首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human herpesvirus-8 (HHV-8) is the infectious agent responsible for Kaposi's sarcoma and encodes a protein, macrophage inflammatory protein-II (vMIP-II), which shows sequence similarity to the human CC chemokines. vMIP-II has broad receptor specificity that crosses chemokine receptor subfamilies, and inhibits HIV-1 viral entry mediated by numerous chemokine receptors. In this study, the solution structure of chemically synthesized vMIP-II was determined by nuclear magnetic resonance. The protein is a monomer and possesses the chemokine fold consisting of a flexible N-terminus, three antiparallel beta strands, and a C-terminal alpha helix. Except for the N-terminal residues (residues 1-13) and the last two C-terminal residues (residues 73-74), the structure of vMIP-II is well-defined, exhibiting average rmsd of 0.35 and 0.90 A for the backbone heavy atoms and all heavy atoms of residues 14-72, respectively. Taking into account the sequence differences between the various CC chemokines and comparing their three-dimensional structures allows us to implicate residues that influence the quaternary structure and receptor binding and activation of these proteins in solution. The analysis of the sequence and three-dimensional structure of vMIP-II indicates the presence of epitopes involved in binding two receptors CCR2 and CCR5. We propose that vMIP-II was initially specific for CCR5 and acquired receptor-binding properties to CCR2 and other chemokine receptors.  相似文献   

2.
Zhou N  Luo Z  Luo J  Hall JW  Huang Z 《Biochemistry》2000,39(13):3782-3787
The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus is unique among all known chemokines in that vMIP-II shows a broad-spectrum interaction with both CC and CXC chemokine receptors including CCR5 and CXCR4, two principal coreceptors for the cell entry of human immunodeficiency virus type 1 (HIV-1). To elucidate the mechanism of the promiscuous receptor interaction of vMIP-II, synthetic peptides derived from the N-terminus of vMIP-II were studied. In contrast to the full-length protein that recognizes both CXCR4 and CCR5, a peptide corresponding to residues 1-21 of vMIP-II (LGASWHRPDKCCLGYQKRPLP) was shown to strongly bind CXCR4, but not CCR5. The IC(50) of this peptide in competing with CXCR4 binding of (125)I-SDF-1alpha is 190 nM as compared to the IC(50) of 14.8 nM of native vMIP-II in the same assay. The peptide selectively prevented CXCR4 signal transduction and coreceptor function in mediating the entry of T- and dual-tropic HIV-1 isolates, but not those of CCR5. Further analysis of truncated peptide analogues revealed the importance of the first five residues for the activity with CXCR4. These results suggest that the N-terminus of vMIP-II is essential for its function via CXCR4. In addition, they reveal a possible mechanism for the distinctive interactions of vMIP-II with different chemokine receptors, a notion that may be further exploited to dissect the structural basis of its promiscuous biological function. Finally, the potent CXCR4 peptide antagonist shown here could serve as a lead for the development of new therapeutic agents for HIV infection and other immune system diseases.  相似文献   

3.
CD8+ T cells play a key role in the in vivo control of HIV-1 replication via their cytolytic activity as well as their ability to secrete non-lytic soluble suppressive factors. Although the chemokines that naturally bind CCR5 (CCL3/MIP-1α, CCL4/MIP- 1β, CCL5/RANTES) are major components of the CD8-derived anti-HIV activity, evidence indicates the existence of additional, still undefined, CD8-derived HIV-suppressive factors. Here, we report the characterization of a novel anti-HIV chemokine, XCL1/lymphotactin, a member of the C-chemokine family that is produced primarily by activated CD8+ T cells and behaves as a metamorphic protein, interconverting between two structurally distinct conformations (classic and alternative). We found that XCL1 inhibits a broad spectrum of HIV-1 isolates, irrespective of their coreceptor-usage phenotype. Experiments with stabilized variants of XCL1 demonstrated that HIV-1 inhibition requires access to the alternative, all-β conformation, which interacts with proteoglycans but does not bind/activate the specific XCR1 receptor, while the classic XCL1 conformation is inactive. HIV-1 inhibition by XCL1 was shown to occur at an early stage of infection, via blockade of viral attachment and entry into host cells. Analogous to the recently described anti-HIV effect of the CXC chemokine CXCL4/PF4, XCL1-mediated inhibition is associated with direct interaction of the chemokine with the HIV-1 envelope. These results may open new perspectives for understanding the mechanisms of HIV-1 control and reveal new molecular targets for the design of effective therapeutic and preventive strategies against HIV-1.  相似文献   

4.
Chemokines and their receptors play important roles in normal physiological functions and the pathogeneses of a wide range of human diseases, including the entry of human immunodeficiency virus type 1 (HIV-1). However, the use of natural chemokines to probe receptor biology or to develop therapeutic drugs is limited by their lack of selectivity and the poor understanding of mechanisms in ligand-receptor recognition. We addressed these issues by combining chemical and structural biology in research into molecular recognition and inhibitor design. Specifically, the concepts of chemical biology were used to develop synthetically and modularly modified (SMM) chemokines that are unnatural and yet have properties improved over those of natural chemokines in terms of receptor selectivity, affinity, and the ability to explore receptor functions. This was followed by using structural biology to determine the structural basis for synthetically perturbed ligand-receptor selectivity. As a proof-of-principle for this combined chemical and structural-biology approach, we report a novel D-amino acid-containing SMM-chemokine designed based on the natural chemokine called viral macrophage inflammatory protein II (vMIP-II). The incorporation of unnatural D-amino acids enhanced the affinity of this molecule for CXCR4 but significantly diminished that for CCR5 or CCR2, thus yielding much more selective recognition of CXCR4 than wild-type vMIP-II. This D-amino acid-containing chemokine also showed more potent and specific inhibitory activity against HIV-1 entry via CXCR4 than natural chemokines. Furthermore, the high-resolution crystal structure of this D-amino acid-containing chemokine and a molecular-modeling study of its complex with CXCR4 provided the structure-based mechanism for the selective interaction between the ligand and chemokine receptors and the potent anti-HIV activity of D-amino acid-containing chemokines.  相似文献   

5.
Molecular analysis of CCR5, the cardinal coreceptor for HIV-1 infection, has implicated the N-terminal extracellular domain (N-ter) and regions vicinal to the second extracellular loop (ECL2) in this activity. It was shown that residues in the N-ter are necessary for binding of the physiologic ligands, RANTES (CCL5) and MIP-1 alpha (CCL3). vMIP-II, encoded by the Kaposi's sarcoma-associated herpesvirus, is a high affinity CCR5 antagonist, but lacks efficacy as a coreceptor inhibitor. Therefore, we compared the mechanism for engagement by vMIP-II of CCR5 to its interaction with physiologic ligands. RANTES, MIP-1 alpha, and vMIP-II bound CCR5 at high affinity, but demonstrated partial cross-competition. Characterization of 15 CCR5 alanine scanning mutants of charged extracellular amino acids revealed that alteration of acidic residues in the distal N-ter abrogated binding of RANTES, MIP-1 alpha, and vMIP-II. Whereas mutation of residues in ECL2 of CCR5 dramatically reduced the binding of RANTES and MIP-1 alpha and their ability to induce signaling, interaction with vMIP-II was not altered by any mutation in the exoloops of the receptor. Paradoxically, monoclonal antibodies to N-ter epitopes did not block chemokine binding, but those mapped to ECL2 were effective inhibitors. A CCR5 chimera with the distal N-ter residues of CXCR2 bound MIP-1 alpha and vMIP-II with an affinity similar to that of the wild-type receptor. Engagement of CCR5 by vMIP-II, but not RANTES or MIP-1 alpha blocked the binding of monoclonal antibodies to the receptor, providing additional evidence for a distinct mechanism for viral chemokine binding. Analysis of the coreceptor activity of randomly generated mouse-human CCR5 chimeras implicated residues in ECL2 between H173 and V197 in this function. RANTES, but not vMIP-II blocked CCR5 M-tropic coreceptor activity in the fusion assay. The insensitivity of vMIP-II binding to mutations in ECL2 provides a potential rationale to its inefficiency as an antagonist of CCR5 coreceptor activity. These findings suggest that the molecular anatomy of CCR5 binding plays a critical role in antagonism of coreceptor activity.  相似文献   

6.
Kaposi's sarcoma-associated herpesvirus encodes a chemokine called vMIP-II that has been shown to be a broad range human chemokine receptor antagonist. Two N-terminal peptides, vMIP-II(1-10) and vMIP-II(1-11)dimer (dimerised through Cys11) were synthesised. Both peptides are shown to bind the CXC chemokine receptor 4 (CXCR4). vMIP-II(1-10) was 1400-fold less potent than the native protein whilst the vMIP-II(1-11)dimer was only 180-fold less potent. In addition, both peptides are CXCR4 antagonists. Through analysis of non-standard, long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments, 13C relaxation data and amide chemical shift temperature gradients for the N-terminus of vMIP-II, we show that this region populates a turn-like structure over residues 5-8, both in the presence and absence of the full protein scaffold. This major conformation is likely to be in fast exchange with other conformational states but it has not previously been detected in monomeric chemokine structures. This and other studies [Elisseeva et al. (2000) J. Biol. Chem. 275, 26799-26805] suggest that there may be a link between the structuring of the short N-terminal chemokine peptides and their ability to bind their receptor.  相似文献   

7.
XCL1, a C class chemokine also known as lymphotactin, is produced by T, NK, and NKT cells during infectious and inflammatory responses, whereas XCR1, the receptor of XCL1, is expressed by a dendritic cell subpopulation. The XCL1-XCR1 axis plays an important role in dendritic-cell-mediated cytotoxic immune response. It has been also shown that XCL1 and XCR1 are constitutively expressed in the thymus and regulate the thymic establishment of self-tolerance and the generation of regulatory T cells. This review summarizes the expression and function of XCL1 and XCR1 in the immune system.  相似文献   

8.
The viral macrophage inflammatory protein-II (vMIP-II) encoded by Kaposi's sarcoma-associated herpesvirus has unique biological activities in that it blocks the cell entry by several different human immunodeficiency virus type 1 (HIV-1) strains via chemokine receptors including CXCR4 and CCR5. In this paper, we report the solution structure of all-d-amino acid peptides derived from the N-terminus of vMIP-II, which have been shown to have strong CXCR4 binding activity and potently inhibit HIV-1 entry via CXCR4, by using long mixing time two-dimensional nuclear Overhauser enhancement spectroscopy experiments. Both of all-d-peptides vMIP-II (1-10) and vMIP-II (1-21), which are designated as DV3 and DV1, respectively, have higher CXCR4 binding ability than their l-peptide counterparts. They are partially structured in aqueous solution, displaying a turn-like structure over residues 5-8. The small temperature coefficients of His-6 amide proton for both peptides also suggest the formation of a small hydrophobic pocket centered on His-6. The structural features of DV3 are very similar to the reported solution structure of all-l-peptide vMIP-II (1-10) [M.P. Crump, E. Elisseeva, J. Gong, I. Clark-Lewis, B.D. Sykes, Structure/function of human herpesvirus-8 MIP-II (1-71) and the antagonist N-terminal segment (1-10), FEBS Lett. 489 (2001) 171], which is consistent with the notion that d- and l-enantiomeric peptides can adopt mirror image conformations. The NMR structures of the d-peptides provide a structural basis to understand their mechanism of action and design new peptidomimetic analogs to further explore the structure-activity relationship of d-peptide ligand binding to CXCR4.  相似文献   

9.
Large DNA viruses such as herpesvirus and poxvirus encode proteins that target and exploit the chemokine system of their host. These proteins have the potential to block or change the orchestrated recruitment of leukocytes to sites of viral infection. The genome of Kaposi sarcoma-associated herpes virus (KSHV) encodes three chemokine-like proteins named vCCL1, vCCL2, and vCCL3. In this study vCCL3 was probed in parallel with vCCL1 and vCCL2 against a panel of the 18 classified human chemokine receptors. In calcium mobilization assays vCCL1 acted as a selective CCR8 agonist, whereas vCCL2 was found to act as a broad spectrum chemokine antagonist of human chemokine receptors, including the lymphotactin receptor. In contrast vCCL3 was found to be a highly selective agonist for the human lymphotactin receptor XCR1. The potency of vCCL3 was found to be 10-fold higher than the endogenous human XCL1 chemokine in respect to phosphatidylinositol turnover and calcium mobilization as well as chemotaxis. High expression of XCR1 was found in placenta and neutrophils by real-time PCR. These data are consistent with reports of different expression profiles for vCCL2 and vCCL3 during the life cycle of KSHV, indicate a novel, sophisticated exploitation by the virus of specifically the lymphotactin receptor by both agonist and antagonist mechanisms, and suggest a unique physiological importance of this (somewhat overlooked) chemokine receptor.  相似文献   

10.
We report the solution structure of the chemotactic cytokine (chemokine) vMIP-II. This protein has unique biological activities in that it blocks infection by several different human immunodeficiency virus type 1 (HIV-1) strains. This occurs because vMIP-II binds to a wide range of chemokine receptors, some of which are used by HJV to gain cell entry. vMIP-II is a monomeric protein, unlike most members of the chemokine family, and its structure consists of a disordered N-terminus, followed by a helical turn (Gln25-Leu27), which leads into the first strand of a three-stranded antiparallel beta-sheet (Ser29-Thr34; Gly42-Thr47; Gln52-Asp56). Following the sheet is a C-terminal alpha-helix, which extends from residue Asp60 until Gln68. The final five residues beyond the C-terminal helix (Pro70-Arg74) are in an extended conformation, but several of these C-terminal residues contact the first beta-strand. The structure of vMIP-II is compared to other chemokines that also block infection by HIV-1, and the structural basis of its lack of ability to form a dimer is discussed.  相似文献   

11.
Natural killer (NK) cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90%) expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56Dim CD16Pos) while the remaining 10% are CD16 negative and express CD56 in high levels (CD56Bright CD16Neg). NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors. Kaposi''s sarcoma-associated herpesvirus (KSHV) is a human virus that has developed numerous sophisticated and versatile strategies to escape the attack of immune cells such as NK cells. Here, we investigate whether the KSHV derived cytokine (vIL-6) and chemokines (vMIP-I, vMIP-II, vMIP-III) affect NK cell activity. Using transwell migration assays, KSHV infected cells, as well as fusion and recombinant proteins, we show that out of the four cytokine/chemokines encoded by KSHV, vMIP-II is the only one that binds to the majority of NK cells, affecting their migration. We demonstrate that vMIP-II binds to two different receptors, CX3CR1 and CCR5, expressed by naïve CD56Dim CD16Pos NK cells and activated NK cells, respectively. Furthermore, we show that the binding of vMIP-II to CX3CR1 and CCR5 blocks the binding of the natural ligands of these receptors, Fractalkine (Fck) and RANTES, respectively. Finally, we show that vMIP-II inhibits the migration of naïve and activated NK cells towards Fck and RANTES. Thus, we present here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells.  相似文献   

12.
We have applied an efficient solid-phase protein refolding method to the milligram scale production of natively folded recombinant chemokine proteins. Chemokines are intensely studied proteins because of their roles in immune system regulation, response to inflammation, fetal development, and numerous disease states including, but not limited to, HIV-1/AIDS, cancer metastasis, Crohn's disease, asthma and arthritis. Many investigators use recombinant chemokines for research purposes, however these proteins partition almost exclusively to the inclusion body fraction when produced in Escherichia coli. A major hurdle is to correctly refold the chemokine and oxidize the two highly conserved disulfide bonds found in nearly all chemokines. Conventional methods for oxidation and refolding by dialysis or extreme dilution are effective but slow and yield large volumes of dilute chemokine. Here we use an on-column approach for rapid refolding and oxidation of four chemokines, CXCL12/SDF-1alpha (stromal cell-derived factor-1alpha), CCL5/RANTES, XCL1/lymphotactin, and CX3CL1/fractalkine. NMR spectra of SDF-1alpha, RANTES, lymphotactin, and fractalkine indicate these chemokines adopt native structures. On-column refolded SDF-1alpha is fully active in an intracellular calcium flux assay. Our success with multiple SDF-1alpha mutants and members of all four chemokine subfamilies suggests that on-column refolding is a robust method for preparative-scale production of recombinant chemokine proteins.  相似文献   

13.
The C chemokine lymphotactin has been characterized as a T cell chemoattractant both in vitro and in vivo. To determine whether lymphotactin expression within tumors could influence tumor growth, we transfected an expression vector for lymphotactin into SP2/0 myeloma cells and tested their ability to form tumors in BALB/c and nude mice. Transfection did not alter cell growth in vitro. Whereas SP2/0 cells gave rise to a 100% tumor incidence, lymphotactin-expressing SP2/0-Lptn tumors invariably regressed in BALB/c mice and became infiltrated with CD4(+) and CD8(+) T cells and neutrophils. Regression of the SP2/0-Lptn tumors was associated with a type 1 cytokine response and dependent on both CD4(+) and CD8(+) T cells, but not NK cells. Both SP2/0 and SP2/0-Lptn tumors grew in nude mice, but growth of the latter tumors was retarded and associated with heavy neutrophil responses; this retardation of SP2/0-Lptn tumor growth was reversed by neutrophil depletion of the mice. Our data also indicate that mouse neutrophils express the lymphotactin receptor XCR1 and that lymphotactin specifically chemoattracts these cells in vitro. Thus, lymphotactin has natural adjuvant activities that may augment antitumor responses via effects on both T cells and neutrophils and thereby could be important in gene transfer immunotherapies for some cancers.  相似文献   

14.
Cytomegaloviruses (CMV) have developed various strategies to escape the immune system of the host. One strategy involves the expression of virus-encoded chemokines to modulate the host chemokine network. We have identified in the English isolate of rat CMV (murid herpesvirus 8 [MuHV8]) an open reading frame encoding a protein homologous to the chemokine XCL1, the only known C chemokine. Viral XCL1 (vXCL1), a glycosylated protein of 96 amino acids, can be detected 13 h postinfection in the supernatant of MuHV8-infected rat embryo fibroblasts. vXCL1 exclusively binds to CD4 rat dendritic cells (DC), a subset of DC that express the corresponding chemokine receptor XCR1. Like endogenous rat XCL1, vXCL1 selectively chemoattracts XCR1+ CD4 DC. Since XCR1+ DC in mice and humans have been shown to excel in antigen cross-presentation and thus in the induction of cytotoxic CD8+ T lymphocytes, the virus has apparently hijacked this gene to subvert cytotoxic immune responses. The biology of vXCL1 offers an interesting opportunity to study the role of XCL1 and XCR1+ DC in the cross-presentation of viral antigens.  相似文献   

15.
Uncertainty regarding viral chemokine function is mirrored by an incomplete knowledge of host chemokine receptor usage by the virally encoded proteins. One such molecule is vMIP-I, a C-C type chemokine of undefined function and binding specificity, encoded by the Kaposi's sarcoma herpesvirus HHV-8. We report here that vMIP-I binds to and induces cytosolic [Ca(2+)] signals in human T cells selectively through CCR8, a CC chemokine receptor associated with Th2 lymphocytes. Furthermore, using a panel of 65 different human, viral, and rodent chemokines, we have established a comprehensive ligand binding "fingerprint" for CCR8. The receptor exhibits marked "high" affinity (K(d) < 15 nM) only for four chemokines, three of them of viral origin: vMIP-I, vMIP-II, vMCC-I, and human I-309. A previously unreported second class of lower affinity ligands includes MCP-3 and possibly two other viral chemokines. vMIP-I and I-309 appear to act as CCR8 agonists: binding to and inducing cytosolic [Ca(2+)] elevation through the receptor. By contrast, vMIP-II and vMCC-I act as potent antagonists: binding without inducing signaling, and blocking the effects of I-309 and vMIP-I. These results suggest a ligand hierarchy for CCR8, identifying vMIP-I as a selective viral chemokine agonist. CCR8 may thus engage a specific subset of chemokines with the potential to regulate each other during viral infection and immune regulation.  相似文献   

16.
The C chemokine lymphotactin (Lptn) has been reported to act specifically on CD4(+) and CD8(+) T lymphocytes and natural killer (NK) cells, but not monocytes. However, the chemotactic effect of Lptn on other types of hematopoietic cells has not been well studied. In this study we investigated (i) the chemotactic influences of Lptn on T and B lymphocytes, neutrophils, monocytes, and dendritic cells, and (ii) the expression of the Lptn receptor (XCR1) by these cells, using RT-PCR. Our data showed that Lptn is chemotactic for B lymphocytes and neutrophils as well as T lymphocytes, but not for monocytes or dendritic cells, and that XCR1 expression is found only in association with T and B lymphocytes and neutrophils, but not monocytes or dendritic cells. Thus, this study is the first demonstration of a chemotactic effect of Lptn on neutrophils and confirms the association of this effect with expression of the XCR1 receptor on these cells. These data suggest that Lptn could potentially be an important protein in the regulation of T and B lymphocytes and neutrophil trafficking, and thereby also their roles in inflammatory and immunological responses.  相似文献   

17.
In compiling a comprehensive map of the ligand binding capacity of elements within the chemokine system, we have determined the spectrum of chemokines capable of interacting with the poxvirus-encoded viral CC chemokine inhibitor, vCCI. More than 80 chemokines were tested in parallel for their ability to displace radiolabeled signature chemokines from vCCI. Of these chemokines, 26 showed potential high affinity interactions. These interactions revealed an expanded spectrum of binding capacity for vCCI to now include molecules such as human myeloid progenitor inhibitory factor-1 as ligands. In addition, high affinity viral protein-protein interactions were revealed. For example, binding between poxvirus vCCI and the herpesvirus vMIP-II from HHV8 occurs with IC(50) approximately 10-50 nm. Unusual dissociation kinetics were observed between certain chemokines and vCCI. Notably, many ligands displayed a precipitous displacement profile, suggesting marked positive cooperativity of binding. Finally, heterologous competition provided evidence for overlapping but distinct binding sites for the many chemokines that bind to vCCI. The determination of the binding fingerprint and unusual binding interactions of vCCI with a large number of chemokines suggest a finely honed evolutionary strategy of chemokine sequestration during viral infection.  相似文献   

18.
In this study we investigated whether T cells expressing high or low levels of CD62L were differentially susceptible to the T cell chemokine lymphotactin. We found that lymphotactin induced preferential migration of antigen-specific (CD62L(lo)) T cells over the nonspecific (CD62L(hi)) T cells in vitro and in vivo. The differing migratory abilities correlated with higher levels of mRNA encoding the lymphotactin receptor (XCR1) on the CD62L(lo) cells compared to the CD62L(hi) cells. Thus, we have identified a coupling mechanism between the activation of T cells and acquisition of new homing properties, in this case conferred by XCR1 expression. These data confirm that at least one function of lymphotactin includes mediating the recruitment of recently activated antigen-specific T cells.  相似文献   

19.
The human herpesvirus 8-encoded protein vMIP-II is a potent in vitro antagonist of many chemokine receptors believed to be associated with attraction of T cells with a type 1 cytokine profile. For the present report we have studied the in vivo potential of this viral chemokine antagonist to inhibit virus-induced T-cell-mediated inflammation. This was done by use of the well-established model system murine lymphocytic choriomeningitis virus infection. Mice were infected in the footpad, and the induced CD8(+) T-cell-dependent inflammation was evaluated in mice subjected to treatment with vMIP-II. We found that inflammation was markedly inhibited in mice treated during the efferent phase of the antiviral immune response. In vitro studies revealed that vMIP-II inhibited chemokine-induced migration of activated CD8(+) T cells, but not T-cell-target cell contact, granule exocytosis, or cytokine release. Consistent with these in vitro findings treatment with vMIP-II inhibited the adoptive transfer of a virus-specific delayed-type hypersensitivity response in vivo, but only when antigen-primed donor cells were transferred via the intravenous route and required to migrate actively, not when the cells were injected directly into the test site. In contrast to the marked inhibition of the effector phase, the presence of vMIP-II during the afferent phase of the immune response did not result in significant suppression of virus-induced inflammation. Taken together, these results indicate that chemokine-induced signals are pivotal in directing antiviral effector cells toward virus-infected organ sites and that vMIP-II is a potent inhibitor of type 1 T-cell-mediated inflammation.  相似文献   

20.
Chemokines are small peptides involved in the recruitment of various cell types into inflammatory sites. They are divided into four sub-families depending on the presence of amino acids separating the cysteine residues in their N-terminal region. These are the alpha (CXC), beta (CC), gamma (C) and delta (CX)C) chemokines. In addition, five CXC chemokine (CXCR1-5), nine CC chemokine (CCR1-9), one C chemokine (XCR1) and one C-X3C chemokine (CX3CR1) receptors have been identified. These receptors belong to the seven transmembrane spanning domain family, and are coupled to the heterotrimeric guanine nucleotide binding (G) proteins. Chemokines activate various immune cells, and in particular the anti-viral/anti-tumour effectors, the natural killer (NK) cells by activating members of the heterotrimeric G proteins. The importance of the family of chemokines is highlighted by the ability of its members to inhibit the replication of HIV-1 strains in CD4+ cells, where chemokine receptors act as HIV-1 co-receptors. This review discusses the intracellular signalling pathways induced by chemokines in NK and other cell types, and the relationships to HIV-1 signalling in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号