首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Edvardsen, E, Ingjer, F, and B?, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.  相似文献   

2.
We have previously developed a unique and simple procedure for assessing cardiorespiratory fitness. The present investigation was conducted to evaluate whether an aerobic index determined by torque auto-controlled system with the feedback of photoelectric pulse could sufficiently approximate the cardiorespiratory fitness represented by anaerobic threshold (AT) and maximal oxygen uptake (VO2max). Analysis of the cross-sectional data indicated that the aerobic score (AS: K (WR/Wt)/HR; where WR = mean work rate during 12-min cycling, Wt = weight, and HR = mean heart rate during 12-min cycling) determined by the torque auto-controlled system was significantly correlated with directly measured VO2/AT (r = 0.922, 76 males; r = 0.814, 34 females). Cross-validity of the predicted VO2max from the AS was significant and sufficiently high (r = 0.949, 31 males) for use in the general public. In addition, the effects of cycling or jogging training on the AS were longitudinally investigated on 17 females and 1 male. Major effects of the training were significant improvements in the AS, VO2max, and VO2/AT. Delta percentage change [(post-value - pre-value)/pre-value; delta %] in the AS was closely associated (r = 0.718, 8 females) with delta % in VO2/AT. It appears likely from the present investigation that information obtained through the use of our unique system (i.e., the AS) could provide considerably reliable estimate of cardiorespiratory fitness in both males and females.  相似文献   

3.
Seeking to develop a simple ambulatory test of maximal aerobic power (VO(2 max)), we hypothesized that the ratio of inverse foot-ground contact time (1/t(c)) to heart rate (HR) during steady-speed running would accurately predict VO(2 max). Given the direct relationship between 1/t(c) and mass-specific O(2) uptake during running, the ratio 1/t(c). HR should reflect mass-specific O(2) pulse and, in turn, aerobic power. We divided 36 volunteers into matched experimental and validation groups. VO(2 max) was determined by a treadmill test to volitional fatigue. Ambulatory monitors on the shoe and chest recorded foot-ground contact time (t(c)) and steady-state HR, respectively, at a series of submaximal running speeds. In the experimental group, aerobic fitness index (1/t(c). HR) was nearly constant across running speed and correlated with VO(2 max) (r = 0.90). The regression equation derived from data from the experimental group predicted VO(2 max) from the 1/t(c). HR values in the validation group within 8.3% and 4.7 ml O(2) x kg(-1) x min(-1) (r = 0.84) of measured values. We conclude that simultaneous measurements of foot-ground constant times and heart rates during level running at a freely chosen constant speed can provide accurate estimates of maximal aerobic power.  相似文献   

4.
Whereas novel pathways of pathological heart enlargement have been unveiled by thoracic aorta constriction in genetically modified mice, the molecular mechanisms of adaptive cardiac hypertrophy remain virtually unexplored and call for an effective and well-characterized model of physiological mechanical loading. Experimental procedures of maximal oxygen consumption (VO(2 max)) and intensity-controlled treadmill running were established in 40 female and 36 male C57BL/6J mice. An inclination-dependent VO(2 max) with 0.98 test-retest correlation was found at 25 degrees treadmill grade. Running for 2 h/day, 5 days/wk, in intervals of 8 min at 85-90% of VO(2 max) and 2 min at 50% (adjusted to weekly VO(2 max) testing) increased VO(2 max) to a plateau 49% above sedentary females and 29% in males. Running economy improved in both sexes, and echocardiography indicated significantly increased left ventricle posterior wall thickness. Ventricular weights increased by 19-29 and 12-17% in females and males, respectively, whereas cardiomyocyte dimensions increased by 20-32, and 17-23% in females and males, respectively; skeletal muscle mass increased by 12-18%. Thus the model mimics human responses to exercise and can be used in future studies of molecular mechanisms underlying these adaptations.  相似文献   

5.
The purpose of this study was to determine differences in VO2max and metabolic variables between treadmill running and treadmill skating. This study also examined VO2max responses during a continuous skating treadmill protocol and a discontinuous skating treadmill protocol. Sixteen male high school hockey players, who had a mean age of 16 +/- 1 years and were of an above-average fitness level, participated in this study. All subjects completed 4 exercise trials: a 1-hour skating treadmill familiarization trial, a treadmill running trial, and 2 randomized skating treadmill trials. Minute ventilation (VE), oxygen consumption VO2), carbon dioxide production VCO2), respiratory exchange ratio (RER), and heart rate were averaged every 15 seconds up to VO2max for each exercise test. The results showed that there was a significant difference (P < 0.05) for VO2max (mL.kg.min) and maximal VCO2 (L.min) between the running treadmill protocol and discontinuous skating treadmill protocol. There was also a significant difference for maximal RER between the discontinuous and continuous skating treadmill protocol and between the discontinuous skating treadmill protocol and running treadmill protocol. In conclusion, the running treadmill elicited a greater VO2max (mL.kg.min) than the skating treadmill did, but when it comes to specificity of ice skating, the skating treadmill may be ideal. Also, there was no significant difference between the discontinuous and continuous skating treadmill protocols. Therefore, a continuous protocol is possible on the skating treadmill without compromising correct skating position and physiologic responses. However, the continuous skating treadmill protocol should undergo validation before other scientists, coaches, and strength and conditioning professionals can apply it correctly.  相似文献   

6.
Gastric emptying is increased during running (50%-70% maximal aerobic uptake, VO2max) as compared to rest. Whether this increase varies as a function of mode (i.e. walking vs running) and intensity of treadmill exercise is unknown. To examine the gastric emptying characteristics of water during treadmill exercise performed over a wide range of intensities relative to resting conditions, 10 men ingested 400 ml of water prior to each of six 15 min exercise bouts or 15 min of seated rest. Three bouts of walking exercise (1.57 m.s-1) were performed at increasing grades eliciting approximately 28%, 41% or 56% of VO2max. On a separate day, three bouts of running (2.68 ms-1) exercise were performed at grades eliciting approximately 57%, 65% or 75% of VO2max. Gastric emptying was increased during treadmill exercise at all intensities excluding 75% VO2max as compared to rest. Gastric emptying was similar for all intensities during walking and at 57% and 65% VO2max during running. However, running at 74% VO2max decreased the volume of original drink emptied as compared to all lower exercise intensities. Stomach secretions were markedly less during running as compared to walking and rest. These data demonstrate that gastric emptying is similarly increased during both moderate intensity (approximately 28%-65% VO2max) walking or running exercise as compared to resting conditions. However, gastric emptying decreases during high intensity exercise. Increases in gastric emptying during moderate intensity treadmill exercise may be related to increases in intragastric pressure brought about by contractile activity of the abdominal muscles.  相似文献   

7.
Three groups of male subjects, average fitness (AF, N = 12), high fitness (HF, N = 7) and highly fit competitive race walkers (CRW, N = 3) performed maximal treadmill tests walking at 3.5 and 4.5 mph and running at 4.5, 5.5, 7.0, and 8.5 mph. In addition, the HF group performed a running test at 10.0 mph and the CRW group performed a walking test at 5.5 mph. All maximal oxygen uptake (VO2 max) tests with the exception of the 3.5 mph walking test (modified Balke test) were discontinuous in nature. VO2 max obtained from walking tests was similar regardless of speed within each group. Walking VO2 max was significantly lower than running VO2 max which was found to be similar over a speed range of 4.5 to 8.5 mph in the AF group. Running at 4.5 mph (HF group) and 4.5 and 5.5 mph (CRW group) resulted in lower VO2 max levels than running at speeds greater than or equal to 7.0 mph. Associated physiological variables (heart rate, ventilation, and respiratory exchange ratio) did not demonstrate a discernable pattern with reference to mode of locomotion (walking versus running) or speed. It was concluded that VO2 max elicited during walking is independent of speed and less than VO2 max obtained during running. Running VO2 max was interrelated with speed of running and state of training.  相似文献   

8.
Selective breeding for over 35 generations has led to four replicate (S) lines of laboratory house mice (Mus domesticus) that run voluntarily on wheels about 170% more than four random-bred control (C) lines. We tested whether S lines have evolved higher running performance by increasing running economy (i.e., decreasing energy spent per unit of distance) as a correlated response to selection, using a recently developed method that allows for nearly continuous measurements of oxygen consumption (VO2) and running speed in freely behaving animals. We estimated slope (incremental cost of transport [COT]) and intercept for regressions of power (the dependent variable, VO2/min) on speed for 49 males and 47 females, as well as their maximum VO2 and speeds during wheel running, under conditions mimicking those that these lines face during the selection protocol. For comparison, we also measured COT and maximum aerobic capacity (VO2max) during forced exercise on a motorized treadmill. As in previous studies, the increased wheel running of S lines was mainly attributable to increased average speed, with males also showing a tendency for increased time spent running. On a whole-animal basis, combined analysis of males and females indicated that COT during voluntary wheel running was significantly lower in the S lines (one-tailed P=0.015). However, mice from S lines are significantly smaller and attain higher maximum speeds on the wheels; with either body mass or maximum speed (or both) entered as a covariate, the statistical significance of the difference in COT is lost (one-tailed P> or =0.2). Thus, both body size and behavior are key components of the reduction in COT. Several statistically significant sex differences were observed, including lower COT and higher resting metabolic rate in females. In addition, maximum voluntary running speeds were negatively correlated with COT in females but not in males. Moreover, males (but not females) from the S lines exhibited significantly higher treadmill VO2max as compared to those from C lines. The sex-specific responses to selection may in part be consequences of sex differences in body mass and running style. Our results highlight how differences in size and running speed can account for lower COT in S lines and suggest that lower COT may have coadapted in response to selection for higher running distances in these lines.  相似文献   

9.
It has been demonstrated that leptin concentrations in obese patients may be altered by weight loss. We examined the effects of a 9-week aerobic exercise program on serum leptin concentrations in overweight women (20-50% above ideal body mass) under conditions of weight stability. Sixteen overweight women, mean (SE) age 42.75 (1.64) years, comprised the exercise group which adhered to a supervised aerobic exercise program. A graded exercise treadmill test was conducted before and after the exercise program to determine maximal oxygen uptake (VO2max) using open-circuit spirometry. The women demonstrated improved aerobic fitness (VO2max increased 12.29%), however, body fat and the body mass index did not change significantly [42.27 (1.35)-41.87 (1.33)%]. Fourteen women, age 40.57 (2.80) years, did not exercise over the same time period and served as a control group. Serum leptin levels were not significantly altered for either the exercise [28.00 (2.13)-31.04 (2.71) ng x ml(-1)] or the control group [33.24 (3.78)-34.69 (3.14) ng x mg(-1)]. The data indicate that 9 weeks of aerobic exercise improves aerobic fitness, but does not affect leptin concentrations in overweight women.  相似文献   

10.
The criteria of max VO2 and max O2D which are traditionally used in studying aerobic and anaerobic work capacity, have the different dimensions. While max VO2 is an index of the power of aerobic energy output, max O2D assesses the capacity of anaerobic sources. For a comprehensive assessment of physical working capacity of athletes, both aerobic and anaerobic capabilities should be represented in three dimensions, i.e. in indexes of power, capacity and efficiency. Experimental procedures have been developed for assessing these three parameters in treadmill running tests. It is proposed to assess anaerobic power by measuring excess CO2, concurrently with determination of max VO2. Maximal aerobic capacity is established as the product of max VO2 by the time of max VO2 maintenance determined in a special test with running at critical speed. The erogmetric criteria derived on the basis of the tests proposed, may be used for systematization of various physical work loads.  相似文献   

11.
The purpose of this study was to assess the validity of the American College of Sports Medicine's (ACSM's) submaximal treadmill running test in predicting VO2max. Twenty-one moderately well-trained men aged 18-34 years performed 1 maximal treadmill test to determine maximal oxygen uptake (M VO2max) and 2 submaximal treadmill tests using 4 stages of continuous submaximal exercise. Estimated VO2max was predicted by extrapolation to age-predicted maximal heart rate (HRmax) and calculated in 2 ways: using data from all submaximal stages between 110 b·min(-1) and 85% HRmax (P VO2max-All), and using data from the last 2 stages only (P VO2max-2). The measured VO2max was overestimated by 3% on average for the group but was not significantly different to predicted VO2max (1-way analysis of variance [ANOVA] p = 0.695; M VO2max = 53.01 ± 5.38; P VO2max-All = 54.27 ± 7.16; P VO2max-2 = 54.99 ± 7.69 ml·kg(-1)·min(-1)), although M VO2max was not overestimated in all the participants--it was underestimated in 30% of observations. Pearson's correlation, standard error of estimate (SEE), and total error (E) between measured and predicted VO2max were r = 0.646, 4.35, 4.08 ml·kg(-1)·min(-1) (P VO2max-All) and r = 0.642, 4.21, 3.98 ml·kg(-1)·min(-1) (P VO2max-2) indicating that the accuracy in prediction (error) was very similar whether using P VO2max-All or P VO2max-2, with up to 70% of the participants predicted scores within 1 SEE (~4 ml·kg(-1)·min(-1)) of M VO2max. In conclusion, the ACSM equation provides a reasonably good estimation of VO2max with no difference in predictive accuracy between P VO2max-2 and P VO2max-All, and hence, either approach may be equally useful in tracking an individual's aerobic fitness over time. However, if a precise knowledge of VO2max is required, then it is recommended that this be measured directly.  相似文献   

12.
The emergence of obesity, insulin resistance, and type 2 diabetes in children requires a rational, effective public health response. Physical activity remains an important component of prevention and treatment for obesity, type 2 diabetes, and insulin resistance. Studies in adults show cardiovascular fitness to be more important than obesity in predicting insulin resistance. We recently demonstrated that a school-based fitness intervention in children who are overweight could improve cardiovascular fitness, body composition, and insulin sensitivity, but it remains unclear whether accurate assessment of fitness could be performed at the school or outside of an exercise laboratory. To determine whether new methodology using measurement of cycling power could estimate cardiovascular aerobic fitness (as defined by VO2max) in middle school children who were overweight. Thirty-five middle school children (mean age 12 +/- 0.4 years) who were overweight underwent testing on a power sensor-equipped Cycle Ops indoor cycle (Saris Cycling Group, Fitchburg, WI) as well as body composition by dual x-ray absorptiometry and VO2max by treadmill determination. Insulin sensitivity was also estimated by fasting glucose and insulin. Maximal heart rate (MHR) was determined during VO2max testing, and power produced at 80%MHR was recorded. Spearman's rank correlation was performed to evaluate associations. Mean power determined on the indoor cycle at 80% of MHR was 129 +/- 77 watts, and average power at 80% MHR divided by total body weight was 1.5 +/- 0.5. A significant correlation between watts and total body weight was seen for VO2max (P = 0.03), and significant negative correlation was seen between watts/total body weight and fasting insulin (P < 0.05). Among middle school children who were overweight, there was a significant relationship between the power component of fitness and cardiovascular aerobic fitness (measured by VO2max). This more accessible and less intimidating field-based measure of power may prove useful in predicting changes in cardiovascular fitness. Thus, accurate assessment of childhood aerobic fitness may be achievable by measurement of power, possibly within the school environment, at substantially less cost and effort than laboratory-based measurements.  相似文献   

13.
The purpose of the present study was to investigate the relationship between aerobic characteristics and sprint skiing performance, and the effects of high-intensity endurance training on sprint skiing performance and aerobic characteristics. Ten male and 5 female elite junior cross-country skiers performed an 8-week intervention training period. The intervention group (IG, n = 7) increased the volume of high-intensity endurance training performed in level terrain, whereas the control group (CG, n = 8) continued their baseline training. Before and after the intervention period, the skiers were tested for 1.5-km time-trial performance on roller skis outdoors in the skating technique. Maximal oxygen uptake (VO?max) and oxygen uptake at the ventilatory threshold (VO?VT) were measured during treadmill running. VO?max and VO?VT were closely related to sprint performance (r = ~0.75, both p < 0.008). The IG improved sprint performance, VO?max, and VO?VT from pre to posttesting and improved sprint performance and VO?VT when compared to the CG (all p < 0.01). This study shows a close relationship between aerobic power and sprint performance in cross-country skiing and highlights the positive effects of high-intensity endurance training in level terrain.  相似文献   

14.
The emergence of obesity, insulin resistance (IR), and type-2 diabetes (T2DM) in children requires a rational, effective public health response. Physical activity remains an important component of prevention and treatment for obesity, T2DM, and IR. Studies in adults show cardiovascular fitness (CVF) to be more important than obesity in predicting IR. We recently demonstrated that a school-based fitness intervention in children who were overweight can improve cardiovascular fitness, body composition, and insulin sensitivity, but it remains unclear whether accurate assessment of fitness could be performed at the school or outside of an exercise laboratory. The purpose of the study was to determine if a new methodology using measurement of cycling power could estimate cardiovascular aerobic fitness (as defined by maximum oxygen consumption; VO(2)max) in middle school children who were overweight. Thirty-five middle school children who were overweight (mean age 12 +/- 0.4 years) underwent testing on a power sensor- equipped Cycle Ops Indoor Cycle (IC), as well as body composition by dual x-ray absorptiometry (DXA), and VO(2)max by treadmill determination. Insulin sensitivity was also estimated by fasting glucose and insulin. Maximal heart rate (MHR) was determined during VO(2)max testing, and power produced at 80% of MHR was recorded. Spearman's rank correlation was performed to evaluate associations. Mean power determined on the IC at 80% of MHR was 129 +/- 77 watts, and average power at 80% MHR divided by total body weight (TBW) was 1.5 +/- 0.5. A significant correlation between watts/TBW was seen for VO(2)max (ml/kg/min) (p = 0.03), and significant negative correlation was seen between watts/TBW and fasting insulin (p < 0.05). In middle-school children who were overweight, there was a significant relationship between the power component of fitness and cardiovascular aerobic fitness (measured by VO(2)max). This more accessible and less intimidating field-based measure of power may prove useful in predicting changes in cardiovascular fitness. Thus, accurate assessment of childhood aerobic fitness may be achievable by measurement of power, possibly within the school environment at substantially less cost and effort than laboratory-based measurements.  相似文献   

15.
To elucidate further the special nature of anaerobic threshold in children, 11 boys, mean age 12.1 years (range 11.4-12.5 years), were investigated during treadmill running. Oxygen uptake, including maximal oxygen uptake (VO2max), ventilation and the "ventilatory anaerobic threshold" were determined during incremental exercise, with determination of maximal blood lactate following exercise. Within 2 weeks following this test four runs of 16-min duration were performed at a constant speed, starting with a speed corresponding to about 75% of VO2max and increasing it during the next run by 0.5 or 1.0 km.h-1 according to the blood lactate concentrations in the previous run, in order to determine maximal steady-state blood lactate concentration. Blood lactate was determined at the end of every 4-min period. "Anaerobic threshold" was calculated from the increase in concentration of blood lactate obtained at the end of the runs at constant speed. The mean maximal steady-state blood lactate concentration was 5.0 mmol.l-1 corresponding to 88% of the aerobic power, whereas the mean value of the conventional "anaerobic threshold" was only 2.6 mmol.l-1, which corresponded to 78% of the VO2max. The correlations between the parameters of "anaerobic threshold", "ventilatory anaerobic threshold" and maximal steady-state blood lactate were only poor. Our results demonstrated that, in the children tested, the point at which a steeper increase in lactate concentrations during progressive work occurred did not correspond to the true anaerobic threshold, i.e. the exercise intensity above which a continuous increase in lactate concentration occurs at a constant exercise intensity.  相似文献   

16.
The objective of the present study was to compare pulmonary gas exchange kinetics (VO2 kinetics) and time to exhaustion (Tlim) between trained and untrained individuals during severe exercise performed on a cycle ergometer and treadmill. Eleven untrained males in running (UR) and cycling (UC), nine endurance cyclists (EC), and seven endurance runners (ER) were submitted to the following tests on separate days: (i) incremental test for determination of maximal oxygen uptake (VO2max) and the intensity associated with the achievement of VO2max (IVO2max) on a mechanical braked cycle ergometer (EC and UC) and on a treadmill (ER and UR); (ii) all-out exercise bout performed at IVO2max to determine the time to exhaustion at IVO2max (Tlim) and the time constant of oxygen uptake kinetics (tau). The tau was significantly faster in trained group, both in cycling (EC = 28.2 +/- 4.7s; UC = 63.8 +/- 25.0s) and in running (ER = 28.5 +/- 8.5s; UR = 59.3 +/- 12.0s). Tlim of untrained was significantly lower in cycling (EC = 384.4 +/- 66.6s vs. UC; 311.1 +/- 105.7 s) and higher in running (ER = 309.2 +/- 176.6 s vs. UR = 439.8 +/- 104.2 s). We conclude that the VO2 kinetic response at the onset of severe exercise, carried out at the same relative intensity is sensitive to endurance training, irrespective of the exercise type. The endurance training seems to differently influence Tlim during exercise at IVO2max in running and cycling.  相似文献   

17.
Cardiorespiratory and blood lactate (La) responses to prolonged submaximal running at an intensity relative to lactate threshold (LT) were examined in 15 recreational runners, aged 19 to 32. In test 1 where treadmill speed was progressively incremented by 10-20m/min until exhaustion, oxygen uptake at the LT (VO2 @ LT: 2.34 +/- 0.331/min or 41.6 +/- 5.7 ml/kg/min) and VO2max (3.58 +/- 0.341/min or 63.6 +/- 5.5 ml/kg/min) were measured. In test 2, the subject was required to run on the treadmill for 1 hour at a fixed velocity (Vt) which corresponded to his Vt @ LT. As expected, mean VO2 ranged during the 1-h submaximal running from 2.31 +/- 0.411/min or 63.0 +/- 7.8% VO2max at min 10-20 to 2.52 +/- 0.351/min or 69.2 +/- 6.2% VO2max at min 50-60, both of which were close to VO2 @ LT (65.2 +/- 4.4% VO2max). The slight decrease in blood La was found from min 20 to min 60, and this was accompanied by a parallel decline in respiratory exchange ratio. Shifts in the energy substrate toward a reliance on fat oxidation may occur during the course of 1-h running at Vt @t LT. The small oxygen debt observed after the 1-h running may confirm the assumption that prolonged running at Vt at LT would be performed in an almost fully aerobic steady state. We conclude that prolonged running at Vt @ LT may possibly maximize health-related benefits in the healthy adult.  相似文献   

18.
Familial resemblance in maximal heart rate, blood lactate and aerobic power   总被引:1,自引:0,他引:1  
There are considerable interindividual differences in maximal oxygen uptake per kilogram of body weight (VO2 max/kg), maximal heart rate (max HR) and maximal blood lactate (max blood La) measured during a progressive exercise test. The aim of the study was to quantify the familial relationships for these variables. Parents and children of 38 families of French-Canadian descent were submitted to a modified Balke treadmill test. VO2 max/kg and max HR were the highest values reached during the test for 1 min. Max blood La was obtained from a blood sample taken 2 min after the test. The effects of age and sex were significant for max blood La and VO2 max/kg in each generation. Scores were thus adjusted through multiple regression procedures (age + sex + age X sex + age2), yielding residuals which were submitted to further analysis. Intraclass correlations (ri) were significant in pairs of sibs for max blood La and max HR, i.e. 0.28 (p less than 0.01) and 0.43 (p less than 0.05), respectively. For VO2 max/kg, pairs of spouses and sibs were about similarly correlated (ri = 0.20 and 0.15; p less than 0.05). Data suggested that children were more related to their mother than to their father for VO2 max/kg, VO2 max/kg of fat-free weight, and particularly for max HR. It was concluded that familial resemblance and heritability estimates for maximal aerobic power, max HR and max blood La were quite low and generally nonsignificant. Correlations between biological sibs were, however, consistently significant for max HR and max blood La. The suggestion of a maternal effect in maximal aerobic power should be further investigated.  相似文献   

19.
The purpose of this study was to determine the potential effects on progressive aerobic work while breathing through a new military type chemical and biological (CB) respirator loaded with three different types of purifying canisters. Twelve healthy well-motivated male subjects (mean age 23 +/- 3 years) participated in the study. Results indicated that mean maximal oxygen uptake (VO2max), time to exhaustion, respiratory exchange ratio, rate of perceived exertion, respiratory rate and tidal volume at exhaustion, maximal lactate and the 2-min post-exercise lactate were not significantly influenced when breathing with the respirator and the canisters in comparison to a laboratory valve. Mean pulmonary ventilation, however, was reduced by 21% while oxygen and carbon dioxide ventilatory equivalents were significantly lower by 9% and 8% respectively. Review of the stage-by-stage responses to the treadmill test between the laboratory valve and respirator/canister conditions indicated no significant differences (NS) in oxygen uptake but slightly lower heart rates (NS). Ventilation was not influenced by the canisters until 80% of VO2max at which time the mean oxygen ventilatory equivalent became significantly lower. Blood lactate was significantly depressed between 60% and 90% VO2max under the respirator/canister conditions. It was concluded that, although physiological adaptation occurred, breathing with the new CB respirator and each of the three purifying canisters had no detrimental effect on progressive aerobic work to exhaustion. However, prolonged work at intensities greater than 80-85% of VO2max would in all probability be impaired when breathing with the CB mask and the canisters.  相似文献   

20.
We have previously shown that cardiorespiratory fitness predicts increasing fat mass during growth in white and African-American youth, but limited data are available examining this issue in Hispanic youth. Study participants were 160 (53% boys) overweight (BMI>or=85th percentile for age and gender) Hispanic children (mean+/-s.d. age at baseline=11.2+/-1.7 years). Cardiorespiratory fitness, assessed by VO2max, was measured through a maximal effort treadmill test at baseline. Body composition through dual-energy X-ray absorptiometry and Tanner stage through clinical exam were measured at baseline and annually thereafter for up to 4 years. Linear mixed models were used to examine the gender-specific relationship between VO2max and increases in adiposity (change in fat mass independent of change in lean tissue mass) over 4 years. The analysis was adjusted for changes in Tanner stage, age, and lean tissue mass. In boys, higher VO2max at baseline was inversely associated with the rate of increase in adiposity (beta=-0.001, P=0.03); this effect translates to a 15% higher VO2max at baseline resulting in a 1.38 kg lower fat mass gain over 4 years. However, VO2max was not significantly associated with changes in fat mass in girls (beta=0.0002, P=0.31). In overweight Hispanic boys, greater cardiorespiratory fitness at baseline was protective against increasing adiposity. In girls however initial cardiorespiratory fitness was not significantly associated with longitudinal changes in adiposity. These results suggest that cardiorespiratory fitness may be an important determinant of changes in adiposity in overweight Hispanic boys but not in girls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号