首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F?F(o)-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H?-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A?A(o)-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump. All three of these multi-subunit complexes are rotary molecular motors, sharing a fundamentally similar mechanism in which rotational movement drives the energy conversion process. By analogy to macroscopic systems, individual subunits can be assigned to rotor, axle or stator functions. Recently, three-dimensional reconstructions from electron microscopy and single particle image processing have led to a significant step forward in understanding of the overall architecture of all three forms of these complexes and have allowed the organisation of subunits within the rotor and stator parts of the motors to be more clearly mapped out. This review describes the emerging consensus regarding the organisation of the rotor and stator components of V-, A- and F-ATPases, examining core similarities that point to a common evolutionary origin, and highlighting key differences. In particular, it discusses how newly revealed variation in the complexity of the inter-domain connections may impact on the mechanics and regulation of these molecular machines.  相似文献   

2.
Several cation transport ATPases, sharing the common feature of a phosphorylated intermediate in the process of ATP utilization, are compared with respect to their subunit composition and amino acid sequence. The main component of these enzymes is a polypeptide chain of MW slightly exceeding 100,000, comprising an extramembranous globular head which is connected through a stalk to a membrane-bound region. With reference to the Ca2+ ATPase of sarcoplasmic reticulum, it is proposed that the catalytic (ATP binding and phosphorylation) domain resides in the extramembranous globular head, while cation binding occurs in the membrane region. Therefore, these two functional domains are separated by a distance of approximately 50 Å. Alignment of amino acid sequences reveals extensive homology in the isoforms of the same ATPases, but relatively little homology in different cation ATPases. On the other hand, all cation ATPases considered in this analysis retain a consensus sequence of high homology, spanning the distance between the phosphorylation site and the preceding transmembrane helix. It is proposed that this sequence provides long-range functional linkage between catalytic and cation-binding domains. Thereby, translocation of bound cation occurs through a channel formed by transmembrane helices linked to the phosphorylation site. Additional sequences at the carboxyl terminal provide regulatory domains in certain ATPases.  相似文献   

3.
《BBA》2020,1861(2):148116
Data from earlier studies showed that minor structural changes at the surface of cytochrome c oxidase, in one of the proton-input pathways (the D pathway), result in dramatically decreased activity and a lower proton-pumping stoichiometry. To further investigate how changes around the D pathway orifice influence functionality of the enzyme, here we modified the nearby C-terminal loop of subunit I of the Rhodobacter sphaeroides cytochrome c oxidase. Removal of 16 residues from this flexible surface loop resulted in a decrease in the proton-pumping stoichiometry to <50% of that of the wild-type enzyme. Replacement of the protonatable residue Glu552, part of the same loop, by an Ala, resulted in a similar decrease in the proton-pumping stoichiometry without loss of the O2-reduction activity or changes in the proton-uptake kinetics. The data show that minor structural changes at the orifice of the D pathway, at a distance of ~40 Å from the proton gate of cytochrome c oxidase, may alter the proton-pumping stoichiometry of the enzyme.  相似文献   

4.
ATP-binding cassette (ABC) enzymes are involved in diverse biological processes ranging from transmembrane transport to chromosome cohesion and DNA repair. They typically use ATP hydrolysis to conduct energy-dependent biological reactions. However, the cystic fibrosis transmembrane conductance regulator and the DNA repair protein Rad50 can also catalyze the adenylate kinase reaction (ATP + AMP ↔ 2ADP). To clarify and provide a mechanistic basis for the adenylate kinase activity of ABC enzymes, we report the crystal structure of the nucleotide-binding domain of the Pyrococcus furiosus structural maintenance of chromosome protein (pfSMCnbd) in complex with the adenylate kinase inhibitor P1,P5-di(adenosine-5′)pentaphosphate. We show that pfSMCnbd possesses reverse adenylate kinase activity. Our results suggest that in adenylate kinase reactions, ATP binds to its canonical binding site while AMP binds to the Q-loop glutamine and a hydration water of the Mg2+ ion. Furthermore, mutational analysis indicates that adenylate kinase reaction occurs in the engaged pfSMCnbd dimer and requires the Signature motif for phosphate transfer. Our results explain how ATP hydrolysis and adenylate kinase reactions can be catalyzed by the same functional motifs within the structural framework of ABC enzymes. Thus, adenylate kinase activity is likely to be a latent activity in many ABC enzymes.  相似文献   

5.
Evolution of P5 type ATPases marks the origin of eukaryotes but still they remain the least characterized pumps in the superfamily of P-type ATPases. Phylogenetic analysis of available sequences suggests that P5 ATPases should be divided into at least two subgroups, P5A and P5B. P5A ATPases have been identified in the endoplasmic reticulum and seem to have basic functions in protein maturation and secretion. P5B ATPases localize to vacuolar/lysosomal or apical membranes and in animals play a role in hereditary neuronal diseases. Here we have used a bioinformatical approach to identify differences in the primary sequences between the two subgroups. P5A and P5B ATPases appear have a very different membrane topology from other P-type ATPases with two and one, respectively, additional transmembrane segments inserted in the N-terminal end. Based on conservation of residues in the transmembrane region, the two P5 subgroups most likely have different substrate specificities although these cannot be predicted from their sequences. Furthermore, sequence differences between P5A and P5B ATPases are identified in the catalytic domains that could influence key kinetic properties differentially. Together these findings indicate that P5A and P5B ATPases are structurally and functionally different.  相似文献   

6.
DTG/DTS rhodopsin, which was named based on a three-residue motif (DTG or DTS) that is important for its function, is a light-driven proton-pumping microbial rhodopsin using a retinal chromophore. In contrast to other light-driven ion-pumping rhodopsins, DTG/DTS rhodopsin does not have a cytoplasmic proton donor residue, such as Asp, Glu, or Lys. Because of the lack of cytoplasmic proton donor residue, proton directly binds to the retinal chromophore from the cytoplasmic solvent. However, mutational experiments that showed the complicated effects of mutations were not able to clarify the roles played by each residue, and the detail of proton uptake pathway is unclear because of the lack of structural information. To understand the proton transport mechanism of DTG/DTS rhodopsin, here we report the three-dimensional structure of one of the DTG/DTS rhodopsins, PspR from Pseudomonas putida, by X-ray crystallography. We show that the structure of the cytoplasmic side of the protein is significantly different from that of bacteriorhodopsin, the best-characterized proton-pumping rhodopsin, and large cytoplasmic cavities were observed. We propose that these hydrophilic cytoplasmic cavities enable direct proton uptake from the cytoplasmic solvent without the need for a specialized cytoplasmic donor residue. The introduction of carboxylic residues homologous to the cytoplasmic donors in other proton-pumping rhodopsins resulted in higher pumping activity with less pH dependence, suggesting that DTG/DTS rhodopsins are advantageous for producing energy and avoiding intracellular alkalization in soil and plant-associated bacteria.  相似文献   

7.
Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B play an essential role in human physiological function. Their primary function is to deliver copper to the secretory pathway and export excess copper from the cell for removal or further utilization. Cells employ Cu-ATPases in numerous physiological processes that include the biosynthesis of copper-dependent enzymes, lactation, and response to hypoxia. Biochemical studies of human Cu-ATPases and their orthologs have demonstrated that Cu-ATPases share many common structural and mechanistic characteristics with other members of the P-type ATPase family. Nevertheless, the Cu-ATPases have a unique coordinate environment for their ligands, copper and ATP, and additional domains that are required for sophisticated regulation of their intracellular localization and activity. Here, we review recent progress that has been made in understanding the structure of Cu-ATPases from the analysis of their individual domains and orthologs from microorganisms, and speculate about the implications of these findings for the function and regulation of human copper pumps.  相似文献   

8.
Structural maintenance of chromosome (SMC) proteins play a central role in higher-order chromosome structure in all kingdoms of life. SMC proteins consist of a long coiled-coil domain that joins an ATP binding cassette (ABC) ATPase domain on one side and a dimerization domain on the other side. SMC proteins require ATP binding or hydrolysis to promote cohesion and condensation, which is suggested to proceed via formation of SMC rings or assemblies. To learn more about the role of ATP in the architecture of SMC proteins, we report crystal structures of nucleotide-free and ATP bound P. furiosus SMC ATPase domains. ATP dimerizes two SMC ATPase domains by binding to opposing Walker A and signature motifs, indicating that ATP binding can directly assemble SMC proteins. DNA stimulates ATP hydrolysis in the engaged SMC ABC domains, suggesting that ATP hydrolysis can be allosterically regulated. Structural and mutagenesis data identify an SMC protein conserved-arginine finger that is required for DNA stimulation of the ATPase activity and directly connects a putative DNA interaction site to ATP. Our results suggest that stimulation of the SMC ATPase activity may be a specific feature to regulate the ATP-driven assembly and disassembly of SMC proteins.  相似文献   

9.
Many fundamental cellular processes depend on enzymes that utilize chemical energy to catalyse unfavourable reactions. Certain classes of ATPases provide a particularly vivid example of the process of energy conversion, employing cycles of nucleotide turnover to move and/or rearrange biological polymers such as proteins and nucleic acids. Four well-characterized classes of ATP-dependent protein/nucleic acid translocases and remodelling factors are found in all three domains of life (bacteria, archaea and eukarya): additional strand catalytic 'E' (ASCE) P-loop NTPases, GHL proteins, actin-fold enzymes and chaperonins. These unrelated protein superfamilies have each evolved the ability to couple ATP binding and hydrolysis to the generation of motion and force along or within their substrates. The past several years have witnessed the emergence of a wealth of structural data that help explain how such molecular engines link nucleotide turnover to conformational change. In this review, we highlight several recent advances to illustrate some of the mechanisms by which each family of ATP-dependent motors facilitates the rearrangement and movement of proteins, protein complexes and nucleic acids.  相似文献   

10.
11.
12.
Transmembrane electrochemical proton gradients are used to store free energy in biological systems, and to drive the synthesis of biomolecules and transmembrane transport. These gradients are maintained by membrane-bound proton transporters that employ free energy provided by, for example, electron transfer or light. In recent years, the structures of several membrane proteins involved in proton translocation have been determined, and indicate that both protein-bound water molecules and protonatable amino acid residues play central roles in transmembrane proton conduction. From these structures, in combination with functional studies, have emerged general principles of proton transfer across membranes and control mechanisms for such reactions, in particular with regard to the electron-transfer-driven proton pump cytochrome c oxidase.  相似文献   

13.
14.
Structural aspects of steroid-antibody specificity   总被引:1,自引:0,他引:1  
  相似文献   

15.
Krol J  Krzyzosiak WJ 《IUBMB life》2004,56(2):95-100
One of the biggest surprises at the beginning of the 'post-genome era' was the discovery of numerous genes encoding microRNAs. They were found in genomes of such diverse organisms as Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, and Homo sapiens which implies their important role in multicellular life evolution. The number of microRNA genes is estimated to be nearly 1% of that of protein-coding genes. Their products, tiny RNAs, are thought to regulate gene expression during development, organogenesis, and very likely during many other processes, by hybridizing to their target mRNAs. The cellular functions of mRNAs that are regulated by microRNAs are only beginning to be revealed, and details of this regulation mechanism are still poorly understood. In this article we discuss the possible mechanisms of microRNA biogenesis with special emphasis on their structural aspects. We have focused on the factors and effects that may be responsible for the existing length differences between different microRNAs, and for the observed length heterogeneity within some individual microRNA species.  相似文献   

16.
The reduction of nitrate to nitrogen gas via nitrite, nitric oxide and nitrous oxide is the metabolic pathway usually known as denitrification, a key step in the nitrogen cycle. As observed for other elemental cycles, a battery of enzymes are utilized, namely the reductases for nitrate, nitrite, nitric oxide and nitrous oxide, as well as multiple electron donors that interact with these enzymes, in order to carry out the stepwise reactions that involve key intermediates. Because of the importance of this pathway (of parallel importance to the nitrogen-fixation pathway), efforts are underway to understand the structures of the participating enzymes and to uncover mechanistic aspects. Three-dimensional structures have been solved for the majority of these enzymes in the past few years, revealing the architecture of the active metal sites as well as global structural aspects, and possible mechanistic aspects. In addition, the recognition of specific electron-transfer partners raises important questions regarding specific electron-transfer pathways, partner recognition and control of metabolism.  相似文献   

17.
18.
19.
The occurrence of hydroxyproline (Hyp) in collagen, C1q and acetylcholineesterase (AChE) raises important questions concerning the role of this unusual imino acid in the structure and function of these proteins. Available data on collagen indicate that Hyp is necessary for the normal secretion of the protein after its synthesis and for the integrity of the triple-helical conformation. Studies from our laboratory have dealt with the structural aspects of the posttranslational conversion of proline to hydroxyproline in collagen mediated by prolyl hydroxylase. We proposed that the beta-turn conformation at the Pro-Gly segments in the nascent procollagen molecule are the sites of the enzymatic hydroxylation and that this conformation changes over to the collagen-like helix as a result of the hydroxylation process. Recently, we have provided additional experimental support to our proposal by a) synthesizing specific beta-turn oligopeptides containing the Pro-Gly as well as Pro-Ala and Pro-DAla sequences and showing that these act as inhibitors of the enzymatic hydroxylation of a synthetic substrate and b) demonstrating, by circular dichroism spectroscopy, the occurrence of a conformational change leading to the triple-helix as a direct consequence of proline hydroxylation in a non-helical polypeptide substrate. We have also observed that the acquisition of hydroxylation results in a significant enhancement of the rate of folding of the polypeptide chain from the unfolded to the triple-helical conformation. We believe that our observations on proline hydroxylation in collagen should also be applicable to C1q and acetylcholineesterase both of which share the general structural and functional properties of collagen in their "tail" regions. Using the techniques employed in collagen studies, one should be able to assess the role of hydroxyproline in the folding, structural stabilities and functions of C1q and AChE. This would also involve the study of the unhydroxylated and hydroxylated precursors of these proteins which may share common structural features with their collagen counterparts. Finally, a systematic study of hydroxyproline-containing peptides and polypeptides has been initiated by us so as to understand the exact manner in which Hyp participates in the formation and stability of the triple-helical conformation in the proteins in which it occurs.  相似文献   

20.
Structural aspects of gas exchange   总被引:1,自引:0,他引:1  
The lung is composed of several million small air spaces, lined by a delicate tissue membrane separating air from capillary blood. The design features of the gas exchange region in the lung are optimal for gaseous diffusion, by having a very extensive contact surface but with a minimal tissue barrier composed of an epithelial and endothelial layer separating an interstitial layer. The extent of the gas exchange surface in adult lungs is determined by general maturation which in turn is influenced by metabolic requirements of the organism. Environmental factors can modulate the pattern of ultimate lung development. Lung inflation causes air spaces to expand mainly by a process of tissue unfolding beneath an extremely thin layer of alveolar surfactant. This ensures cellular integrity during extreme deformations while at the same time providing a reserve of gas exchange surface so that functional diffusion capacity at all lung volumes is less than the structural maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号