首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Pfam Protein Families Database   总被引:17,自引:0,他引:17       下载免费PDF全文
Pfam is a large collection of protein multiple sequence alignments and profile hidden Markov models. Pfam is available on the World Wide Web in the UK at http://www.sanger.ac.uk/Software/Pfam/, in Sweden at http://www.cgb.ki.se/Pfam/, in France at http://pfam.jouy.inra.fr/ and in the US at http://pfam.wustl.edu/. The latest version (6.6) of Pfam contains 3071 families, which match 69% of proteins in SWISS-PROT 39 and TrEMBL 14. Structural data, where available, have been utilised to ensure that Pfam families correspond with structural domains, and to improve domain-based annotation. Predictions of non-domain regions are now also included. In addition to secondary structure, Pfam multiple sequence alignments now contain active site residue mark-up. New search tools, including taxonomy search and domain query, greatly add to the functionality and usability of the Pfam resource.  相似文献   

2.
Recent progress in predicting RNA structure is moving towards filling the ‘gap’ in 2D RNA structure prediction where, for example, predicted internal loops often form non-canonical base pairs. This is increasingly recognized with the steady increase of known RNA 3D modules. There is a general interest in matching structural modules known from one molecule to other molecules for which the 3D structure is not known yet. We have created a pipeline, metaRNAmodules, which completely automates extracting putative modules from the FR3D database and mapping of such modules to Rfam alignments to obtain comparative evidence. Subsequently, the modules, initially represented by a graph, are turned into models for the RMDetect program, which allows to test their discriminative power using real and randomized Rfam alignments. An initial extraction of 22 495 3D modules in all PDB files results in 977 internal loop and 17 hairpin modules with clear discriminatory power. Many of these modules describe only minor variants of each other. Indeed, mapping of the modules onto Rfam families results in 35 unique locations in 11 different families. The metaRNAmodules pipeline source for the internal loop modules is available at http://rth.dk/resources/mrm.  相似文献   

3.
The Pfam protein families database   总被引:105,自引:12,他引:93  
Pfam is a large collection of protein multiple sequence alignments and profile hidden Markov models. Pfam is available on the WWW in the UK at http://www.sanger.ac.uk/Software/Pfam/, in Sweden at http://www.cgr.ki.se/Pfam/ and in the US at http://pfam.wustl.edu/. The latest version (4.3) of Pfam contains 1815 families. These Pfam families match 63% of proteins in SWISS-PROT 37 and TrEMBL 9. For complete genomes Pfam currently matches up to half of the proteins. Genomic DNA can be directly searched against the Pfam library using the Wise2 package.  相似文献   

4.
Pfam is a collection of multiple alignments and profile hidden Markov models of protein domain families. Release 3.1 is a major update of the Pfam database and contains 1313 families which are available on the World Wide Web in Europe at http://www.sanger.ac.uk/Software/Pfam/ and http://www.cgr.ki.se/Pfam/, and in the US at http://pfam.wustl.edu/. Over 54% of proteins in SWISS-PROT-35 and SP-TrEMBL-5 match a Pfam family. The primary changes of Pfam since release 2.1 are that we now use the more advanced version 2 of the HMMER software, which is more sensitive and provides expectation values for matches, and that it now includes proteins from both SP-TrEMBL and SWISS-PROT.  相似文献   

5.
Semiautomated improvement of RNA alignments   总被引:1,自引:0,他引:1  
We have developed a semiautomated RNA sequence editor (SARSE) that integrates tools for analyzing RNA alignments. The editor highlights different properties of the alignment by color, and its integrated analysis tools prevent the introduction of errors when doing alignment editing. SARSE readily connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster: the mir-399 RNA, vertebrate telomase RNA (vert-TR), bacterial transfer-messenger RNA (tmRNA), and the signal recognition particle (SRP) RNA. The general use of the method is illustrated by the ability to accommodate pseudoknots and handle even large and divergent RNA families. The open architecture of the SARSE editor makes it a flexible tool to improve all RNA alignments with relatively little human intervention. Online documentation and software are available at (http://sarse.ku.dk).  相似文献   

6.

Background  

Most non-coding RNA families exert their function by means of a conserved, common secondary structure. The Rfam data base contains more than five hundred structurally annotated RNA families. Unfortunately, searching for new family members using covariance models (CMs) is very time consuming. Filtering approaches that use the sequence conservation to reduce the number of CM searches, are fast, but it is unknown to which sacrifice.  相似文献   

7.
SUMMARY: The DBAli database includes approximately 35000 alignments of pairs of protein structures from SCOP (Lo Conte et al., Nucleic Acids Res., 28, 257-259, 2000) and CE (Shindyalov and Bourne, Protein Eng., 11, 739-747, 1998). DBAli is linked to several resources, including Compare3D (Shindyalov and Bourne, http://www.sdsc.edu/pb/software.htm, 1999) and ModView (Ilyin and Sali, http://guitar.rockefeller.edu/ModView/, 2001) for visualizing sequence alignments and structure superpositions. A flexible search of DBAli by protein sequence and structure properties allows construction of subsets of alignments suitable for a number of applications, such as benchmarking of sequence-sequence and sequence-structure alignment methods under a variety of conditions. AVAILABILITY: http://guitar.rockefeller.edu/DBAli/  相似文献   

8.
MOTIVATION: The best quality multiple sequence alignments are generally considered to derive from structural superposition. However, no previous work has studied the relative performance of profile hidden Markov models (HMMs) derived from such alignments. Therefore several alignment methods have been used to generate multiple sequence alignments from 348 structurally aligned families in the HOMSTRAD database. The performance of profile HMMs derived from the structural and sequence-based alignments has been assessed for homologue detection. RESULTS: The best alignment methods studied here correctly align nearly 80% of residues with respect to structure alignments. Alignment quality and model sensitivity are found to be dependent on average number, length, and identity of sequences in the alignment. The striking conclusion is that, although structural data may improve the quality of multiple sequence alignments, this does not add to the ability of the derived profile HMMs to find sequence homologues. SUPPLEMENTARY INFORMATION: A list of HOMSTRAD families used in this study and the corresponding Pfam families is available at http://www.sanger.ac.uk/Users/sgj/alignments/map.html Contact: sgj@sanger.ac.uk  相似文献   

9.
MOTIVATION: SAM-T99 is an iterative hidden Markov model-based method for finding proteins similar to a single target sequence and aligning them. One of its main uses is to produce multiple alignments of homologs of the target sequence. Previous tests of SAM-T99 and its predecessors have concentrated on the quality of the searches performed, not on the quality of the multiple alignment. In this paper we report on tests of multiple alignment quality, comparing SAM-T99 to the standard multiple aligner, CLUSTALW. RESULTS: The paper evaluates the multiple-alignment aspect of the SAM-T99 protocol, using the BAliBASE benchmark alignment database. On these benchmarks, SAM-T99 is comparable in accuracy with ClustalW. AVAILABILITY: The SAM-T99 protocol can be run on the web at http://www.cse.ucsc.edu/research/compbio/HMM-apps/T99-query.html and the alignment tune-up option described here can be run at http://www.cse.ucsc.edu/research/compbio/HMM-apps/T99-tuneup.html. The protocol is also part of the standard SAM suite of tools. http://www.cse.ucsc.edu/research/compbio/sam/  相似文献   

10.
SUMMARY: The Kinase Sequence Database (KSD) located at http://kinase.ucsf.edu/ksd contains information on 290 protein kinase families derived by profile-based clustering of the non-redundant list of sequences obtained from a GenBank-wide search. Included in the database are a total of 5,041 protein kinases from over 100 organisms. Clustering into families is based on the extent of homology within the kinase catalytic domain (250-300 residues in length). Alignments of the families are viewed by interactive Excel-based sequence spreadsheets. In addition, KSD features evolutionary trees derived for each family and detailed information on each sequence as well as links to the corresponding GenBank entries. Sequence manipulation tools, such as evolutionary tree generation, novel sequence assignment, and statistical analysis, are also provided. AVAILABILITY: The kinase sequence database is a web-based service accessible at http://kinase.ucsf.edu/ksd CONTACT: buzko@cmp.ucsf.edu; shokat@cmp.ucsf.edu/ksd  相似文献   

11.
RNA atomic resolution structures have revealed the existance of different families of basepair interactions, each of which with its own isosteric sub-families. Ribostral (Ribonucleic Structural Aligner) is a user-friendly framework for analyzing, evaluating and viewing RNA sequence alignments with at least one available atomic resolution structure. It is the first of its kind that makes direct and easy- to-understand superposition of the isostericity matrices of basepairs observed in the structure onto sequence alignments, easily indicating allowed and unallowed substitutions at each BP position. Potential mistakes in the alignments can then be corrected using other sequence editing software. Ribostral has been developed and tested under Windows XP, and is capable of running on any PC or MAC platform with MATLAB 7.1 (SP3) or higher installed version. A stand-alone version is also available for the PC platform. AVAILABILITY: http://rna.bgsu.edu/ribostral.  相似文献   

12.
The online encyclopedia Wikipedia has become one of the most important online references in the world and has a substantial and growing scientific content. A search of Google with many RNA-related keywords identifies a Wikipedia article as the top hit. We believe that the RNA community has an important and timely opportunity to maximize the content and quality of RNA information in Wikipedia. To this end, we have formed the RNA WikiProject (http://en.wikipedia.org/wiki/Wikipedia:WikiProject_RNA) as part of the larger Molecular and Cellular Biology WikiProject. We have created over 600 new Wikipedia articles describing families of noncoding RNAs based on the Rfam database, and invite the community to update, edit, and correct these articles. The Rfam database now redistributes this Wikipedia content as the primary textual annotation of its RNA families. Users can, therefore, for the first time, directly edit the content of one of the major RNA databases. We believe that this Wikipedia/Rfam link acts as a functioning model for incorporating community annotation into molecular biology databases.  相似文献   

13.
Cheng H  Kim BH  Grishin NV 《Proteins》2008,70(4):1162-1166
We describe MALIDUP (manual alignments of duplicated domains), a database of 241 pairwise structure alignments for homologous domains originated by internal duplication within the same polypeptide chain. Since duplicated domains within a protein frequently diverge in function and thus in sequence, this would be the first database of structurally similar homologs that is not strongly biased by sequence or functional similarity. Our manual alignments in most cases agree with the automatic structural alignments generated by several commonly used programs. This carefully constructed database could be used in studies on protein evolution and as a reference for testing structure alignment programs. The database is available at http://prodata.swmed.edu/malidup.  相似文献   

14.
The RDP (Ribosomal Database Project).   总被引:53,自引:1,他引:53       下载免费PDF全文
The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous FTP (rdp.life.uiuc.edu), electronic mail (server@rdp.life.uiuc.edu), gopher (rdpgopher.life.uiuc.edu) and WWW (http://rdpwww.life.uiuc.edu/ ). The electronic mail and WWW servers provide ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree.  相似文献   

15.
The Ribonuclease P Database.   总被引:22,自引:10,他引:12       下载免费PDF全文
Ribonuclease P is responsible for the 5'-maturation of tRNA precursors. Ribonuclease P is a ribonucleoprotein, and in bacteria (and some Archaea) the RNA subunit alone is catalytically active in vitro, i.e. it is a ribozyme. The Ribonuclease P Database is a compilation of ribonuclease P sequences, sequence alignments, secondary structures, three-dimensional models and accessory information, available via the World Wide Web at the following URL: http://www.mbio.ncsu.edu/RNaseP/home .html  相似文献   

16.
The Intronerator (http://www.cse.ucsc.edu/ approximately kent/intronerator/ ) is a set of web-based tools for exploring RNA splicing and gene structure in Caenorhabditis elegans. It includes a display of cDNA alignments with the genomic sequence, a catalog of alternatively spliced genes and a database of introns. The cDNA alignments include >100 000 ESTs and almost 1000 full-length cDNAs. ESTs from embryos and mixed stage animals as well as full-length cDNAs can be compared in the alignment display with each other and with predicted genes. The alt-splicing catalog includes 844 open reading frames for which there is evidence of alternative splicing of pre-mRNA. The intron database includes 28 478 introns, and can be searched for patterns near the splice junctions.  相似文献   

17.
Pfam contains multiple alignments and hidden Markov model based profiles (HMM-profiles) of complete protein domains. The definition of domain boundaries, family members and alignment is done semi-automatically based on expert knowledge, sequence similarity, other protein family databases and the ability of HMM-profiles to correctly identify and align the members. Release 2.0 of Pfam contains 527 manually verified families which are available for browsing and on-line searching via the World Wide Web in the UK at http://www.sanger.ac.uk/Pfam/ and in the US at http://genome.wustl. edu/Pfam/ Pfam 2.0 matches one or more domains in 50% of Swissprot-34 sequences, and 25% of a large sample of predicted proteins from the Caenorhabditis elegans genome.  相似文献   

18.
Detection of remote sequence homology is essential for the accurate inference of protein structure, function and evolution. The most sensitive detection methods involve the comparison of evolutionary patterns reflected in multiple sequence alignments (MSAs) of protein families. We present PROCAIN, a new method for MSA comparison based on the combination of ‘vertical’ MSA context (substitution constraints at individual sequence positions) and ‘horizontal’ context (patterns of residue content at multiple positions). Based on a simple and tractable profile methodology and primitive measures for the similarity of horizontal MSA patterns, the method achieves the quality of homology detection comparable to a more complex advanced method employing hidden Markov models (HMMs) and secondary structure (SS) prediction. Adding SS information further improves PROCAIN performance beyond the capabilities of current state-of-the-art tools. The potential value of the method for structure/function predictions is illustrated by the detection of subtle homology between evolutionary distant yet structurally similar protein domains. ProCAIn, relevant databases and tools can be downloaded from: http://prodata.swmed.edu/procain/download. The web server can be accessed at http://prodata.swmed.edu/procain/procain.php.  相似文献   

19.
The study of non-coding RNA genes has received increased attention in recent years fuelled by accumulating evidence that larger portions of genomes than previously acknowledged are transcribed into RNA molecules of mostly unknown function, as well as the discovery of novel non-coding RNA types and functional RNA elements. Here, we demonstrate that specific properties of graphs that represent the predicted RNA secondary structure reflect functional information. We introduce a computational algorithm and an associated web-based tool (GraPPLE) for classifying non-coding RNA molecules as functional and, furthermore, into Rfam families based on their graph properties. Unlike sequence-similarity-based methods and covariance models, GraPPLE is demonstrated to be more robust with regard to increasing sequence divergence, and when combined with existing methods, leads to a significant improvement of prediction accuracy. Furthermore, graph properties identified as most informative are shown to provide an understanding as to what particular structural features render RNA molecules functional. Thus, GraPPLE may offer a valuable computational filtering tool to identify potentially interesting RNA molecules among large candidate datasets.  相似文献   

20.
The ribonuclease P database.   总被引:6,自引:4,他引:2       下载免费PDF全文
Ribonuclease P is responsible for the 5'-maturation of tRNA precursors. Ribonuclease P is a ribonucleoprotein, and in bacteria the RNA subunit alone is catalytically active in vitro , i.e., it is a ribozyme. The Ribonuclease P Database is a compilation of ribonuclease P sequences, sequence alignments, secondary structures, three-dimensional models, and accessory information, available via the World Wide Web (http: //www.mbio.ncsu.edu/RNaseP/home.html ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号