首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study the tissue distribution of [3H]methotrexate was studied after intravenous injection of [3H]methotrexate-containing liposomes in normal and macrophage-depleted mice. Elimination of macrophages was performed by treatment with dichloromethylene diphosphonate- (DMDP)-containing liposomes. After thorough elimination of the macrophages from spleen and liver, by two intravenous injections of DMDP liposomes 6 and 4 days before tissue distribution studies, we found dramatic changes in the localization pattern of [3H]methotrexate liposomes in the blood, due to a decreased uptake of [3H]methotrexate liposomes by the DMDP liposome-treated liver. Because of the absence of these macrophages that are able to clear the blood of liposomes, and because of the resulting higher blood level of liposomes, we found an enhanced uptake of [3H]methotrexate liposomes by the spleen. It may be concluded that, in the spleen, apart from uptake of liposomes by macrophages, at least one other mechanism is responsible for the clearance of liposomes from the circulation. When comparing cholesterol-rich with cholesterol-poor liposomes, we found basically the same results, although uptake of cholesterol-rich liposomes by macrophages was smaller than that of cholesterol-poor liposomes, as found in several other studies. We suggest that pretreatment with DMDP liposomes can help to maintain a high level of intravenous-injected liposome-entrapped material in the blood, which otherwise would be removed by macrophages.  相似文献   

2.
The effect of cholesterol content of small unilamellar (SUV) and reverse phase (REV) liposomes on blood clearance and tissue distribution has been studied. [14C]Inulin has been used as an aqueous marker of liposomes to represent the uptake of intact liposomes in tissues. The blood clearance of the intravenously-injected SUV and REV liposomes depends on the cholesterol content of liposomes. The cholesterol-free (0 mol%) liposomes are cleared more readily from the circulation than the cholesterol-poor liposomes (20 mol%) and the cholesterol-poor are cleared more rapidly than the cholesterol-rich (46.6 mol%) liposomes. This clearance pattern of liposomes from the circulation is not attributed to the change of size of liposomes due to the increase in cholesterol content of liposomes. However, poor stability of cholesterol-free or cholesterol-poor liposomes in the circulation is partly responsible, but the predominant factor responsible for the observed blood clearance pattern is the inhibitory effect of cholesterol on the uptake of liposomes by reticuloendothelial-rich tissues liver and spleen. Uptake of liposomes by these organs is decreased with increasing cholesterol content of vesicles. It is suggested that to produce liposome preparations with a long circulating half life in vivo it is necessary to inhibit their uptake by liver and spleen.  相似文献   

3.
Insulin encapsulated in liposomes of various lipid compositions were prepared. The amount of insulin trapped in these liposomes increased in the order, negatively charged liposomes less than neutral liposomes less than positively charged liposomes. In positively charged liposomes, the amount of insulin trapped increased with increase in the amount of amphiphile stearylamine. Under the conditions tested, the highest insulin content (about 50%) was obtained with liposomes composed of phosphatidyl choline/cholesterol/stearylamine in a molar ratio of 7/2/2.25. These liposomes were stable on incubation for 3 hr at 37 degrees C in solutions of pepsin, trypsin, and pancreatin, and after these incubations, a considerable amount of insulin was still associated with the liposomes. However, the liposomes released almost all the insulin into the medium on treatment with bile. When the liposomes were administered orally to rats in the 3rd phase of acute alloxan diabetes, reduction of the blood glucose level was observed in 7 of 11 animals, the reduction persisted for several hours and was ranging from 30 to 75%. In alloxan diabetic rats showing hyperglycemia for 3 to 6 months, the liposomes also increased the glucose tolerance in half the animals tested.  相似文献   

4.
Studies were made of the ability of alpha-tocopherol, incorporated into unilamellar liposomes from saturated or unsaturated phospholipids (donor liposomes) to inhibit the accumulation of lipid peroxidation (LPO) products in unilamellar liposomes from rat cerebral cortex lipids (acceptor liposomes) in the presence of LPO inducer (Fe + ascorbate). With the molar alpha-tocopherol: phospholipids rations from 1:1000 to 1:100 in donor liposomes, obtained through sonication of lipid dispersions, alpha-tocopherol was incorporated into both monolayers of liposomes and was distributed in monomeric form without forming clusters. Based on the dependencies of LPO inhibition on the alpha-tocopherol concentrations, we chose the ones that completely prevented the accumulation of LPO products in donor liposomes. Under these conditions LPO inhibition in mixtures of donor and acceptors liposomes was fully determined by the antioxidant effect of alpha-tocopherol in acceptor liposomes due to its intermembrane transfer. The efficiency of the "intermembrane" antioxidant action of alpha-tocopherol increased in the course of preincubation of donor and acceptor liposomes (up to 60 min) and this increase was more pronounced when the donor liposomes contained unsaturated phospholipids. Evidence was obtained that the intermembrane transfer of alpha-tocopherol did not result from the fusion of donor and acceptor liposomes during preincubation.  相似文献   

5.
We prepared liposomes by hydrating 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid with aqueous solutions of three "probe" molecules-cis-diamminedichloroplatinum(II) (cis-[Pt(II)(NH(3))(2)Cl(2)], cisplatin), guanosine 5'-monophosphate (5'-GMP), and 9-ethylguanine (9-EtG)-in phosphate-buffered saline as well as N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid buffer. The positively charged hydrolysis product of cisplatin, [Pt(II)(NH(3))(2)Cl(H(2)O)](+), is in the inner core of the liposomes and negatively charged 5'-GMP embeds in the lipid bilayer of liposomes. In the presence of cisplatin, the size of the liposomes remains unchanged, and for 5'-GMP-embedded liposomes the size increases significantly compared with that of empty or control liposomes. In contrast, the neutral biomolecule 9-EtG was found to be dispersed in the exterior bulk water and the size of the liposomes remained the same as that of empty or control liposomes. When cisplatin-containing liposomes mix with 5'-GMP-embedded liposomes or liposomes with 9-EtG, the N7 nitrogen atom of 5'-GMP or 9-EtG binds the cisplatin, thus replacing the "leaving groups" and forming a bisadduct. After 48?h of mixing, the size of the liposomes changes for the mixture of 5'-GMP-embedded liposomes and cisplatin-containing liposomes. We used (1)H and (31)P NMR spectroscopic techniques to monitor incorporation or association of cisplatin and biomolecules with liposomes and their subsequent reactions with each other. The dynamic light scattering technique provided the size distribution of the liposomes in the presence and absence of probe molecules.  相似文献   

6.
We evaluated the role of apolipoprotein E (apoE) in the clearance of neutral and negatively charged liposomes by hepatocytes in apoE-deficient mice. Negatively charged liposomes were cleared at identical rates in apoE-deficient and wild-type mice; neutral liposomes were cleared at a 3.6-fold slower rate in apoE-deficient mice. ApoE deficiency did not affect hepatic uptake of negatively charged liposomes but lowered that of neutral liposomes >5-fold. Hepatocyte uptake of neutral liposomes was reduced >20-fold in apoE-deficient mice; that of negatively charged liposomes remained unchanged. We conclude that uptake of neutral liposomes by hepatocytes is nearly exclusively apoE-mediated.  相似文献   

7.
In the present study the tissue distribution of [3H]methotrexate was studied after intravenous injection of [3H]methotrexate-containing liposomes in normal and macrophage-depleted mice. Elimination of macrophages was performed by treatment with dichloromethylene diphosphonate- (DMDP)-containing liposomes. After thorough elimination of the macrophages from spleen and liver, by two intravenous injections of DMDP liposomes 6 and 4 days before tissue distribution studies, we found dramatic changes in the localization pattern of [3H]methotrexate liposomes in the blood, due to a decreased uptake of [3H]methotrexate liposomes by the DMDP liposome-treated liver. Because of the absence of these macrophages that are able to clear the blood of liposomes, and because of the resulting higher blood level of liposomes, we found an enhanced uptake of [3H]methotrexate liposomes by the spleen. It may be concluded that, in the spleen, apart from uptake of liposomes by macrophages, at least one other mechanism is responsible for the clearance of liposomes from the circulation. When comparing cholesterol-rich with cholesterol-poor liposomes, we found basically the same results, although uptake of cholesterol-rich liposomes by macrophages was smaller than that of cholesterol-poor liposomes, as found in several other studies. We suggest that pretreatment with DMDP liposomes can help to maintain a high level of intravenous-injected liposome-entrapped material in the blood, which otherwise would be removed by macrophages.  相似文献   

8.
To obtain cationic liposomes of which affinity to negatively charged membranes can be controlled by temperature, cationic liposomes consisting of 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol and dioleoylphosphatidylethanolamine were modified with poly(N-acryloylpyrrolidine), which is a thermosensitive polymer exhibiting a lower critical solution temperature (LCST) at ca. 52 degrees C. The unmodified cationic liposomes did not change its zeta potential between 20-60 degrees C. The polymer-modified cationic liposomes revealed much lower zeta potential values below the LCST of the polymer than the unmodified cationic liposomes. However, their zeta potential increased significantly above this temperature. The unmodified cationic liposomes formed aggregates and fused intensively with anionic liposomes consisting of egg yolk phosphatidylcholine and phosphatidic acid in the region of 20-60 degrees C, due to the electrostatic interaction. In contrast, aggregation and fusion of the polymer-modified cationic liposomes with the anionic liposomes were strongly suppressed below the LCST. However, these interactions were enhanced remarkably above the LCST. In addition, the polymer-modified cationic liposomes did not cause leakage of calcein from the anionic liposomes below the LCST, but promoted the leakage above this temperature as the unmodified cationic liposomes did. Temperature-induced conformational change of the polymer chains from a hydrated coil to a dehydrated globule might affect the affinity of the polymer-modified cationic liposomes to the anionic liposomes.  相似文献   

9.
The immune responses against human serum albumin (HSA) and bovine gamma globulin (BGG) were studied in rabbits after intravenous injections of various preparations of these antigens. Antigens were injected free in saline, coated on “empty” liposomes or both coated on liposomes, and entrapped in their inner compartments. The earlier established adjuvant effect of the liposomes was confirmed for both antigens. Although the amount of antigen entrapped in the liposomes was much higher than the amount coated on their outer surfaces, liposomes containing the antigen both in their inner compartments and on their outer surface showed no stronger adjuvant effect than “empty” liposomes coated with the antigen only. The results support the hypothesis that the adjuvant effect of liposomes is mediated by antigens exposed on the outer surfaces of the liposomes. Suggestions are made for the use of liposomes as a practical immunoadjuvant with definite advantages over many other adjuvants.  相似文献   

10.
A study of the effects of alkyl glycosides incorporated into synthetic liposomes with respect to their stability, their in vivo distribution in Ehrlich solid tumor-bearing mice and their in vitro interaction with liver cells was undertaken. The synthetic liposomes were prepared from N,N-didodecyl-N alpha-[6-(trimethylammonio)hexanoyl]-L-alaninamide bromide (N+C5Ala2C12) and labeled with 99mTc. n-Dodecyl glucoside (DG) and n-dodecyl sucrose (DS) were used as alkyl glycosides. The stability was hardly changed by incorporation of alkyl glycosides into the liposomes in saline and serum. The uptake of DG- and DS-modified N+C5Ala2C12 liposomes decreased in liver and spleen compared with that of unmodified N+C5Ala2C12 liposomes, resulting in an increase in blood and other tissues such as tumor, duodenum and kidney, where the DS-modified N+C5Ala2C12 liposomes had a marked tendency. It was observed with electron micrographs that the size of N+C5Ala2C12 liposomes became small by incorporation of alkyl glycoside. The smaller N+C5Ala2C12 liposomes were found to result in the lower uptake in liver. The interaction of the liposomes with liver cells in vitro indicated that both DG- and DS-modified liposomes had a low affinity for liver cells compared with the unmodified liposomes and the extent of interaction of the DS-modified liposomes was weaker than that of the DG-modified liposomes.  相似文献   

11.
We have prepared liposomes containing methotrexate-gamma-dimyristoylphosphatidylethanolamine (MTX-DMPE liposomes), to which protein A was covalently coupled, permitting specific association of these liposomes in vitro with murine cells preincubated with relevant protein A-binding monoclonal antibodies. In the absence of antibody the presence of externally-oriented methotrexate (MTX) in MTX-DMPE liposomes did not result in greater binding to cells than liposomes made without MTX-gamma-DMPE. Derivation of methotrexate with phospholipid permits enhanced drug-liposome association. These liposomes are more resistant than conventional liposomes to repeated cycles of freezing and thawing. MTX-DMPE liposomes are comparable to antibody-targeted liposomes made with encapsulated water-soluble methotrexate both with respect to specific binding to target cells and drug effect. The inhibitory effects of MTX-liposomes, as well as free MTX, were reversible by either thiamin pyrophosphate (Tpp) or N5-formyltetrahydrofolate (F-THF), while the effects of MTX-DMPE liposomes were reversed only by N5-formyltetrahydrofolate. This suggests that the toxicity of non-targeted MTX-liposomes may be due to leakage of the encapsulated MTX. The absence of an effect of thiamin pyrophosphate on non-targeted MTX-DMPE liposomes indicates that they do not enter into the cell via the normal folate transport system.  相似文献   

12.
One of the practical limitations with the use of liposomes for delivery of the pharmaceutical substances such as antigens is that liposomes are relatively unstable in storage. In order to extend the stability of liposome in storage without affecting their functional activity, solution-type liposomes were dehydrated to form a structurally intact dry liposomes. Comparative immunological evaluation was carried out for both dry and solution-type liposomes containing gag-V3 chimera, consequently it was found that dry liposomes elicited both humoral and cellular response as efficiently as solution-type liposomes did against the same gag-V3 antigen. Especially, long-term stability of the liposomes was remarkably enhanced by the dehydration made to liposomes without a significant change in its ability to elicit immune responsein vivo. These results indicate that dry pH-sensitive liposome may become an effective delivery and adjuvant system for general vaccine development.  相似文献   

13.
In the present study the tissue distribution of [3H]methotrexate was studied after intravenous injection of [3H]methotrexate-containing liposomes in normal and macrophage-depleted mice. Elimination of macrophages was performed by treatment with dichloromethylene diphosphonate- (DMDP)-containing liposomes. After thorough elimination of the macrophages from spleen and liver, by two intravenous injections of DMDP liposomes 6 and 4 days before tissue distribution studies, we found dramatic changes in the localization pattern of [3H]methotrexate liposomes in the blood, due to a decreased uptake of [3H]methotrexate liposomes by the DMDP liposome-treated liver. Because of the absence of these macrophages that are able to clear the blood of liposomes, and because of the resulting higher blood level of liposomes, we found an enhanced uptake of [3H]methotrexate liposomes by the spleen. It may be concluded that, in the spleen, apart from uptake of liposomes by macrophages, at least one other mechanism is responsible for the clearance of liposomes from the circulation. When comparing cholesterol-rich with cholesterol-poor liposomes, we found basically the same results, although uptake of cholesterol-rich liposomes by macrophages was smaller than that of cholesterol-poor liposomes, as found in several other studies. We suggest that pretreatment with DMDP liposomes can help to maintain a high level of intravenous-injected liposome-entrapped material in the blood, which otherwise would be removed by macrophages.  相似文献   

14.
We have shown earlier that liver and spleen reticuloendothelial cells have low affinity to phagocyte liposomes containing cholesterol. In the present study, we predosed mice with cholesterol-rich (identical to = 46.6 mol% cholesterol content) and cholesterol-free (identical to 0 mol%) liposomes to saturate the reticuloendothelial cells and examined the tissue distribution of the second dose of the test liposomes containing an aqueous marker, 125I-labelled poly(vinylpyrrolidone). The result shows that both preparations of the predosed liposomes caused suppression in hepatic uptake and delay in the blood clearance of the test liposomes, but the cholesterol-free liposomes were more effective in producing these effects than the cholesterol-rich liposomes. The suppression in hepatic phagocytic function, in accordance with the 'spillover' phenomenon [16, 17], caused an enhancement in spleen and lung uptake. The increase in lung uptake was proportionally related to the degree of suppression in the hepatic uptake, but the results of the splenic uptake showed some discrepancy. The predosed cholesterol-free liposomes which caused the maximum spillover of the test liposomes from the liver did not achieve maximum enhancement in the splenic uptake. Instead, the maximum enhancement was recorded with the predosed cholesterol-rich liposomes. This discrepancy in splenic uptake suggests that the predosed liposomes caused saturation of not only liver also the spleen reticuloendothelial system. However, instead of suppression in the splenic uptake due to the saturation, enhancement in uptake of the test liposomes was observed. We suggest the cause of this apparent increase the splenic phagocytic activity may be due to stimulation, by some unknown mechanism of splenic macrophages endothelial cells and/or lymphocytes, to phagocyte the excess of the test liposomes spillover from the liver with impaired phagocytic function.  相似文献   

15.
The competitive behavior of solid vs. fluid liposomes in liposome-cell adsorption and cell-to-liposome lipid transfer processes was investigated with L cells and FBT epithelial sheets. Binding and transfer experiments have demonstrated that: solid liposomes adhere to the cell surface as integral vesicles retaining the entrapped substance; fluid liposomes are partly disintegrated at the cell surface with concomitant entry of entrapped substances into the cytoplasm, while their lipids remain on the cell surface; fluid liposomes that escape lysis dissociate from the cell taking away cell lipid molecules. No lipid transfer occurs between the plasma membrane and solid liposomes. Cell-bound solid liposomes interfere with the transfer of cell lipids to fluid liposomes, while these in turn inhibit the binding of solid liposomes to the cell surface.  相似文献   

16.
Toxicity of non-drug-containing liposomes for cultured human cells   总被引:2,自引:0,他引:2  
The effects of non-drug-containing liposomes of different compositions and sizes on the proliferation of nine cancer-derived and one normal cultured human cell lines were determined. Stearylamine- and cardiolipin-containing liposomes were toxic (ID50) at 200 microM liposomal lipid concentrations or less, whereas phosphatidylglycerol- and phosphatidylserine-containing liposomes were toxic in the range 130-3000 microM. Phosphatidylcholine or dipalmitoylphosphatidylcholine liposomes were not toxic at 3000-4000 microM. In general, small liposomes were more toxic than large ones. The results indicate that there are wide variations in toxicity of non-drug-containing liposomes for cultured human cells. The potential for nonspecific toxicity due to the liposomes themselves should be carefully considered if human administration of drug-containing liposomes is to be done.  相似文献   

17.
K Akashi  H Miyata  H Itoh    K Kinosita  Jr 《Biophysical journal》1996,71(6):3242-3250
Unilamellar liposomes with diameters of 25-100 microns were prepared in various physiological salt solutions, e.g., 100 mM KCl plus 1 mM CaCl2. Successful preparation of the giant liposomes at high ionic strengths required the inclusion of 10-20% of a charged lipid, such as phosphatidylglycerol, phosphatidylserine, phosphatidic acid, or cardiolipin, in phosphatidylcholine or phosphatidylethanolamine. Three criteria were employed to identify unilamellar liposomes, yielding consistent results. Under a phase-contrast microscope those liposomes that showed the thinnest contour and had a vigorously undulating membrane were judged unilamellar. When liposomes were stained with the lipophilic fluorescent dye octadecyl rhodamine B, fluorescence intensities of the membrane of individual liposomes were integer multiples (up to four) of the lowest ones, the least fluorescent liposomes being those also judged unilamellar in the phase-contrast image. Micropipette aspiration test showed that the liposomes judged unilamellar in phase and fluorescence images had an area elastic modulus of approximately 160 dyn/cm, in agreement with literature values. The giant liposomes were stable and retained a concentration gradient of K+ across the membrane, as evidenced in fluorescence images of the K(+)-indicator PBFI encapsulated in the liposomes. Ionophore-induced K+ transport and associated volume change were observed in individual liposomes.  相似文献   

18.
The inhibition of fibril formation of amyloid β (Aβ) and the disaggregation of Aβ fibrils are the promising approaches for a medical treatment of Alzheimer's disease (AD) therapy. In this study, we investigated the effects of liposomes on dopamine-induced disaggregation of Aβ fibrils by using the variety of liposomes. The used liposomes were normal liposomes, raft-forming liposomes, charged liposomes and oxidized liposomes. Those liposome could accelerate the disaggregation rate of fibrils. From the comparison of normal and charged liposomes, a certain contribution of dopamine via an electrostatic interaction to the disaggregation was confirmed. From raft-forming and oxidized liposomes, we revealed a significant contribution of bound water to liposomes, which could assist the formation of the quinine-form of dopamine by a removal of its proton. It is, therefore, concluded that the membrane surface of liposomes is considered to be an adequate environment for the dopamine-induced disaggregation of fibrils.  相似文献   

19.
1. Cytochrome oxidase was incorporated into preformed liposomes containing phosphatidylserine. When confronted with a mixture of liposomes, some containing phosphatidylserine and some without it, the enzyme was incorporated only into the phosphatidylserine-containing liposomes. 2. The hydrophobic proteins of the oligomycin-sensitive ATPase incubated in the presence of a mixture of liposomes with and without cytochrome oxidase were preferentially incorporated into cytochrome oxidase-containing liposomes. This selectivity was abolished by either cytochrome c or ascorbate. 3. Cytochrome oxidase incubated in the presence of a mixture of liposomes with and without the hydrophobic proteins of the ATPase was preferentially incorporated into liposomes that did not contain the hydrophobic proteins. 4. Cytochrome oxidase and the oligomycin-sensitive ATPase were preferentially incorporated into pure liposomes over bacteriorhodopsin-containing vesicles. 5. Reduced coenzyme Q (QH2)-cytochrome c reductase was incorporated randomly when incubated in the presence of a mixture of pure liposomes and liposomes containing the hydrophobic proteins of the ATPase complex. 6. The significance of the incorporation procedure as a model for membrane biogenesis is discussed.  相似文献   

20.
We previously reported that liposomes containing glycophorin or gangliosides, both of which were isolated from human erythrocytes, are efficiently fused to erythrocyte membranes in the presence of HVJ (Umeda, M. et al., J. Biochem. 94, 1955-1966 (1983), and Virology 133, 172-182 (1984]. In the present work, the effect of lipid composition in glycophorin liposomes on their sensitivity to fusion with erythrocytes was studied. Very little fusion occurred when glycophorin liposomes composed of dipalmitoylphosphatidylcholine-dicetylphosphate (9:1), dimyristoylphosphatidylcholine-dicetylphosphate (9:1), or egg yolk phosphatidylcholine-dicetylphosphate (9:1) were incubated with human erythrocytes in the presence of HVJ at 37 degrees C. Addition of cholesterol into these liposomal membranes greatly enhanced the sensitivity of the liposomes to fusion. The presence of phosphatidic acid and phosphatidylethanolamine in liposomes also enhanced the sensitivity, whereas the presence of lysophosphatidylcholine had no significant effect on the ability of the liposomes to fuse. The fusion efficiency of liposomes was also enhanced by the presence of glucosylceramide. Change of lipid composition in liposomes had, however, no appreciable influence on the HVJ-mediated binding of liposomes to erythrocytes, suggesting that the interaction between HANA protein of HVJ and glycophorin in liposomes was not affected by the lipid composition of the liposomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号