首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Branched chain 2-oxo-acid dehydrogenase complex of rat liver   总被引:5,自引:0,他引:5  
  相似文献   

2.
In rats fed a high-protein diet, the branched-chain 2-oxo-acid dehydrogenase complex in liver was essentially fully active and its activity state was unaffected by subsequent starvation for 48 h. Feeding with a low-protein diet led to a decrease in the activity state which was essentially reversed by 48 h of starvation. In heart, the enzyme was primarily inactive (activity state 18%) in rats fed a high-protein diet, with both low-protein diet and starvation leading to a further decrease in the activity state.  相似文献   

3.
In rats fed a high-protein diet, the branched-chain 2-oxo-acid dehydrogenase complex in liver was essentially fully acitve and its activity state was unaffected by subsequent starvation for 48 h. Feeding with a low-protein diet led to a decrease in the activity state which was essentially reversed by 48 h of starvation. In heart, the enzyme was primarily inactive (activity state 18%) in rats fed a high-protein diet, with both low-protein diet and starvation leading to a further decrease in the activity state.  相似文献   

4.
Tryptic [32P]phosphopeptides were prepared from [32P]phosphorylated ox-kidney branched-chain complex and analysed by high-voltage paper electrophoresis at pH 1.9. In the maximally phosphorylated complex 3 tryptic [32P]phosphopeptides were identified (TA, TB, TC). RF-values relative to N6-dinitrophenyllysine were (mean ± SEM for 25 obs.): TA, 1.53 ± 0.03; TB, 1.07 ± 0.02; TC, 0.65 ± 0.01. Relative rates of phosphorylation were TA> TB> TC. Phosphorylation of TA reached a maximum when about 66% of the complex was inactivated. Phosphorylation of TB and TC was associated mainly with 66–95% inactivation of the complex.  相似文献   

5.
The phosphorylation of NADP-specific isocitrate dehydrogenase in a wild-type and in an adenylate cyclase deletion mutant of Escherichia coli has been investigated. The results obtained clearly indicate that cyclic AMP is not required for the phosphorylation reaction per se, not is it for the synthesis or possible activation of the phosphoprotein kinase in this organism. This data are in contrast to results observed in Salmonella typhimurium, and indicate that important differences exist in the phosphorylation of the isocitrate dehydrogenase in these two organisms.  相似文献   

6.
1. Antibodies against the E1b and E2b components of bovine branched-chain alpha-ketoacid (BCKA) dehydrogenase (BCKAD) complex completely inhibited BCKA oxidation in mammalian and avian mitochondria. BCKA oxidation by salmonid mitochondria was less affected and the enzyme from Pseudomonas putida was unaffected. 2. In rodents, anti-E1b E2b IgG inhibited oxidation of all three BCKA in a similar dose-dependent manner: oxidation of alpha-ketobutyrate and alpha-keto-y-methiolbutyrate was also partially inhibited. 3. Except for the salmonid BCKAD, a similar Mr for the E2b and E1b alpha proteins was observed in these species. 4. After digestion with V-8 protease similar immunoreactive peptides were observed for the human and rodent complex.  相似文献   

7.
Branched-chain 2-oxo acid dehydrogenase (BCODH) kinase is responsible for inactivation of BCODH complex by phosphorylation of the complex. Activity of the kinase towards its substrate, the E1 component of the BCODH complex, is known dependent upon binding of the kinase to the E2 component. The possible existence as well as importance of unbound mitochondrial BCODH kinase has been largely ignored in previous studies. Evidence is presented here for the existence of free and bound BCODH kinase in the matrix space of rat liver mitochondria. Furthermore, in female rats, in which diurnal variations in liver BCODH complex and kinase activities occur, the amount of the kinase bound to the complex changes between morning and evening without a change in total kinase protein. Activity of the kinase correlates with the amount of bound rather than total kinase protein, suggesting only the bound form is active. Changes in amount of kinase bound and therefore active appear responsible for diurnal variation in BCODH complex activity in the female rat. We propose that change in the amount of bound BCODH kinase is a key feature of a novel regulatory mechanism for determining the activity state of the BCODH complex.  相似文献   

8.
The gene coding for the transacylase subunit (DBT) of the human branched-chain keto acid dehydrogenase complex was localized to chromosome 1 by probing panels of human x mouse chromosome hybrids with an E2 cDNA amplified by the polymerase chain reaction. Additional data with two hybrids containing chromosome 1 fragments suggest that the DBT gene is located on the short arm (1pter----p21) of the chromosome.  相似文献   

9.
Hepatocytes, isolated from rats fed a low-protein diet, were incubated with [32P]Pi and the phosphoproteins analysed. Immunoprecipitation using antibody against El of branched-chain 2-oxo acid dehydrogenase complex demonstrated phosphorylation of the alpha-subunit of El. Analysis of the tryptic phosphopeptides from the alpha-subunit indicated that two sites were phosphorylated. 4-methyl 2-oxopentanoate and DL-2-chloro 4-methylpentanoate decreased labelling of both sites. No major direct effects of several hormones on phosphorylation of branched-chain 2-oxo acid dehydrogenase was observed.  相似文献   

10.
Bovine kidney mitochondrial branched-chain 2-oxoacid dehydrogenase complex is inactivated by covalent phosphorylation catalysed by a specific protein kinase intrinsic to the complex. It has been shown previously [Cook, K.G., Lawson, R. and Yeaman, S.J. (1983) FEBS Lett. 157, 59-62] that tryptic digestion of phosphorylated complex releases three phosphopeptides, indicative of multisite phosphorylation. In this communication we report several findings. (a) These three tryptic peptides contain only two sites of phosphorylation which are closely grouped on the alpha subunit of the E1 component of the complex. (b) The amino acid sequence of the phosphorylated region has been determined. (c) Conditions have been developed which allow investigation of the phosphorylation and dephosphorylation of the two sites. (d) Both sites can be dephosphorylated at significant rates in vitro by two cytosolic protein phosphatases, namely phosphatases 2A and 2C. Dephosphorylation of one site correlates closely with re-activation of the complex.  相似文献   

11.
12.
An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state.  相似文献   

13.
Branched-chain 2-oxo acid dehydrogenase complex was resolved into component E1 and E2-kinase subcomplex by gel filtration in the presence of 1 M-NaC1. Essentially all the original activity of the complex can be regained after reconstitution of the component enzymes, reassociation being a rapid process. The specific activities of E1 and E2 were 25.1 and 19.0 units/mg respectively. Non-phosphorylated active E1 has an approx. 6-fold higher affinity for E2 than does phosphorylated E1. The components of the branched-chain 2-oxo acid dehydrogenase complex do not crossreact with the respective components from the pyruvate dehydrogenase complex. The significance of these results and of the tight association of the kinase with E2 are discussed.  相似文献   

14.
Highly purified branched-chain 2-oxo acid dehydrogenase complex (BCOADC) oxidizes 4-methylthio-2-oxobutyrate and 2-oxobutyrate, with Km values of 67 microM and 18 microM respectively. The Vmax. for oxidation of these substrates is 27% and 53% respectively of that for 3-methyl-2-oxobutyrate. Highly purified pyruvate dehydrogenase complex (PDC) oxidizes 2-oxobutyrate (Km 100 microM; Vmax. 49% of that for pyruvate) but not 4-methylthio-2-oxobutyrate, whereas 2-oxoglutarate dehydrogenase complex will not utilize either 2-oxo acid as substrate. BCOADC kinase is inhibited by both 4-methylthio-2-oxobutyrate and 2-oxobutyrate, with half-maximal inhibition by 45 microM and 50 microM respectively. Phosphorylation of BCOADC in isolated adipocytes is inhibited by both 4-methylthio-2-oxobutyrate and 2-oxobutyrate, consistent with their inhibitory action of BCOADC kinase. Phosphorylation of PDC is decreased by 2-oxobutyrate, but not by 4-methylthio-2-oxobutyrate.  相似文献   

15.
A novel class of inhibitors for the branched-chain 2-oxo acid dehydrogenase (BCOAD) complex has been synthesized and studied. The sodium salts of arylidenepyruvates: e.g., furfurylidenepyruvate (compound I), 4-(3-thienyl)-2-oxo-3-butenoate (compound II), cinnamalpyruvate (compound III) and 4-(2-thienyl)-2-oxo-3-butenoate (compound IV) inhibit the overall and kinase reactions of the BCOAD complex from bovine liver. Inhibitions of the overall reaction occur at the decarboxylase (E1) step as determined by a spectrophotometric assay with 2,6-dichlorophenolindophenol as an electron acceptor. Inhibition of the E1 reaction by compound I (Ki = 0.5 microM) is competitive, whereas inhibitions by compounds II (Ki = 150 microM) and III (Ki = 500 microM) are non-competitive with respect to the substrate 2-oxoisovalerate. The Km value for 2-oxoisovalerate is 6.7 microM as measured by the E1 assay. Inhibition of the E1 step by compounds I, II and III are reversible at low inhibitor concentrations based on the Michaelis-Menten kinetics observed. By comparison, compound I does not significantly inhibit pyruvate and 2-oxoglutarate dehydrogenase complexes. The arylidenepyruvates (compounds I, II and IV) inhibit the BCOAD kinase reaction in a manner similar to the substrate 2-oxo acids. The inhibition of the kinase reaction by compound I is non-competitive with respect to ATP, with an apparent Ki value of 4.5 mM. The results suggest that arylidenepyruvates may be useful probes for elucidating the reaction mechanisms of the BCOAD complex and its kinase.  相似文献   

16.
Acid and alkaline phosphatase activity, determined by the hydrolysis of p-nitrophenyl phosphate, was found in preparations of microtubules purified from bovine brain by temperature-dependent assembly-disassembly and ion-exchange chromatography. Phosphocellulose-purified tubulin contained an associated acid phosphatase activity, stimulated by Mg2+ and by Zn2+. Alkaline phosphatase activity with a pH optimum of 10.4 was measured in a fraction of microtubule-associated proteins (MAPs). Kinetics and the effects of sodium fluoride, sodium tartrate, sulfhydryl-blocking agents, EDTA and Zn2+ are reported.  相似文献   

17.
Little is known of the plant branched-chain alpha-ketoacid dehydrogenase complex. We have undertaken a detailed study of the structure of the dihydrolipoyl acyltransferase (BCE2) subunit that forms the core of the complex, to which two other enzymes attach. Mature Arabidopsis thaliana BCE2 was expressed in Escherichia coli. The soluble recombinant protein was purified using a Superose 6 size-exclusion column to >90% homogeneity and was catalytically active. The recombinant protein formed a stable complex with a native molecular mass of 0.95 MDa and an S coefficient of 19.4, consistent with formation of a 24-mer. Negative-staining transmission electron microscopy of the recombinant protein confirmed that BCE2 forms a core with octagonal symmetry. Despite divergence of mammalian and plant BCE2s, there is clearly conservation of structure that is independent of primary sequence.  相似文献   

18.
The ability of glucagon (10 nM) to increase hepatocyte intracellular cyclic AMP concentrations was reduced markedly by the tumour-promoting phorbol ester TPA (12-O-tetradecanoyl phorbol-13-acetate). The half-maximal inhibitory effect occurred at 0.14 ng/ml TPA. This action occurred in the presence of the cyclic AMP phosphodiesterase inhibitor isobutylmethylxanthine (1 mM) indicating that TPA inhibited glucagon-stimulated adenylate cyclase activity. TPA did not affect either the binding of glucagon to its receptor or ATP concentrations within the cell. TPA did inhibit the increase in intracellular cyclic AMP initiated by the action of cholera toxin (1 microgram/ml) under conditions where phosphodiesterase activity was blocked. TPA did not inhibit glucagon-stimulated adenylate cyclase activity in a broken plasma membrane preparation unless Ca2+, phosphatidylserine and ATP were also present. It is suggested that TPA exerts its inhibitory effect on adenylate cyclase through the action of protein kinase C. This action is presumed to be exerted at the point of regulation of adenylate cyclase by guanine nucleotides.  相似文献   

19.
1. The effect of the branched-chain amino acids, namely leucine, isoleucine and valine and their corresponding 2-oxo acids on the metabolism of 2-oxoglutarate by developing rat and human brain preparations was investigated. 2. The decarboxylation of 2-oxo[1-(14)C]glutarate to (14)CO(2) by mitochondria from adult rat brain was inhibited by the branched-chain 2-oxo acids whereas the branched-chain amino acids had no inhibitory effect on this process. 3. The activity of 2-oxoglutarate dehydrogenase complex was about 0.2unit/g of brain from 2-day-old rats and increased by about fourfold reaching an adult value by the end of the third postnatal week. 4. The K(m) value for 2-oxoglutarate of the 2-oxoglutarate dehydrogenase complex in rat and human brain was 100 and 83mum respectively. 5. The branched-chain 2-oxo acids competitively inhibited this enzyme from suckling and adult rats brains as well as from foetal and adult human brains, whereas the branched-chain amino acids had no effect on this enzyme. 6. Approximate K(i) values for the branched-chain 2-oxo acids found for this enzyme were in the range found for these 2-oxo acids in plasma from patients with maple-syrup-urine disease. 7. The possible significance of the inhibition by the branched-chain 2-oxo acids of the 2-oxoglutarate dehydrogenase complex in brains of untreated patients with maple-syrup-urine disease is discussed in relation to the energy metabolism and the biosynthesis of lipids from ketone bodies.  相似文献   

20.
Branched-chain alpha-keto acid dehydrogenase (BCKDH) complex catalyzes the committed step of branched-chain amino acid catabolism, and its activity is regulated by the phosphorylation-dephosphorylation cycle. BCKDH kinase is responsible for inactivation of the complex by phosphorylation. In the present study, we examined acute exercise on the activity state of the complex as well as the amounts of bound and free forms of the kinase in rat liver and skeletal muscle. Acute exercise activated the complex in association with a decrease in the bound form of kinase in both liver and muscle. The free form of kinase in both tissues was slightly increased but the total amount of the kinase was not affected by acute exercise. The protein amount ratio of bound kinase to E1beta component of the complex was much higher in muscle than in the liver of rats, reflecting the low activity state of the complex in muscle. These results suggest that the amount of the bound kinase plays an important role in regulation of the activity state of the complex. We propose that the alteration in the amount of bound BCKDH kinase is a short-term regulatory mechanism for determining the activity of BCKDH complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号