首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of donepezil–tacrine hybrid related derivatives have been synthesised as dual acetylcholinesterase inhibitors that could bind simultaneously to the peripheral and catalytic sites of the enzyme. These new hybrids combined a tacrine, 6-chlorotacrine or acridine unit as catalytic binding site and indanone (the heterocycle present in donepezil) or phthalimide moiety as peripheral binding site of the enzyme, connected through a different linker tether length. One of the synthesised compounds emerged as a potent and selective AChE inhibitor, which is able to displace propidium in a competition assay. These results seem to confirm the ability of this inhibitor to bind simultaneously to both sites of the enzyme and make it a promising lead for developing disease-modifying drugs for the future treatment of Alzheimer’s disease. To gain insight into the molecular determinants that modulate the inhibitory activity of these compounds, a molecular modelling study was performed to explore their binding to the enzyme.  相似文献   

2.
In the current study, forty-four new [3-(2/3/4-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl carbamate derivatives were synthesized and evaluated for their ability to inhibit electric eel acetylcholinesterase (EeAChE) and equine butyrylcholinesterase (eqBuChE) enzymes. According to the inhibitory activity results, [3-(2-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl heptylcarbamate (16c, eqBuChE, IC50 = 12.8 μM; EeAChE, no inhibition at 100 μM) was the most potent eqBuChE inhibitor among the synthesized compounds and was found to be a moderate inhibitor compared to donepezil (eqBuChE, IC50 = 3.25 μM; EeAChE, IC50 = 0.11 μM). Kinetic and molecular docking studies indicated that compounds 16c and 14c (hexylcarbamate derivative, eqBuChE, IC50 = 35 μM; EeAChE, no inhibition at 100 μM) were mixed-type inhibitors which accommodated within the catalytic active site (CAS) and peripheral anionic site (PAS) of hBuChE through stable hydrogen bonding and π-π stacking. Furthermore, it was determined that [3-(2-methoxyphenyl)-6-oxopyridazin-1(6H)-yl]methyl (4-methylphenyl)carbamate 7c (eqBuChE, IC50 = 34.5 μM; EeAChE, 38.9% inhibition at 100 μM) was the most active derivative against EeAChE and a competitive inhibitor binding to the CAS of hBuChE. As a result, 6-(2-methoxyphenyl)pyridazin-3(2H)-one scaffold is important for the inhibitory activity and compounds 7c, 14c and 16c might be considered as promising lead candidates for the design and development of selective BuChE inhibitors for Alzheimer’s disease treatment.  相似文献   

3.
A series of dialkyl phenyl phosphates (DAPPs) were synthesized and evaluated in silico and in vitro for inhibitory activity against acetylcholinesterase and butyrylcholinesterase. Among the compounds examined, several DAPPs were shown to be potent inhibitors of butyrylcholinesterase, while having little activity against acetylcholinesterase. The most potent and selective inhibitors were di-n-butyl phenyl phosphate (K(i)=43 microM), di-n-pentyl phenyl phosphate (K(i)=6 microM), and di-cyclohexyl phenyl phosphate (K(i)=7 microM), the first which was shown to be a competitive inhibitor while the latter two being partial competitive inhibitors. Flexible docking simulations suggested that relative binding affinities generally increased as a function of alkyl chain length, while the strength and nature of inhibitory activity depended on whether the compound bound deeply or midway in the active site gorge, or in the proposed peripheral site.  相似文献   

4.
Rivastigmine, a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), has been approved by U.S. Food and Drug Administration to treat Alzheimer’s disease (AD) and Parkinson’s disease (PD) dementia. In the current work, a bambuterol derivative lacking one of the carbamoyloxy groups on the benzene ring (BMC-1) and its analogues were synthesized using 1-(3-hydroxyphenyl) ethan-1-one and 1-(4-hydroxyphenyl) ethan-1-one as starting materials. In-vitro cholinesterase assay established that nine compounds were more potent to inhibit both electric eel AChE and equine serum BChE than rivastigmine under the same experimental conditions. Further study confirmed that among the nine carbamates, BMC-3 (IC50(AChE) = 792 nM, IC50(BChE) = 2.2 nM) and BMC-16 (IC50(AChE) = 266 nM, IC50(BChE) = 10.6 nM) were excellent cholinesterase inhibitors with potential of permeating through the blood-brain barrier. These carbamates could be used as potential dual inhibitors of AChE and BChE and to discover novel drugs for the treatment of AD and PD dementia.  相似文献   

5.
A series of 31 N,N-disubstituted 2-amino-5-halomethyl-2-thiazolines was designed, synthesized, and evaluated for inhibitory potential against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterase (CaE). The compounds did not inhibit AChE; the most active compounds inhibited BChE and CaE with IC50 values of 0.22–2.3 μM. Pyridine-containing compounds were more selective toward BChE; compounds with the para-OMe substituent in one of the two dibenzyl fragments were more selective toward CaE. Iodinated derivatives were more effective BChE inhibitors than brominated ones, while there was no influence of halogen type on CaE inhibition. Inhibition kinetics for the 9 most active compounds indicated non-competitive inhibition of CaE and varied mechanisms (competitive, non-competitive, or mixed-type) for inhibition of BChE. Docking simulations predicted key binding interactions of compounds with BChE and CaE and revealed that the best docked positions in BChE were at the bottom of the gorge in close proximity to the catalytic residues in the active site. In contrast, the best binding positions for CaE were clustered rather far from the active site at the top of the gorge. Thus, the docking results provided insight into differences in kinetic mechanisms and inhibitor activities of the tested compounds. A cytotoxicity test using the MTT assay showed that within solubility limits (<30 μM), none of the tested compounds significantly affected viability of human fetal mesenchymal stem cells. The results indicate that a new series of N,N-disubstituted 2-aminothiazolines could serve as BChE and CaE inhibitors for potential medicinal applications.  相似文献   

6.
A series of new biphenyl bis-sulfonamide derivatives 2a3p were synthesized in good to excellent yield (76–98%). The inhibitory potential of the synthesized compounds on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was investigated. Most of the screened compounds showed modest in vitro inhibition for both AChE and BChE. Compared to the reference compound eserine (IC50 0.04 ± 0.0001 μM for AChE) and (IC50 0.85 ± 0.0001 μM for BChE), the IC50 values of these compounds were ranged from 2.27 ± 0.01 to 123.11 ± 0.04 μM for AChE and 7.74 ± 0.07 to <400 μM for BuChE. Among the tested compounds, 3p was found to be the most potent against AChE (IC50 2.27 ± 0.01 μM), whereas 3g exhibited the highest inhibition for BChE (IC50 7.74 ± 0.07 μM). Structure–activity relationship (SAR) of these compounds was developed and elaborated with the help of molecular docking studies.  相似文献   

7.
A series of new 4-arylthiazole-2-amine derivatives as acetylcholinesterase inhibitors (AChEIs) were designed and synthesized, Furthermore, their inhibitory activities against acetylcholinesterase in vitro were tested by Ellman spectrophotometry, and the results of inhibitory activity test showed that most of them had a certain acetylcholinesterase inhibitory activity in vitro. Moreover, the IC50 value of compound 4f was to 0.66 μM, which was higher than that of Rivastigmine and Huperzine-A as reference compounds, and it had a weak inhibitory effect on butyrylcholinesterase. The potential binding mode of compound 4f with AChE was investigated by the molecular docking, and the results showed that 4f was strongly bound up with AChE with the optimal conformation, in addition, their binding energy reached −11.27 Kcal*mol−1. At last, in silico molecular property of the synthesized compounds were predicted by using Molinspiration online servers. It can be concluded that the lead AChEIs compound 4f presented satisfactory drug-like characteristics.  相似文献   

8.
A series of thirty (30) thiazole analogs were prepared, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for Acetylcholinesterase and butyrylcholinesterase inhibitory potential. All analogs exhibited varied butyrylcholinesterase inhibitory activity with IC50 value ranging between 1.59 ± 0.01 and 389.25 ± 1.75 μM when compared with the standard eserine (IC50, 0.85 ± 0.0001 μM). Analogs 15, 7, 12, 9, 14, 1, 30 with IC50 values 1.59 ± 0.01, 1.77 ± 0.01, 6.21 ± 0.01, 7.56 ± 0.01, 8.46 ± 0.01, 14.81 ± 0.32 and 16.54 ± 0.21 μM respectively showed excellent inhibitory potential. Seven analogs 15, 20, 19, 24, 28, 30 and 25 exhibited good acetylcholinesterase inhibitory potential with IC50 values 21.3 ± 0.50, 35.3 ± 0.64, 36.6 ± 0.70, 44.81 ± 0.81, 46.36 ± 0.84, 48.2 ± 0.06 and 48.72 ± 0.91 μM respectively. All other analogs also exhibited well to moderate enzyme inhibition. The binding mode of these compounds was confirmed through molecular docking.  相似文献   

9.
In the present study, a series of 2-benzoyl-6-benzylidenecyclohexanone analogs have been synthesized and evaluated for their anti-cholinesterase activity. Among the forty-one analogs, four compounds (38, 39, 40 and 41) have been identified as lead compounds due to their highest inhibition on both AChE and BChE activities. Compounds 39 and 40 in particular exhibited highest inhibition on both AChE and BChE with IC50 values of 1.6 μM and 0.6 μM, respectively. Further structure–activity relationship study suggested that presence of a long-chain heterocyclic in one of the rings played a critical role in the dual enzymes’ inhibition. The Lineweaver–Burk plots and docking results suggest that both compounds could simultaneously bind to the PAS and CAS regions of the enzyme. ADMET analysis further confirmed the therapeutic potential of both compounds based upon their high BBB-penetrating. Thus, 2-benzoyl-6-benzylidenecyclohexanone containing long-chain heterocyclic amine analogs represent a new class of cholinesterase inhibitor, which deserve further investigation for their development into therapeutic agents for cognitive diseases such as Alzheimer.  相似文献   

10.
To search for potent anti-Alzheimer’s disease (AD) agents with multifunctional effects, 12 NO-donating tacrine–flurbiprofen hybrid compounds (2al) were synthesized and biologically evaluated. It was found that all the new target compounds showed selective butyrylcholinesterase (BuChE) inhibitory activity in vitro comparable or higher than tacrine and the tacrine–flurbiprofen hybrid compounds 1ac, and released moderate amount of NO in vitro. The kinetic study suggests that one of the most active and highest BuChE selective compounds 2d may not only compete with the substrate for the same catalytic active site (CAS) but also interact with a second binding site. Furthermore, 2d and 2l exhibited significant vascular relaxation effect, which is beneficial for the treatment of AD. All the results suggest that 2d and 2l might be promising lead compounds for further research.  相似文献   

11.
A series of novel 2-aminobenzimidazole derivatives were synthesized under microwave irradiation. Their biological activities were evaluated on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). A number of the 2-aminobenzimidazole derivatives showed good inhibitory activities to AChE and BuChE. Among them, compounds 9, 12 and 13 were found to be >25-fold more selective for BuChE than AChE. No evidence of cytotoxicity was observed by MTT assay in PC12 cells or HepG2 cells exposed to 100 μM of the compounds. Molecular modeling studies indicate that the benzimidazole moiety of compounds 9, 12 and 13 forms a face-to-face π–π stacking interaction in a ‘sandwich’ form with the indole ring of Trp82 (4.09 Å) in the active gorge, and compounds 12 and 13 form a hydrogen bond with His438 at the catalytic site of BuChE. In addition, compounds 12 and 13 fit well into the hydrophobic pocket formed by Ala328, Trp430 and Tyr332 of BuChE. Our data suggest the 2-aminobenzimidazole drugs as promising new selective inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.  相似文献   

12.
Multi-target-directed ligands (MTDLs) centered on β-secretase 1 (BACE-1) inhibition are emerging as innovative therapeutics in addressing the complexity of neurodegenerative diseases. A new series of donepezil analogues was designed, synthesized and evaluated as MTDLs against neurodegenerative diseases. Profiling of donepezil, a potent acetylcholinesterase (hAChE) inhibitor, into BACE-1 inhibition was achieved through introduction of backbone amide linkers to the designed compounds which are capable of hydrogen-bonding with BACE-1 catalytic site. In vitro assays and molecular modeling studies revealed the dual mode of action of compounds 46 against hAChE and BACE-1. Notably, compound 4 displayed potent hAChE inhibition (IC50 value of 4.11 nM) and BACE-1 inhibition (IC50 value of 18.3 nM) in comparison to donepezil (IC50 values of 6.21 and 194 nM against hAChE and BACE-1, respectively). Moreover, 4 revealed potential metal chelating property, low toxicity on SH-SY5Y neuroblastoma cells and ability to cross the blood–brain barrier (BBB) in PAMPA-BBB assay which renders 4 a potential lead for further optimization of novel small ligands for the treatment of Alzheimer's disease.  相似文献   

13.
Alkaloids have always been a great source of cholinesterase inhibitors. Numerous studies have shown that inhibiting acetylcholinesterase as well as butyrylcholinetserase is advantageous, and have better chances of success in preclinical/ clinical settings. With the objective to discover dual cholinesterase inhibitors, herein we report synthesis and biological evaluation of indoloquinoline alkaloid cryptolepine (1) and its bromo-derivative 2. Our study has shown that cryptolepine (1) and its 2-bromo-derivative 2 are dual inhibitors of acetylcholinesterase and butyrylcholinesterase, the enzymes which are involved in blocking the process of neurotransmission. Cryptolepine inhibits Electrophorus electricus acetylcholinesterase, recombinant human acetylcholinesterase and equine serum butyrylcholinesterase with IC50 values of 267, 485 and 699 nM, respectively. The 2-bromo-derivative of cryptolepine also showed inhibition of these enzymes, with IC50 values of 415, 868 and 770 nM, respectively. The kinetic studies revealed that cryptolepine inhibits human acetylcholinesterase in a non-competitive manner, with ki value of 0.88 µM. Additionally, these alkaloids were also tested against two other important pathological events of Alzheimer’s disease viz. stopping the formation of toxic amyloid-β oligomers (via inhibition of BACE-1), and increasing the amyloid-β clearance (via P-gp induction). Cryptolepine displayed potent P-gp induction activity at 100 nM, in P-gp overexpressing adenocarcinoma LS-180 cells and excellent toxicity window in LS-180 as well as in human neuroblastoma SH-SY5Y cell line. The molecular modeling studies with AChE and BChE have shown that both alkaloids were tightly packed inside the active site gorge (site 1) via multiple π-π and cation-π interactions. Both inhibitors have shown interaction with the allosteric “peripheral anionic site” via hydrophobic interactions. The ADME properties including the BBB permeability were computed for these alkaloids, and were found within the acceptable range.  相似文献   

14.
Alzheimer’s disease (AD) is the most common form of dementia. Inhibition of BChE might be a useful therapeutic target for AD. A new series of Carbazole-Benzyl Pyridine derivatives were designed synthesized and evaluated as butyrylcholinesterase (BChE) inhibitors. In vitro assay revealed that all of the derivatives had selective and potent anti- BChE activities. 3-((9H-Carbazol-9-yl)methyl)-1-(4-chlorobenzyl)pyridin-1-ium chloride (compound 8f) had the most potent anti-BChE activity (IC50 value?=?0.073?μM), the highest BChE selectivity and mixed-type inhibition. Docking study revealed that 8f interacted with the peripheral site, the choline binding site, catalytic site and the acyl pocket of BChE. Physicochemical properties were accurate to Lipinski's rule. In addition, compound 8f demonstrated neuroprotective activity at 10?µM. This compound could also inhibit AChE-induced and self-induced Aβ peptide aggregation at concentration of 100?µM and 10?µM respectively. The in-vivo study showed that compound 8f in 10?mg/kg increased the time spent in target quadrant in the probe day and decreased mean training period scape latency in rats. All results suggest that new sets of potent selective inhibitors of BChE have a therapeutic potential for the treatment of AD.  相似文献   

15.
Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as 1H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50 < 10 μM. The highest inhibitory activity (IC50 = 5.12 μM for AChE and IC50 = 8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure–activity relationship was discussed.  相似文献   

16.
Hydroxylated 6H-benzo[c]chromen-6-one derivatives (i.e., urolithins) are the main bioavailable metabolites, and biomarkers of ellagitannins present in various nutrition. Although these dietaries, the sources of urolithins, are employed in folk medicine as cognitive enhancer in the treatment of Alzheimer’s Disease, urolithins have negligible potential to inhibit acetylcholinesterase and butyrylcholinesterase enzymes, the validated targets of Alzheimer’s Disease. Therefore, within this research, a series of 6H-benzo[c]chromen-6-one, and 7,8,9,10-tetrahydro-benzo[c]chromen-6-one derivatives has been designed, synthesized, and their biological activities were evaluated as potential acetylcholinesterase and butyrylcholinesterase inhibitors. The compounds synthesized exerted comparable activity in comparison to rivastigmine, galantamine, and donepezil both in in vitro and in vivo studies.  相似文献   

17.
Selective butyrylcholinesterase inhibitors could be the promising drug candidates, used in treatment of Alzheimer's disease. The study describes the synthesis and biological activity of novel carbamate derivatives with N-phenylpiperazine, N-benzylpiperazine and 4-benzylpiperidine moieties. Biological studies revealed that most of these compounds displayed significant activity against BuChE. Compound 16 (3-(4-phenyl-piperazin-1-ylmethyl)-phenyl phenylcarbamate) turned out to be the most active (IC50 = 2.00 μM for BuChE). For all synthesized compounds lipophilicity and other physicochemical properties were calculated using computer programs. Relationship between these properties and activity was also checked. Binding mode with enzyme and the ensuing differences in activity were explained by the molecular modeling studies.  相似文献   

18.
A simple, efficient and green approach for the synthesis of spiro-dihydropyridines derivatives by one-pot multi-component reaction of isatin or acenaphthoquinone derivatives (1 equiv) with malononitrile (1 equiv) and N,N′-substituted-2-nitroethene-1,1-diamines (1 equiv) in PEG-400 under catalyst-free conditions is described. This method provides several advantages such as environmental friendliness, short reaction time, and simple workup procedure for the synthesis of biologically important compounds. The ability of synthesized compounds in inhibition of acetyl and butyrylcholinesterase were investigated both in vitro and in silico. All compounds showed moderate to high level activity against both acetyl and butyrylcholinesterase. There was a good correlation between in vitro and in silico studies.  相似文献   

19.
In this work, we describe the regioselective synthesis of some new dispiro[indene-2,3′-pyrrolidine-2′,3″-indoline]-1,2″(3H)-dione 4-29 attributable to the previously described methods. All the new chemical entities were assessed in-vitro as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes; while no significant inhibitory activity for the tested compounds were assigned on AChE, compounds 4, 27, 29, 28 and 15 were the most active against BChE enzyme with IC50 = 13.7 µM, 21.8 µM, 22.1 µM, 22.9 µM and 24.9 µM respectively compared to Donepezil (IC50 = 0.72 µM). Compound 4 was found to have a mixed type mode of inhibition, the bioactivity of the new chemical entities (N = 26, n = 5, R2 = 0.893, R2 cvOO = 0.831, R2 cvMO = 0.838, F = 33.32, s2 = 0.003) was elucidated via a statistically significant QSAR model utilizing CODESSA-Pro software that validated the observed results.  相似文献   

20.
We describe synthesis and evaluation of a series of cyclic urea derivatives with hydroxylethylamine isostere. Modification of P3, P1, and P2′ and combination of SAR display a >100-fold increase in potency with good cellular activity (IC50 = 0.15 μM) relative to the previously reported compound 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号