首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human pregnancy zone protein (PZP) is a major pregnancy-associated plasma protein strongly related to alpha2-macroglobulin (alpha2-M). Both alpha-macroglobulins (alpha-Ms) covalently bind proteinases, which is accompanied by the exposure of carboxy terminal receptor recognition domains important for the rapid clearance from the circulation and tissues. It is accepted that the molecule responsible for the clearance of alpha2-M- and PZP-proteinase complexes is the low-density lipoprotein receptor-related protein (LRP). Although both alpha-M-proteinase complexes bind to the same receptor, differences in the binding properties have been reported. In addition, although it is known that the binding of alpha2-M-proteinase complexes to LRP can be blocked by Ni2+, the effect on PZP-proteinase has never been examined. In order to investigate differences in the binding properties of both alpha-Ms to the receptor, we purified LRP from human placenta by affinity chromatography and then analyzed the specificity and affinity of binding of alpha2-M- and PZP-proteinase complexes to the receptor by enzyme immunoassay. Our results clearly established that although both alpha-M-proteinase complexes specifically bind to LRP, PZP-chymotrypsin complexes bind to the receptor with lesser apparent affinity (Kd approximately equal 320 nM) than alpha2-M-chymotrypsin complexes (Kd approximately equal 40 nM). We also demonstrated that Ni2+ blocks the binding of alpha2-M-chymotrypsin complexes, but not PZP-chymotrypsin complexes, to LRP. These data suggest that the binding to LRP involves conformational differences between both alpha-Ms in a region immediately upstream of the carboxy terminal receptor recognition domain. The possibility that PZP-proteinase complexes interact with other receptors not available to alpha2-M-proteinase complexes could be considered.  相似文献   

2.
Plasminogen activator inhibitor 1 (PAI-1) is a serpin inhibitor of the plasminogen activators urokinase-type plasminogen activator (uPA) and tissue plasminogen activator, which binds tightly to the clearance and signaling receptor low density lipoprotein receptor-related protein 1 (LRP1) in both proteinase-complexed and uncomplexed forms. Binding sites for PAI-1 within LRP1 have been localized to CR clusters II and IV. Within cluster II, there is a strong preference for the triple CR domain fragment CR456. Previous mutagenesis studies to identify the binding site on PAI-1 for LRP1 have given conflicting results or implied small binding contributions incompatible with the high affinity PAI-1/LRP1 interaction. Using a highly sensitive solution fluorescence assay, we have examined binding of CR456 to arginine and lysine variants of PAI-1 and definitively identified the binding site as composed of four basic residues, Lys-69, Arg-76, Lys-80, and Lys-88. These are highly conserved among mammalian PAI-1s. Individual mutations result in a 13–800-fold increase in Kd values. We present evidence that binding involves engagement of CR4 by Lys-88, CR5 by Arg-76 and Lys-80, and CR6 by Lys-69, with the strongest interactions to CR5 and CR6. Collectively, the individual binding contributions account quantitatively for the overall PAI-1/LRP1 affinity. We propose that the greater efficiency of PAI-1·uPA complex binding and clearance by LRP1, compared with PAI-1 alone, is due solely to simultaneous binding of the uPA moiety in the complex to its receptor, thereby making binding of the PAI-1 moiety to LRP1 a two-dimensional surface-localized association.  相似文献   

3.
Pregnancy zone protein (PZP) was isolated from late pregnancy serum and examined for binding to normal skin fibroblasts in culture. A high-affinity binding site on these cells is demonstrated for PZP reacted with methylamine. Experiments with alpha 2-macroglobulin (alpha 2M) and PZP, both modified by methylamine, showed this receptor to be identical to the previously characterized receptor for alpha 2M-proteinase complexes (Van Leuven, F., Cassiman, J.J., and Van den Berghe, H. (1979) J. Biol. Chem. 254, 5155-5160). With available monoclonal antibodies directed toward alpha 2M and prepared toward PZP, only a limited cross-reaction was observed. We obtained a monoclonal antibody which defines a neo-antigenic site on PZP-methylamine, completely analogous to the monoclonal antibody F2B2, which was previously shown to define a neo-antigenic site on alpha 2M complexes (Marynen, P., Van Leuven, F., Cassiman, J.J., and Van den Berghe, H. (1981) J. Immunol. 127, 1782-1786). These results provide evidence for the homologous function of alpha 2M and PZP as proteinase scavengers. The need for an extra proteinase inhibitor of the alpha 2M-type in pregnancy is discussed. The monoclonal antibodies now available will prove helpful in quantitation and eventually isolation of proteinase complexes of alpha 2M and PZP.  相似文献   

4.
The low density lipoprotein receptor-related protein (LRP) is a multifunctional endocytic cell-surface receptor that binds and internalizes a diverse array of ligands. The receptor contains four putative ligand-binding domains, generally referred to as clusters I, II, III, and IV. In this study, soluble recombinant receptor fragments, representing each of the four individual clusters, were used to map the binding sites of a set of structurally and functionally distinct ligands. Using surface plasmon resonance, we studied the binding of these fragments to methylamine-activated alpha(2)-macroglobulin, pro-urokinase-type plasminogen activator, tissue-type plasminogen activator (t-PA), plasminogen activator inhibitor-1, t-PA.plasminogen activator inhibitor-1 complexes, lipoprotein lipase, apolipoprotein E, tissue factor pathway inhibitor, lactoferrin, the light chain of blood coagulation factor VIII, and the intracellular chaperone receptor-associated protein (RAP). No binding of the cluster I fragment to any of the tested ligands was observed. The cluster III fragment only bound to the anti-LRP monoclonal antibody alpha(2)MRalpha3 and weakly to RAP. Except for t-PA, we found that each of the ligands tested binds both to cluster II and to cluster IV. The affinity rate constants of ligand binding to clusters II and IV and to LRP were measured, showing that clusters II and IV display only minor differences in ligand-binding kinetics. Furthermore, we demonstrate that the subdomains C3-C7 of cluster II are essential for binding of ligands and that this segment partially overlaps with a RAP-binding site on cluster II. Finally, we show that one RAP molecule can bind to different clusters simultaneously, supporting a model in which RAP binding to LRP induces a conformational change in the receptor that is incompatible with ligand binding.  相似文献   

5.
Low-density lipoprotein receptor-related protein (LRP) mediates internalization of urokinase:plasminogen activator inhibitor complexes (uPA:PAI-1) and the urokinase receptor (uPAR). Here we investigated whether direct interaction between uPAR, a glycosyl-phosphatidylinositol-anchored protein, and LRP, a transmembrane receptor, is required for clearance of uPA:PAI-1, regeneration of unoccupied uPAR, activation of plasminogen, and the ability of HT1080 cells to invade extracellular matrix. We found that in the absence of uPA:PAI-1, uPAR is randomly distributed along the plasma membrane, whereas uPA:PAI-1 promotes formation of uPAR-LRP complexes and initiates redistribution of occupied uPAR to clathrin-coated pits. uPAR-LRP complexes are endocytosed via clathrin-coated vesicles and traffic together to early endosomes (EE) because they can be coimmunoprecipitated from immunoisolated EE, and internalization is blocked by depletion of intracellular K(+). Direct binding of domain 3 (D3) of uPAR to LRP is required for clearance of uPA-PAI-1-occupied uPAR because internalization is blocked by incubation with recombinant D3. Moreover, uPA-dependent plasmin generation and the ability of HT1080 cells to migrate through Matrigel-coated invasion chambers are also inhibited in the presence of D3. These results demonstrate that GPI-anchored uPAR is endocytosed by piggybacking on LRP and that direct binding of occupied uPAR to LRP is essential for internalization of occupied uPAR, regeneration of unoccupied uPAR, plasmin generation, and invasion and migration through extracellular matrix.  相似文献   

6.
Plasmatic levels of pregnancy zone protein (PZP) increase in children with acute Chagas disease. PZP, as well as alpha2-macroglobulin (alpha2-M), are able to interact with Trypanosoma cruzi proteinases. The interaction of alpha2-M and PZP with cruzipain, the major cysteine proteinase of T. cruzi, was investigated. Several molecular changes on both alpha-M inhibitors under reaction with cruzipain were found. PAGE analysis showed: (i) formation of complexes of intermediate mobility and tetramerization of native alpha2-M and PZP, respectively; (ii) limited proteolysis of bait region in alpha2-M and PZP, and (iii) covalent binding of cruzipain to PZP and alpha2-M. Conformational and structural changes experimented by alpha-Ms correlate with modifications of the enzyme electrophoretic mobility and activity. Cruzipain-alpha-M complexes were also detected by gelatin SDS-PAGE and immunoblotting using polyclonal anti-cruzipain antibodies. Concomitantly, alpha2-M and PZP impaired the activity of cruzipain towards Bz-Pro-Phe-Arg-pNA substrate. In addition, alpha-Ms were able to form covalent complexes with membrane isoforms of cysteine proteinases cross-reacting with cruzipain. The present study suggests that both human alpha-macroglobulin inhibitors could prevent or minimize harmful action of cruzipain on host's molecules and hypothetically regulate parasite functions controlled by cruzipain.  相似文献   

7.
Plasminogen activator inhibitor-1 (PAI-1) accumulates within thrombi and forming whole blood clots. To explore this phenomenon at the molecular level, PAI-1 binding to fibrin was examined. The experiments were performed by adding 125I-PAI-1, which retains its complete tissue-type plasminogen (t-PA) inhibitory activity, to fibrin matrices formed in 2-cm2 tissue culture wells. Guanidine HCl-activated PAI-1 binding was reversible and was inhibited in the presence of excess, unlabeled PAI-1. Activated 125I-PAI-1 recognized 2 sites on fibrin: a very small number of high affinity sites (Kd less than 1 nM) and principally a large number of low affinity sites with an approximate Kd of 3.8 microM. Latent PAI-1 bound to fibrin at a site indistinguishable from the lower affinity site recognized by activated PAI-1. Fibrin, pretreated with activated PAI-1, was protected from t-PA-mediated plasmin degradation in a PAI-1 dose-responsive manner (IC50 = 12.3 nM). Clot protection correlated with partial occupancy of the low affinity PAI-1 binding site on fibrin and was due to the formation of sodium dodecyl sulfate-stable, PAI-1.t-PA complexes. Latent PAI-1 (27 nM) did not protect the fibrin from dissolution. The localization of PAI-1 to a thrombus by virtue of its fibrin binding potential could result in significant protection of the thrombus from the degradative effects of the fibrinolytic system.  相似文献   

8.
Complexes between 125I-labeled urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) bound to purified alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein (LRP). No binding was observed when using uPA. The magnitude of uPA.PAI-1 binding was comparable with that of the alpha 2MR-associated protein (alpha 2MRAP). Binding of uPA.PAI-1 was blocked by natural and recombinant alpha 2MRAP, and about 80% inhibited by complexes between tissue-type plasminogen activator (tPA) and PAI-1, and by a monoclonal anti-PAI-1 antibody. In human monocytes, uPA.PAI-1, like uPA and its amino-terminal fragment, bound to the urokinase receptor (uPAR). Degradation of uPAR-bound 125I-uPA.PAI-1 was 3-4-fold enhanced as compared with uncomplexed uPAR-bound uPA. The inhibitor-enhanced uPA degradation was blocked by r alpha 2MRAP and inhibited by polyclonal anti-alpha 2MR/LRP antibodies. This is taken as evidence for mediation of internalization and degradation of uPAR-bound uPA.PAI-1 by alpha 2MR/LRP.  相似文献   

9.
Complexes between tissue-type plasminogen activator (t-PA) and its rapidly acting inhibitor plasminogen activator inhibitor type 1 (PAI-1) are bound, internalized, and degraded by HepG2 cells. The mechanism involves endocytosis mediated by a specific high-affinity receptor. However, the particular domains of the complex that are recognized by the receptor have not been elucidated. To identify the determinants involved in ligand binding to the receptor, several variants of t-PA were assessed for their ability to form complexes with PAI-1 and thereby to inhibit specific cellular binding of complexes between structurally unmodified 125I-t-PA and PAI-1. Catalytically active variants lacking selected structural domains form complexes with PAI-1 and inhibit 125I-t-PA.PAI-1 binding to HepG2 cells. In addition, several forms of the plasminogen activator urokinase (u-PA), which shares partial structural homology with t-PA, were evaluated as competitors of cellular binding. The catalytically active two-chain forms of u-PA, but not the inactive proenzyme single-chain form, complex with PAI-1 and inhibit specific binding of 125I-t-PA.PAI-1, suggesting that the serine protease domain, rather than other domains, may confer the determinants required for cellular binding. However, a mutant t-PA with markedly reduced catalytic activity, resulting from replacement of the active site serine with threonine, not only forms complexes with PAI-1 but also inhibits specific cellular binding of unmodified 125I-t-PA.PAI-1. These data indicate that specific binding of t-PA.PAI-1 to HepG2 cells does not require a serine-containing catalytic site in the protease domain. To determine whether binding of the complex is mediated through other components of t-PA or through structural elements of PAI-1, both t-PA and PAI-1 were examined separately for capacity to bind directly to HepG2 cells. To exclude potential interactions with components of the extracellular matrix which contains binding sites for PAI-1, ligand binding to HepG2 cells in suspension was assessed. Although neither t-PA nor PAI-1 alone binds specifically to HepG2 cells, the preformed t-PA.PAI-1 complexes do. These findings suggest that specific binding of t-PA.PAI-1 requires elements of the PAI-1 moiety and/or parts of the protease domain of t-PA.  相似文献   

10.
Catalytic activity of tissue-type plasminogen activator (t-PA) in plasma is regulated in part by formation of complexes with specific inhibitors as well as by hepatic clearance. Potential interaction of these two regulatory mechanisms was examined in the human hepatoma cell line Hep G2. These cells secrete plasminogen activator inhibitor type-1 (PAI-1) and initiate catabolism of exogenous t-PA by receptor-mediated endocytosis. Specific binding of 125I-t-PA to cells at 4 degrees C results in dose-dependent formation of a 95-kDa species recognized by monospecific anti-PAI-1 and anti-t-PA antibodies and stable in the presence of low (0.2%) concentrations of sodium dodecyl sulfate (SDS). Specific binding of 125I-t-PA and formation of the 95-kDa SDS-stable species are inhibited in a concentration-dependent manner following preincubation of cells with anti-PAI-1 antibodies. High and low molecular weight forms of urokinase plasminogen activator (u-PA) capable of forming specific complexes with PAI-1 complete for 125I-t-PA binding sites. However, the proenzyme form of u-PA (scu-PA), incapable of forming complexes with PAI-1, does not compete for 125I-t-PA binding sites. The role of the serine protease active site of t-PA in mediating both interaction with PAI-1 and specific binding was examined using 125I-t-PA that had been functionally inactivated with D-phenylalanyl-L-propyl-L-arginyl-chloromethyl ketone (PPACK). 125I-t-PA-PPACK, despite a 6-fold lower affinity than active 125I-t-PA, exhibited specific binding to cells without detectable formation of SDS-stable complexes with PAI-1. Both surface-bound 125I-t-PA and 125I-t-PA-PPACK are internalized and degraded by cells at 37 degrees C. 125I-t-PA is internalized as a stable complex with PAI-1, whereas 125I-t-PA-PPACK is internalized with similar kinetics but without the presence of an SDS-stable complex. Thus, PAI-1 appears capable of modulating t-PA catabolism in the human hepatocyte.  相似文献   

11.
Pregnancy zone protein (PZP) and plasminogen activator inhibitor type 2 (PAI-2) are two multifunctional proteins that are elevated in normal pregnancy and numerous other inflammatory states. Both proteins were originally identified as protease inhibitors, but current evidence supports the notion that they may also function as modulators of T-helper cells and/or extracellular chaperones. Exacerbated inflammation, fibrinolytic disturbances and misfolded proteins are all implicated in the pathology of preeclampsia, a leading cause of maternal and foetal mortality and morbidity. Notably, reduced levels of PZP or PAI-2 are associated with preeclampsia and clarification of their diverse functions in normal pregnancy could provide much needed insight regarding the pathogenesis of this disorder. Given that inflammation and protein misfolding underlie the pathology of a very large number of disorders, the contributions of PZP and PAI-2 to extracellular proteostasis and immunoregulation could be broad-reaching.  相似文献   

12.
Plasma tissue-type plasminogen activator (t-PA) is cleared rapidly in vivo by the liver. Previous studies with the human hepatoma cell line HepG2 have identified a clearance system for t-PA modulated by plasminogen activator inhibitor type 1 (PAI-1). In the present study, a rat hepatoma cell line MH1C1 is shown to contain a PAI-1-independent t-PA clearance system. At 4 degrees C, binding of 125I-t-PA to MH1C1 cells was rapid, specific, and saturable. Scatchard analysis of the binding data yielded a mean estimate of 105,000 high affinity binding sites per cell (Kd = 4.1 nM). When the bound ligand was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the majority (about 90%) of the specific binding was in the form of uncomplexed 125I-t-PA. This is in contrast to HepG2 cells in which specific binding was mainly in the form of a sodium dodecyl sulfate-stable 125I-t-PA.PAI-1 complex. When availability of matrix-associated PAI-1 was blocked by preincubation with anti-PAI-1 antibody or removed by elastase treatment, specific 125I-t-PA binding to MH1C1 cells was unaffected, whereas most of the specific 125I-t-PA binding to HepG2 cells was abolished. Furthermore, when the active site of t-PA was inactivated with diisopropyl fluorophosphate, the diisopropyl fluorophosphate-t-PA specifically competed for binding of 125I-t-PA to MH1C1 cells, but failed to block specific 125I-t-PA binding to HepG2 cells. At 37 degrees C, PAI-1-independent t-PA binding to MH1C1 cells was followed by ligand uptake and degradation with kinetics similar to that seen in HepG2 cells. Chemical cross-linking of t-PA to MH1C1 cells revealed a specific t-PA binding protein with a molecular mass of about 500,000 daltons. Ligand-receptor complexes generated by chemical cross-linking were immunoprecipitable by anti-t-PA antibody but not by anti-PAI-1 antibody, further supporting the finding that binding of t-PA to MH1C1 cells is PAI-1-independent.  相似文献   

13.
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators.  相似文献   

14.
The efficient inactivation of urokinase plasminogen activator (uPA) by plasminogen activator inhibitor type 2 (PAI-2) at the surface of carcinoma cells is followed by rapid endocytosis of the uPA-PAI-2 complex. We now show that one pathway of this receptor-mediated endocytosis is mediated via the low density lipoprotein receptor-related protein (LRP) in prostate cancer cells. Detailed biochemical analyses using ligand binding assays and surface plasmon resonance revealed a novel and distinct interaction mechanism between native, human LRP and uPA-PAI-2. As reported previously for PAI-1, inhibition of uPA by PAI-2 significantly increased the affinity of the complex for LRP (K(D) of 36 nm for uPA-PAI-2 versus 200 nm for uPA). This interaction was maintained in the presence of uPAR, confirming the validity of this interaction at the cell surface. However, unlike PAI-1, no interaction was observed between LRP and PAI-2 in either the stressed or the relaxed conformation. This suggests that the uPA-PAI-2-LRP interaction is mediated by site(s) within the uPA molecule alone. Thus, as inhibition of uPA by PAI-2 resulted in accelerated clearance of uPA from the cell surface possibly via its increased affinity for LRP, this represents a mechanism through which PAI-2 can clear proteolytic activity from the cell surface. Furthermore, lack of a direct interaction between PAI-2 and LRP implies that downstream signaling events initiated by PAI-1 may not be activated by PAI-2.  相似文献   

15.
Complement component 3 (C3) and alpha(2)-macroglobulin evolved from a common, evolutionarily old, ancestor gene. Low density lipoprotein-receptor-related protein/alpha(2)-macroglobulin receptor (LRP/alpha(2)MR), a member of the low density lipoprotein receptor family, is responsible for the clearance of alpha(2)-macroglobulin-protease complexes. In this study, we examined whether C3 has conserved affinity for LRP/alpha(2)MR. Ligand blot experiments with human (125)I-C3 on endosomal proteins show binding to a 600-kDa protein, indistinguishable from LRP/alpha(2)MR by the following criteria: it is competed by receptor-associated protein (the 39-kDa receptor-associated protein that impairs binding of all ligands to LRP/alpha(2)MR) and by lactoferrin and Pseudomonas exotoxin, other well known ligands of the multifunctional receptor. Binding of C3 is sensitive to reduction of the receptor and is Ca(2+)-dependent. All these features are typical for cysteine-rich binding repeats of the low density lipoprotein receptor family. In LRP/alpha(2)MR, they are found in four cassettes (2, 8, 10, and 11 repeats). Ligand blotting to chicken LR8 demonstrates that a single 8-fold repeat is sufficient for binding. Confocal microscopy visualizes initial surface labeling of human fibroblasts incubated with fluorescent labeled C3, which changes after 5 min to an intracellular vesicular staining pattern that is abolished in the presence of receptor-associated protein. Cell uptake is abolished in mouse fibroblasts deficient in LRP/alpha(2)MR. Native plasma C3 is not internalized. We demonstrate that the capacity to internalize C3 is saturable and exhibits a K(D) value of 17 nM. After intravenous injection, rat hepatocytes accumulate C3 in sedimentable vesicles with a density typical for endosomes. In conclusion, our ligand blot and uptake studies demonstrate the competence of the LRP/alpha(2)MR to bind and endocytose C3 and provide evidence for an LRP/alpha(2)MR-mediated system participating in C3 metabolism.  相似文献   

16.
Native human pregnancy zone protein (PZP), a close homolog of alpha 2-macroglobulin (alpha 2M), can be obtained in approximately 20% yield from pooled late pregnancy plasma or serum by a combination of polyethylene glycol precipitation, euglobulin precipitation, DEAE-Sephacel chromatography, zinc-chelate affinity chromatography, and negative affinity chromatography on insolubilized antibodies against human serum proteins. Both proteins are similarly organized as disulfide-bridged dimers of 360 kDa containing 180-kDa subunits. These dimers constitute the proteinase-binding units of PZP, and in contrast to alpha 2M, they appear to be only loosely associated, indicating a subtle difference in the quaternary structure of these alpha-macroglobulins. The preparations contain functionally intact beta-cysteinyl-gamma-glutamyl thiol esters, located in the same nonapeptide sequence as found in alpha 2M, and form complexes with a variety of proteinases in which a large fraction of the proteinase is bound covalently. Proteinases bound to PZP are still active and poorly accessible to reaction with large inhibitors like alpha 1-proteinase inhibitor. The structural and functional features of PZP indicate that PZP and alpha 2M, although extremely similar, may have different yet overlapping sets of proteinases as targets. It is possible that PZP mainly controls the activity of cellular proteinases released under conditions of increased cellular turnover and that PZP could be the human equivalent to the acute phase alpha-macroglobulins known in other species.  相似文献   

17.
Human glomerular epithelial cells (GECs) in culture synthesize single-chain, urokinase-type plasminogen activator (SC-uPA), tissue-type plasminogen activator (t-PA), and plasminogen activator inhibitor 1 (PAI-1) and possess specific membrane-binding sites for u-PA. Using purified 125I-alpha thrombin, we demonstrate here the presence of two populations of specific binding sites for thrombin on GECs (1.Kd = 4.3 +/- 1.0 x 10(-10) M, 5.4 +/- 1.4 x 10(4) M sites per cell, 2. Kd = 1.6 +/- 0.5 x 10(-8) M, 7.9 +/- 1.8 x 10(5) sites per cell). Purified human alpha thrombin promoted the proliferation of GECs and induced a time- and dose-dependent increase of SC-uPA, t-PA, and PAI-1 antigens released by GECs. Thrombin-mediated increase in antigen was paralleled by an increase in the levels of corresponding u-PA and PAI-1 messenger RNA. In contrast, thrombin decreased u-PA activity in conditioned medium. This discrepancy between u-PA antigen and u-PA activity was explained by a limited proteolysis of SC-uPA by thrombin, leading to a two-chain form detected by immunoblotting and that could not be activated by plasmin. Thrombin also decreased the number of u-PA binding sites on GECs (p less than 0.05) without changing receptor affinity. Hirudin inhibited the binding and the cellular effects of thrombin, whereas thrombin inactivated by diisopropylfluorophosphate had no effect, indicating that both membrane binding and catalytic activity of thrombin were required. We conclude that thrombin, through specific membrane receptors, stimulates proliferation of GECs and decreases the fibrinolytic activity of GECs both at the cell surface and in the conditioned medium. These results suggest that thrombin could be involved in the pathogenesis of extracapillary proliferation and persistency of fibrin deposits in crescentic glomerulonephritis.  相似文献   

18.
A new, easier and efficient purification method, using Sephacryl and DEAE-Sephacel, of the C-terminal fragment of two alpha-macroglobulins, alpha(2)-M and PZP, is presented. Two larger peptides were identified for each protein as the C-terminal fragment, with molecular weights of approximately 30 kDa and the N-terminal sequences were determined to be SSTQDTV for alpha(2)-M and VALHLS for PZP. The smaller peptides with molecular weights of 18 kDa correspond to a shorter C-terminal sequence of these proteins, and they were determined to be EEFPFA for alpha(2)-M and ALKVQTV for PZP, with no interfering sequences detected. The results confirmed the discriminatory capacity of the purification procedure and the purity of the fragments. This new methodology facilitates biological studies of alpha-macroglobulins, and will enable elucidation of the role the C-terminal region may exert to eliminate alpha-macroglobulin-proteinases complexes from the circulation by the LRP/receptor.  相似文献   

19.
Human pregnancy zone protein (PZP) is a major pregnancy-associated plasma protein, strongly related to alpha 2-macroglobulin (alpha 2M). Its properties and its reactions with a number of enzymes, particularly chymotrypsin, and with methylamine have been investigated. It is concluded that native PZP molecules are dimers of disulfide-bridged 180-kDa subunits and that proteinase binding results in covalent 1:1 (tetrameric)PZP-enzyme complexes. Native PZP is unstable, and storage should be avoided, but when kept unfrozen at 0 degree C most PZP preparations stay native 1-3 months. The reaction of PZP with chymotrypsin involves (i) proteolysis of bait regions, (ii) cleavage of beta-cysteinyl-gamma-glutamyl thiol ester groups, (iii) some change of the conformation and quaternary structure of PZP, and (iv) the formation of covalent 1:1 chymotrypsin-PZP(tetramer) complexes in which chymotrypsin is active but shows less activity than free chymotrypsin. The emission spectra of intrinsic fluorescence show significant differences between the PZP-chymotrypsin complex and its native components, whereas no differences are observed between methylamine-reacted PZP and native PZP. Methylamine reacts with the beta-cysteinyl-gamma-glutamyl thiol ester groups of PZP in a second-order process with k = (13.6 +/- 0.5) M-1 s-1, pH 7.6, 25 degrees C. The reaction product is PZP(dimers); no PZP(tetramers) are formed. The proteinase-binding specificity of PZP is far more restricted than that of alpha 2M. Certain chymotrypsin-like and trypsin-like enzymes are bound much less efficiently than is chymotrypsin itself.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Human pregnancy zone protein (PZP), related to human alpha 2-macroglobulin, forms dimeric/tetrameric (360/720 kDa) species. PZP binds proteinases which cause the cleavage of internal thiol esters in the molecule. Both the binding of proteinases, i.e. chymotrypsin, (CT) to PZP, forming PZP.CT complexes, or reaction with methylamine (MA) forming PZP.MA complexes, cause transition to a new similar conformational state. Reactivity of selected monoclonal antibodies against PZP towards the three PZP derivatives demonstrated differences in the reactivity pattern. PZP and PZP.MA share one determinant, which is missing on the PZP.CT complex. PZP after transition to PZP.CT, but not to PZP.MA, presents a neodeterminant detected by one of six monoclonal antibodies. The findings demonstrate that at least three different conformational states exist for PZP and its derivatives. Access to discriminating immunochemical tools makes possible an evaluation of the relative abundance of the different complexes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号