence in situ hybridization (flow-FISH). To determine the rate of telomere attrition (telomere erosion per cell division), we combined flow-FISH with dye dilution and DNA staining (flow-FISH-DDD) and measured telomere-specific fluorescence in proliferating cells identified by cell generation and cell cycle phase. METHODS: Peripheral blood mononuclear cells (PBMC) were stained with the cell division tracking dye carboxyfluorescein diacetate succinimidyl ester (CFSE), stimulated with phytohemagglutinin (PHA), grown for 5-6 days, hybridized with a telomere sequence-specific peptide nucleic acid fluorescent probe (PNA-Cy5), counterstained with DAPI, and analyzed by flow cytometry. The cell cycle distribution and cell division generations were respectively identified by analysis of DAPI emission and deconvolution of CFSE emission, and Cy5 emission was used to determine telomere-specific fluorescence, an indicator of telomere length, in each cell. RESULTS: In stimulated PBMC, in each cell cycle phase, the telomere-specific fluorescence diminished with increasing cell generation. The rate of decline of the telomere-specific fluorescence per cell generation did not significantly differ between cell cycle phases. CONCLUSIONS: Application of flow-FISH-DDD to measure mean telomere length and the rate of telomere attrition in proliferating cells may find use in studies of ageing and disease, the effects of telomere-modifying agents, and variability between individuals.  相似文献   

10.
M G Ormerod  M Kubbies 《Cytometry》1992,13(7):678-685
Continuous labelling of cells with deoxybromouridine (BrdUrd) followed by staining with a bis-benzimidazole (Hoechst 33258) and a phenanthridinium (propidium iodide or ethidium bromide) allows the cells to be separated by flow cytometry according to the extent of their DNA replication. This BrdUrd-Hoechst/PI method has been used mainly to observe perturbations of the cell cycle in synchronously growing cells. In this paper we demonstrate that, when the method is applied to asynchronously dividing cells, more extensive information can be derived about the effects of cytotoxic and other treatments on the kinetics of the cell cycle. The interpretation of the data is explained, the effects of different types of cytotoxic agent are described, and the method is compared briefly to other methods for following cell cycle kinetics.  相似文献   

11.
为评价桑黄Sanghuangporus sanghuang子实体醇提物对SW620结肠癌细胞的影响,用alamarBlue?法测定细胞增殖率,用流式细胞术碘化丙啶(propidim iodide,PI)染色法和2′,7′-dichlorofluorescin diacetate (H2DCFDA)染色法分别检测细胞早期凋亡率、细胞周期变化和活性氧(reactive oxygen species,ROS)释放量,结果表明桑黄子实体醇提物在12.5-100μg/mL作用浓度下具有抑制SW620细胞增殖的作用,但对中国仓鼠卵巢(Chinese hamster ovary cell,CHO)细胞和小鼠骨髓巨噬细胞的增殖无显著抑制作用;桑黄子实体醇提物能诱导SW620细胞凋亡,引起细胞周期变化,可降低G0/G1和G2/M期细胞数量,并呈现浓度梯度依赖性,ROS实验结果提示桑黄子实体醇提物的促肿瘤细胞凋亡与ROS释放相关。  相似文献   

12.
The discrimination of live/dead cells as well as the detection of apoptosis is a frequent need in many areas of experimental biology. Cell proliferation is linked to apoptosis and controlled by several genes. During the cell life, specific events can stimulate proliferation while others may trigger the apoptotic pathway. Very few methods (i.e. TUNEL) are now available for studies aimed at correlation between apoptosis and proliferation. Therefore, there is interest in developing new methodological approaches that are able to correlate apoptosis to the cell cycle phases. Recently new approaches have been proposed to detect and enumerate apoptotic cells by flow cytometry. Among these, the most established and applied are those based on the cell membrane modifications induced in the early phases of the apoptotic process. The dye pair Hoechst 33342 (HO) and Propidium Iodide (PI), thanks to their peculiar characteristics to be respectively permeable and impermeable to the intact cell membrane, seems to be very useful. Unfortunately the spectral interaction of these dyes generates a consistent "energy transfer" from HO to PI. The co-presence of the dyes in a nucleus results in a modification in the intensity of both the emitted fluorescences. In order to designate the damaged cells (red fluorescence) to the specific cell cycle phases (blue fluorescence), we have tested different staining protocols aimed to minimize the interference of these dyes as much as possible. In cell culture models, we are able to detect serum-starved apoptotic cells as well as to designate their exact location in the cell cycle phases using a very low PI concentration. Using a Partec PAS flow cytometer equipped with HBO lamp and argon ion laser, a double UV/blue excitation has been performed. This analytical approach is able to discriminate live blue cells from the damaged (blue-red) ones even at 0.05 micro g/mL PI. The same instrumental setting allows performing other multi-colour analyses including AnnexinV-FITC as well as the possibility to make a correlated analysis to phenotype markers.  相似文献   

13.
Simultaneously evaluating postthaw viability and acrosome integrity of spermatozoa by flow cytometry would provide a valuable testing tool in both research and routine work. In the present study, a new triple-stain combination was developed for the simultaneous evaluation of viability and acrosome integrity of bovine sperm processed in egg yolk-based extender by flow cytometer. SYBR-14 and propidium iodide (PI) enabled the discrimination of sperm cells from egg yolk and debris particles, which was instrumental for the flow cytometric analyses of frozen-thawed bovine sperm, because it implied that washing steps to remove egg yolk were no longer required. In addition, phycoerythrin-conjugated peanut agglutinin (PE-PNA) was used to discriminate acrosome-damaged/reacted sperm cells from acrosome-intact cells. Repeatability was calculated using two processed ejaculates of 10 bulls. Three straws per batch were analyzed in duplicate measurements. Method-agreement analysis between the SYBR-14/PE-PNA/PI and fluorescein isothiocyanate (FITC)-conjugated PNA was performed, with FITC-PNA/PI staining being carried out on 14 frozen-thawed semen samples immediately after thawing and after a 3-h incubation at 37 degrees C. The British Standards Institution repeatability index of the SYBR-14/PE-PNA/PI combination was 2.6%. On average, the FITC-PNA/PI method showed a 6.3% overestimation of the live and acrosome-intact sperm cell subpopulation. In conclusion, the new triple-stain combination is highly repeatable and easy to use in routine application, and it provides a more precise estimate for the rate of sperm cells with intact head membrane and acrosome compared to the generally used and validated FITC-PNA/PI staining.  相似文献   

14.
BACKGROUND:The detection of DNA-incorporated bromodeoxyuridine (BrdUrd) in mammalian cells is a well-known and important technique to study cell cycle. The use of TO-PRO-3 for detection of BrdUrd substitution of DNA by dual-laser flow cytometry has been investigated. METHODS:Fluorescence enhancement of TO-PRO-3 in BrdUrd-labeled cells is registered in combination with the fluorescence emission of the intercalating dye propidium iodide (PI) as a total DNA stain to give bivariate DNA/BrdUrd histograms. By the low concentration of only 0.3 mircoM TO-PRO-3, BrdUrd detection is optimized, and undisturbed total DNA content by PI can be detected as well. TO-PRO-3 is excited by a red HeNe laser and PI by an argon ion laser. RESULTS:In order to understand the binding of TO-PRO-3, energy transfer from PI to TO-PRO-3 has been measured as well as the influence of an external DNA binding dye such as Hoechst 33258 with Adenine-Thymine (AT) binding specificity. Cell cycle studies of human SCL-2 keratinocytes and mouse 3T3 cells prove the method to be as generally applicable as the classical BrdUrd/Hoechst quenching technique, but without need for expensive ultraviolet laser excitation. No BrdUrd sensitivity could be found for the similar dyes TO-PRO-1 and YO-PRO-3, whereas TO-PRO-5 and YOYO-3 showed only very little sensitivity to BrdUrd labeling as compared with TO-PRO-3. CONCLUSIONS:Cell cycle studies of mammalian cells can be done by dual-laser flow cytometry without the need for ultraviolet lasers by using the BrdUrd-dependent fluorescence enhancement of TO-PRO-3. Total DNA content can be measured simultaneously using PI.  相似文献   

15.
BACKGROUND: Measurement of vascular cell proliferation in animal models of hypertension is currently accomplished by demonstrating [(3)H]-thymidine ([(3)H]-dT) incorporation into DNA using autoradiography. This method, however, is labor intensive, requires radioactivity, and is limited by the inherent difficulty in discriminating labeled and unlabeled cells. To address these limitations, a flow cytometric-based method is described utilizing incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA of nuclei isolated from blood vessels. METHODS: Pulmonary hypertension was induced in rats by exposure to 10% O(2) (hypoxia) for varying periods of time. Pulmonary arteries and aorta from rats injected with BrdU prior to sacrifice were isolated, fixed with 10% formalin, and digested with Protease XIV. The intact nuclei liberated by this treatment were successively treated with HCl/Triton X-100 and sodium borate. Processed nuclei were probed with a BrdU-specific fluorescein-conjugated antibody, and the percentage of BrdU staining cells was determined using flow cytometry. RESULTS: An approximately 20-fold increase in BrdU-positive cells at 3 days of hypoxia in pulmonary arteries (relative to control) with no change in aorta was observed. These results were similar to previous studies using [(3)H]-dT labeling. CONCLUSIONS: Flow cytometric determination of cell proliferation in blood vessels is a simple, objective technique that may facilitate measurement of cell proliferation in animal models of vascular disease.  相似文献   

16.
Immunofluorescence-based assays have been developed to detect and quantitate Cryptosporidium parvum infection in cell culture. Here, we describe a method that tracks and quantifies the early phase of attachment and invasion of C. parvum sporozoites using a fluorescent dye. Newly excysted sporozoites were labeled with the amine-reactive fluorescein probe carboxyfluorescein diacetate succinimidyl esters (CFSE) using an optimized protocol. The initial invasion of cells by labeled parasites was detected with fluorescent or confocal microscopy. The infection of cells was quantified by flow cytometry. Comparative analysis of infection of cells with CFSE-labeled and unlabeled sporozoites showed that the infectivity of C. parvum was not affected by CFSE labeling. Quantitative analysis showed that C. parvum Iowa and MD isolates were considerably more invasive than Cryptosporidium hominis isolate TU502. Unlike immunofluorescent assays, CFSE labeling permitted the tracking of the initial invasion of C. parvum. Such an assay may be useful for studying the dynamics of host cell-parasite interaction and possibly for drug screening.  相似文献   

17.
OBJECTIVE: To investigate, with laser scanning cytometry (LSC), proliferating cell nuclear antigen (PCNA) expression during the cell cycle in renal cell carcinoma. STUDY DESIGN: DNA ploidy and intracellular localization of PCNA in renal cell carcinoma were determined using LSC and immunohistochemistry. The subjects were nine patients who had received surgery for renal cell carcinoma. After DNA ploidy analysis, the glass slides were restained by immunohistochemistry of PCNA. LSC allowed direct observation of PCNA localization during the cell cycle because we could obtain immunohistochemical staining of PCNA as a function of cell cycle phase for individual cells. RESULTS: PCNA was not demonstrated in the nuclei of G0/G1 cells. PCNA expression increased from the S phase of the cell cycle. PCNA rapidly degraded at the end of the G2 phase. In the late G2 and M phase, PCNA was not detected in almost any nucleus. CONCLUSION: LSC allows morphologic observation of the intracellular distribution of PCNA during the cell cycle in renal cell carcinoma.  相似文献   

18.
The reliability of eight distinct methods (Giemsa staining, trypan blue exclusion, acridine orange/ethidium bromide (AO/EB) double staining for fluorescence microscopy and flow cytometry, propidium iodide (PI) staining, annexin V assay, TUNEL assay and DNA ladder) for detection and quantification of cell death (apoptosis and necrosis) was evaluated and compared. Each of these methods detects different morphological or biochemical features of these two processes. The comparative analysis of the 8 techniques revealed that AO/EB (read in fluorescence microscopy) provides a reliable method to measure cells in different compartments (or pathways) of cell death though it is very time consuming. PI staining and TUNEL assay were also sensitive in detecting very early signs of apoptosis, but do not allow precise quantification of apoptotic cells. These three methods were concordant in relation to induction of apoptosis and necrosis in HL60 cells with the various UV irradiation time periods tested. Both AO/EB (read by flow cytometry) and annexin V-FITC/PI failed to detect the same number of early apoptotic cells as the other three methods. Trypan blue is valueless for this purpose. Giemsa and DNA ladder might be useful as confirmatory tests in some situations.  相似文献   

19.
Bartonella infection (Bartonella henselae in particular) is responsible for a widening spectrum of human diseases. The persistent colonization of erythrocytes is a feature of Bartonella infection. Endothelial and epithelial cells are also widely used to study the pathogenesis of bartonellosis in vitro. Exploring a convenient method for visualizing the bacillus without affecting infectivity would be very interesting. Carboxyfluorescein diacetate succinimidyl ester (CFSE) has been previously used for staining several bacterial species to study their adhesion to host cells. The present study demonstrated the efficiency and safety of using CFSE in staining B. henselae. The staining of bacillus-invaded erythrocytes and epithelial cells in vitro successfully allowed for flow cytometry and confocol microscopy analyses. Parallel tests using untreated bacteria confirmed that CFSE staining did not result in side effects on the infectivity of B. henselae. Labeling Bartonella with CFSE is a valuable method for studying the bacteria-host interaction.  相似文献   

20.
Use of flow cytometry in the measurement of cell mitotic cycle   总被引:1,自引:0,他引:1  
Variations in many cellular characteristics during the cell cycle can be analyzed simply and directly by flow cytometry. Using multiparameter analysis of DNA content, RNA content, cell size and 5-bromodeoxyuridine (BrdUrd) incorporation, it is now possible to define cells' positions in the cell cycle with a precision previously unimaginable. It is also possible, by using the sorting function of the flow cytometer, to separate populations in different phases of the cell cycle for biological and biochemical studies. This review describes the technical aspects of flow cytometric instrumentation, DNA staining procedures, and the cytometric applications of both in cell cycle analysis including some of the more innovative, new approaches with antibody against BrdUrd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号