首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Duchenne Muscular Dystrophy is a genetic disease caused by the lack of the protein dystrophin. Dystrophic muscles are highly susceptible to contraction-induced injury, and following contractile activity, have disrupted plasma membranes that allow leakage of calcium ions into muscle fibers. Because of the direct relationship between increased intracellular calcium concentration and muscle dysfunction, therapeutic outcomes may be achieved through the identification and restriction of calcium influx pathways. Our purpose was to determine the contribution of sarcolemmal lesions to the force deficits caused by contraction-induced injury in dystrophic skeletal muscles. Using isolated lumbrical muscles from dystrophic (mdx) mice, we demonstrate for the first time that poloxamer 188 (P188), a membrane-sealing poloxamer, is effective in reducing the force deficit in a whole mdx skeletal muscle. A reduction in force deficit was also observed in mdx muscles that were exposed to a calcium-free environment. These results, coupled with previous observations of calcium entry into mdx muscle fibers during a similar contraction protocol, support the interpretation that extracellular calcium enters through sarcolemmal lesions and contributes to the force deficit observed in mdx muscles. The results provide a basis for potential therapeutic strategies directed at membrane stabilization of dystrophin-deficient skeletal muscle fibers.  相似文献   

2.
Mdx mouse, the animal model of Duchenne muscular dystrophy, lacks dystrophin and develops an X-linked recessive inflammatory myopathy characterized by degeneration of skeletal muscle fibers and connective tissue replacement. The present work aimed to assess whether gender dimorphism in mdx mice would influence skeletal muscle pathology at ages corresponding to main histological changes in the microenvironment of muscular tissue: myonecrosis, regeneration, and fibrosis. At the height of myonecrosis (6 weeks postnatal), skeletal muscles of male mdx mice showed increased sarcolemmal permeability, numerous inflammatory foci, and marked deposition of the extracellular matrix components (ECM) type I collagen and laminin. In contrast, age-matched mdx females showed mild ECM deposition, discrete myonecrosis, but increased numbers of regenerating fibers expressing the satellite cell marker NCAM. In contrast ovariectomized mdx females showed decreased numbers of regenerating fibers. Older (24 and 48 weeks postnatal) mdx females showed extensive fibrosis with increased sarcolemmal permeability and marked deposition of ECM components than corresponding males. These results suggest a role for female hormones in the control of myonecrosis probably by promoting regeneration of muscular tissue and mitigating inflammation especially at ages under the critical influence of sex hormones.  相似文献   

3.
Mdx mouse, the animal model of Duchenne muscular dystrophy, lacks dystrophin and develops an X-linked recessive inflammatory myopathy characterized by degeneration of skeletal muscle fibers and connective tissue replacement. The present work aimed to assess whether gender dimorphism in mdx mice would influence skeletal muscle pathology at ages corresponding to main histological changes in the microenvironment of muscular tissue: myonecrosis, regeneration, and fibrosis. At the height of myonecrosis (6 weeks postnatal), skeletal muscles of male mdx mice showed increased sarcolemmal permeability, numerous inflammatory foci, and marked deposition of the extracellular matrix components (ECM) type I collagen and laminin. In contrast, age-matched mdx females showed mild ECM deposition, discrete myonecrosis, but increased numbers of regenerating fibers expressing the satellite cell marker NCAM. In contrast ovariectomized mdx females showed decreased numbers of regenerating fibers. Older (24 and 48 weeks postnatal) mdx females showed extensive fibrosis with increased sarcolemmal permeability and marked deposition of ECM components than corresponding males. These results suggest a role for female hormones in the control of myonecrosis probably by promoting regeneration of muscular tissue and mitigating inflammation especially at ages under the critical influence of sex hormones.  相似文献   

4.
In Duchenne muscular dystrophy (DMD) and in the mdx mouse model of DMD, the lack of dystrophin is related to enhanced calcium influx and muscle degeneration. Stretch-activated channels (SACs) might be directly involved in the pathology of DMD, and transient receptor potential cation channels have been proposed as likely candidates of SACs. We investigated the levels of transient receptor potential canonical channel 1 (TRPC1) and the effects of streptomycin, a SAC blocker, in muscles showing different degrees of the dystrophic phenotype. Mdx mice (18 days old, n = 16) received daily intraperitoneal injections of streptomycin (182 mg/kg body wt) for 18 days, followed by removal of the diaphragm, sternomastoid (STN), biceps brachii, and tibialis anterior muscles. Control mdx mice (n = 37) were injected with saline. Western blot analysis showed higher levels of TRPC1 in diaphragm muscle compared with STN and limb muscles. Streptomycin reduced creatine kinase and prevented exercise-induced increases of total calcium and Evans blue dye uptake in diaphragm and in STN muscles. It is suggested that different levels of the stretch-activated calcium channel protein TRPC1 may contribute to the different degrees of the dystrophic phenotype seen in mdx mice. Early treatment designed to regulate the activity of these channels may ameliorate the progression of dystrophy in the most affected muscle, the diaphragm.  相似文献   

5.
Duchenne muscular dystrophy results from the lack of dystrophin, a cytoskeletal protein associated with the inner surface membrane, in skeletal muscle. The absence of dystrophin induces an abnormal increase of sarcolemmal calcium influx through cationic channels in adult skeletal muscle fibers from dystrophic (mdx) mice. We observed that the activity of these channels was increased after depletion of the stores of calcium with thapsigargin or caffeine. By analogy with the situation observed in nonexcitable cells, we therefore hypothesized that these store-operated channels could belong to the transient receptor potential channel (TRPC) family. We measured the expression of TRPC isoforms in normal and mdx adult skeletal muscles fibers, and among the seven known isoforms, five were detected (TRPC1, 2, 3, 4, and 6) by RT-PCR. Western blot analysis and immunocytochemistry of normal and mdx muscle fibers demonstrated the localization of TRPC1, 4, and 6 proteins at the plasma membrane. Therefore, an antisense strategy was used to repress these TRPC isoforms. In parallel with the repression of the TRPCs, we observed that the occurrence of calcium leak channels was decreased to one tenth of its control value (patch-clamp technique), showing the involvement of TRPC in the abnormal calcium influx observed in dystrophic fibers.  相似文献   

6.
miR-1, miR-133a, and miR-206 are muscle-specific microRNAs expressed in skeletal muscles and have been shown to contribute to muscle development. To gain insight into the pathophysiological roles of these three microRNAs in dystrophin-deficient muscular dystrophy, their expression in the tibialis anterior (TA) muscles of mdx mice and CXMD(J) dogs were evaluated by semiquantitative RT-PCR and in situ hybridization. Their temporal and spatial expression patterns were also analyzed in C2C12 cells during muscle differentiation and in cardiotoxin (CTX)-injured TA muscles to examine how muscle degeneration and regeneration affect their expression. In dystrophic TA muscles of mdx mice, miR-206 expression was significantly elevated as compared to that in control TA muscles of age-matched B10 mice, whereas there were no differences in miR-1 or miR-133a expression between B10 and mdx TA muscles. On in situ hybridization analysis, intense signals for miR-206 probes were localized in newly formed myotubes with centralized nuclei, or regenerating muscle fibers, but not in intact pre-degenerated fibers or numerous small mononucleated cells, possibly proliferating myoblasts and inflammatory infiltrates. Similar increased expression of miR-206 was also found in C2C12 differentiation and CTX-induced regeneration, in which differentiated myotubes or regenerating fibers showed abundant expression of miR-206. However, CXMD(J) TA muscles contained smaller amounts of miR-206, miR-1, and miR-133a than controls. They exhibited more severe and more progressive degenerative alterations than mdx TA muscles. Taken together, these observations indicated that newly formed myotubes showed markedly increased expression of miR-206, which might reflect active regeneration and efficient maturation of skeletal muscle fibers.  相似文献   

7.
Mdx mice uniquely recover from degenerative dystrophic lesions by an intense myoproliferative (regenerative) response. To investigate a potential role of endogenous basic fibroblast growth factor (bFGF) in injury-repair processes, we investigated its localization in several striated muscles of mdx and control mice using immunofluorescence labeling with specific antibodies. Basic FGF was localized consistently to the myofiber periphery and nuclei of intact myofibers, as well as in single, dystrophin-positive cells in close association with the myofibers (potential myosatellite cells). In mdx mice, actively degenerating skeletal or cardiac muscle fibers presented intense cytoplasmic anti-bFGF staining prior to mononuclear infiltration. Small regenerating fibers in mdx skeletal muscle exhibited greater bFGF accumulation than adjacent larger myofibers. Strong nuclear anti-bFGF immunolabeling was frequently observed in mdx cardiac myocytes at the borders of necrotic regions. In agreement with differences in intensity of immunolabeling, extracts from slow-twitch muscles contained higher levels of bFGF compared to those from fast-twitch muscles, in both control and mdx mice. In addition, bFGF levels were consistently higher in extracts from all mdx tissues compared to those derived from their control counterparts. Our data suggest that bFGF participates in the degenerative and regenerative responses of striated muscle to dystrophic injury and also indicate a potential involvement of this factor with the physiology of different striated muscles.  相似文献   

8.
Increased calcium influx in dystrophic muscle   总被引:16,自引:0,他引:16  
We examined pathways which might result in the elevated resting free calcium [( Ca2+]i) levels observed in dystrophic mouse (mdx) skeletal muscle fibers and myotubes and human Duchenne muscular dystrophy myotubes. We found that mdx fibers, loaded with the calcium indicator fura-2, were less able to regulate [Ca2+]i levels in the region near the sarcolemma. Increased calcium influx or decreased efflux could lead to elevated [Ca2+]i levels. Calcium transient decay times were identical in normal and mdx fibers if resting [Ca2+]i levels were similar, suggesting that calcium-sequestering mechanisms are not altered in dystrophic muscle, but are slowed by the higher resting [Ca2+]i. The defect appears to be specific for calcium since resting free sodium levels and sodium influx rates in the absence of Na+/K(+)-ATPase activity were identical in normal and dystrophic cells when measured with sodium-binding benzofuran isophthalate. Calcium leak channels, whose opening probabilities (Po) were voltage independent, could be the major calcium influx pathway at rest. We have shown previously that calcium leak channel Po is significantly higher in dystrophic myotubes. These leak channels were selective for calcium over sodium under physiological conditions. Agents that increased leak channel activity also increased [Ca2+]i in fibers and myotubes. These results suggest that increased calcium influx, as a result of increased leak channel activity, could result in the elevated [Ca2+]i in dystrophic muscle.  相似文献   

9.
Duchenne muscular dystrophy is characterized by myofiber necrosis, muscle replacement by connective tissue, and crippling weakness. Although the mdx mouse also lacks dystrophin, most muscles show little myofiber loss or functional impairment. An exception is the mdx diaphragm, which is phenotypically similar to the human disease. Here we tested the hypothesis that the mdx diaphragm has a defective regenerative response to necrotic injury, which could account for its severe phenotype. Massive necrosis was induced in mdx and wild-type (C57BL10) mouse diaphragms in vivo by topical application of notexin, which destroys mature myofibers while leaving myogenic precursor satellite cells intact. At 4 h after acute exposure to notexin, >90% of diaphragm myofibers in both wild-type and mdx mice demonstrated pathological sarcolemmal leakiness, and there was a complete loss of isometric force-generating capacity. Both groups of mice showed strong expression of embryonic myosin within the diaphragm at 5 days, which was largely extinguished by 20 days after injury. At 60 days postinjury, wild-type diaphragms exhibited a persistent loss ( approximately 25%) of isometric force-generating capacity, associated with a trend toward increased connective tissue infiltration. In contrast, mdx diaphragms achieved complete functional recovery of force generation to noninjured values, and there was no increase in muscle connective tissue over baseline. These data argue against any loss of intrinsic regenerative capacity within the mdx diaphragm, despite characteristic features of major dystrophic pathology being present. Our findings support the concept that significant latent regenerative capacity resides within dystrophic muscles, which could potentially be exploited for therapeutic purposes.  相似文献   

10.
The cell biological hypothesis of Duchenne muscular dystrophy assumes that deficiency in the membrane cytoskeletal element dystrophin triggers a loss in surface glycoproteins, such as beta-dystroglycan, thereby rendering the sarcolemmal membrane more susceptible to micro-rupturing. Secondary changes in ion homeostasis, such as increased cytosolic Ca2+ levels and impaired luminal Ca2+ buffering, eventually lead to Ca2+-induced myonecrosis. However, individual muscle groups exhibit a graded pathological response during the natural time course of x-linked muscular dystrophy. The absence of the dystrophin isofom Dp427 does not necessarily result in a severe dystrophic phenotype in all muscle groups. In the dystrophic mdx animal model, extraocular and toe muscles are not as severely affected as limb muscles. Here, we show that the relative expression and sarcolemmal localization of the central trans-sarcolemmal linker of the dystrophin-glycoprotein complex, beta-dystroglycan, is preserved in mdx extraocular and toe fibres by means of two-dimensional immunoblotting and immunofluorescence microscopy. Thus, with respect to improving myology diagnostics, the relative expression levels of beta-dystroglycan appear to represent reliable markers for the severity of secondary changes in dystrophin-deficient fibres. Immunoblotting and enzyme assays revealed that mdx toe muscle fibres exhibit an increased expression and activity of the sarcoplasmic reticulum Ca2+-ATPase. Chemical crosslinking studies demonstrated impaired calsequestrin oligomerization in mdx gastrocnemius muscle indicating that abnormal calsequestrin clustering is involved in reduced Ca2+ buffering of the dystrophic sarcoplasmic reticulum. Previous studies have mostly attributed the sparing of certain mdx fibres to the special protective properties of small-diameter fibres. Our study suggests that the rescue of dystrophin-associated glycoproteins, and possibly the increased removal of cytosolic Ca2+ ions, might also play an important role in protecting muscle cells from necrotic changes.  相似文献   

11.
Muscular dystrophies are a diverse group of severe degenerative muscle diseases. Recent interest in the role of the Golgi complex (GC) in muscle disease has been piqued by findings that several dystrophies result from mutations in putative Golgi-resident glycosyltransferases. Given this new role of the Golgi in sarcolemmal stability, we hypothesized that abnormal Golgi distribution, regulation and/or function may constitute part of the pathology of other dystrophies, where the primary defect is independent of Golgi function. Thus, we investigated GC organization in the dystrophin-deficient muscles of mdx mice, a mouse model for Duchenne muscular dystrophy. We report aberrant organization of the synaptic and extrasynaptic GC in skeletal muscles of mdx mice. The GC is mislocalized and improperly concentrated at the surface and core of mdx myofibers. Golgi complex localization is disrupted after the onset of necrosis and normal redistribution is impaired during regeneration of mdx muscle fibers. Disruption of the microtubule cytoskeleton may account in part for aberrant GC localization in mdx myofibers. Golgi complex distribution is restored to wild type and microtubule cytoskeleton organization is significantly improved by recombinant adeno-associated virus 6-mediated expression of DeltaR4-R23/DeltaCT microdystrophin showing a novel mode of microdystrophin functionality. In summary, GC distribution abnormalities are a novel component of mdx skeletal muscle pathology rescued by microdystrophin expression.  相似文献   

12.
13.
Dystrophin-deficient muscle undergoes sudden, postnatal onset of muscle necrosis that is either progressive, as in Duchenne muscular dystrophy, or successfully arrested and followed by regeneration, as in most muscles of mdx mice. The mechanisms regulating regeneration in mdx muscle are unknown, although the possibility that there is renewed expression of genes regulating embryonic muscle cell proliferation and differentiation may provide testable hypotheses. Here, we examine the possibility that necrotic and regenerating mdx muscles exhibit renewed or increased expression of PDGF-receptors. PDGF-binding to receptors on muscle has been shown previously to be associated with myogenic cell proliferation and delay of muscle differentiation. We find that PDGF-receptors are present in 4-week-old mdx mice in muscles that undergo brief, reversible necrosis (hindlimb muscles) or progressive necrosis (diaphragm), as well as in 4-week-old control mouse muscles. Immunoblots indicate that the concentrations of PDGF-receptors in 4-week-old dystrophic (necrotic) and control muscles are similar. Prenecrotic, dystrophic fibers and control fibers possess some cell surface labeling of fibers treated with anti-PDGF-receptor and viewed by indirect immunofluorescence. Necrotic fibers in dystrophic muscle show cytoplasmic labeling for PDGF-receptors and labeling of perinuclear regions at the muscle cell surface. Adult dystrophic muscle displays higher concentrations of PDGF-receptor in both regenerated muscle (hindlimb) and progressively necrotic muscle (diaphragm) than found in controls. Anti-PDGF-receptor labeling of regenerated, dystrophic muscle is observed primarily in granules surrounding central nuclei or surrounding nuclei located at the surface of regenerated fibers. No labeling of perinuclear regions of control muscle or prenecrotic fibers was observed. Myonuclei fractionated from adult mdx hindlimb muscles contained no PDGF-receptor, indicating that PDGF-receptor-positive structures are not tightly associated with nuclei or within nuclei. L6 myoblasts show PDGF-receptor distributed diffusely on the cell surface. Stimulation of L6 myoblasts with 10 ng/ml of PDGF-BB causes receptor internalization and concentration in granules at perinuclear regions. Thus, PDGF stimulation of myoblasts causes a redistribution of PDGF-receptors to resemble receptor localization observed during muscle regeneration. These findings implicate PDGF-mediated mechanisms in regeneration of dystrophic muscle.  相似文献   

14.
We used immunofluorescence techniques and confocal imaging to study the organization of the membrane skeleton of skeletal muscle fibers of mdx mice, which lack dystrophin. beta-Spectrin is normally found at the sarcolemma in costameres, a rectilinear array of longitudinal strands and elements overlying Z and M lines. However, in the skeletal muscle of mdx mice, beta-spectrin tends to be absent from the sarcolemma over M lines and the longitudinal strands may be disrupted or missing. Other proteins of the membrane and associated cytoskeleton, including syntrophin, beta-dystroglycan, vinculin, and Na,K-ATPase are also concentrated in costameres, in control myofibers, and mdx muscle. They also distribute into the same altered sarcolemmal arrays that contain beta-spectrin. Utrophin, which is expressed in mdx muscle, also codistributes with beta-spectrin at the mutant sarcolemma. By contrast, the distribution of structural and intracellular membrane proteins, including alpha-actinin, the Ca-ATPase and dihydropyridine receptors, is not affected, even at sites close to the sarcolemma. Our results suggest that in myofibers of the mdx mouse, the membrane- associated cytoskeleton, but not the nearby myoplasm, undergoes widespread coordinated changes in organization. These changes may contribute to the fragility of the sarcolemma of dystrophic muscle.  相似文献   

15.
Morphological aspects of muscle fiber regeneration   总被引:1,自引:0,他引:1  
Although striated muscle displays remarkable regenerative potential, the three-dimensional cytoarchitecture of the regenerated myofibers is different from that of myofibers formed during fetal development. It has been demonstrated with spaced, serial ultrathin sections that the regenerating myotubes that occur spontaneously (i.e., without secondary trauma) in dystrophic (dy2J) murine muscle and the regenerating fibers found in free whole-muscle transplants of normal, murine extensor digitorum longus muscles branch and recombine, forming a complex syncytium. Multiple motor end-plate regions are observed on the branched syncytia found in dystrophic muscle. Branched fibers persist in long-term grafts and are found with a frequency that indicates that they should be of physiological significance. Although the number of myofibers found in long-term grafts is approximately 68% of that found in control muscle, comparison of the diameter distributions of the regenerated muscle fibers with age-matched control fibers indicates that many of the regenerating fibers fail to achieve normal size. Type IIb fibers appear to be more growth inhibited than type IIa fibers. The size of the motoneuron pool to grafted muscles is smaller than that to control muscles.  相似文献   

16.
Duchenne muscular dystrophy (DMD) is an X-linked, lethal, degenerative disease that results from mutations in the dystrophin gene, causing necrosis and inflammation in skeletal muscle tissue. Treatments that reduce muscle fiber destruction and immune cell infiltration can ameliorate DMD pathology. We treated the mdx mouse, a model for DMD, with the immunosuppressant drug rapamycin (RAPA) both locally and systemically to examine its effects on dystrophic mdx muscles. We observed a significant reduction of muscle fiber necrosis in treated mdx mouse tibialis anterior (TA) and diaphragm (Dia) muscles 6 wks post-treatment. This effect was associated with a significant reduction in infiltration of effector CD4(+) and CD8(+) T cells in skeletal muscle tissue, while Foxp3(+) regulatory T cells were preserved. Because RAPA exerts its effects through the mammalian target of RAPA (mTOR), we studied the activation of mTOR in mdx TA and Dia with and without RAPA treatment. Surprisingly, mTOR activation levels in mdx TA were not different from control C57BL/10 (B10). However, mTOR activation was different in Dia between mdx and B10; mTOR activation levels did not rise between 6 and 12 wks of age in mdx Dia muscle, whereas a rise in mTOR activation level was observed in B10 Dia muscle. Furthermore, mdx Dia, but not TA, muscle mTOR activation was responsive to RAPA treatment.  相似文献   

17.
To estimate calpain proteolysis, we measured the hydrolysis rate of a fluorogenic calpain substrate in individual resting normal and dystrophic mdx mouse myotubes in culture. Hydrolysis rates were high during myoblast and myotube alignment and fusion. After alignment and fusion ceased, hydrolysis rates declined. For normal myotubes, hydrolysis remained low after the development of contractile activity. In contrast, after the development of contractile activity, dystrophic mdx myotubes had abnormally high levels of hydrolysis that were dependent on external calcium and that could be abolished by calpeptin, an inhibitor of calpain. We eliminated the direct effects of contraction during measurements of hydrolysis by the addition of tetrodotoxin. Substrate hydrolysis by lysosomes or proteosomes was controlled for using NH(4)Cl and clasto-lactacystin beta-lactone, respectively. Increased activity of the calcium-activated protease in mature mdx myotubes was linked to the abnormal activity of calcium-specific leak channels because an antagonist of these channels reduced the higher levels of hydrolysis in dystrophic myotubes to nearly normal levels. The abnormal activity of these channels is linked to an increased frequency of transient sarcolemmal disruptions in the more fragile mdx myotubes (, ). Treatment of mdx myotubes with a pro-drug of methylprednisolone also reduced calpain substrate hydrolysis to nearly normal levels. However, this inhibition only required 2.5 h of pretreatment, which was not long enough to act by the known effects of prednisolone on calcium homeostasis.  相似文献   

18.
We have demonstrated previously that adult human synovial membrane-derived mesenchymal stem cells (hSM-MSCs) have myogenic potential in vitro (De Bari, C., F. Dell'Accio, P. Tylzanowski, and F.P. Luyten. 2001. Arthritis Rheum. 44:1928-1942). In the present study, we have characterized their myogenic differentiation in a nude mouse model of skeletal muscle regeneration and provide proof of principle of their potential use for muscle repair in the mdx mouse model of Duchenne muscular dystrophy. When implanted into regenerating nude mouse muscle, hSM-MSCs contributed to myofibers and to long term persisting functional satellite cells. No nuclear fusion hybrids were observed between donor human cells and host mouse muscle cells. Myogenic differentiation proceeded through a molecular cascade resembling embryonic muscle development. Differentiation was sensitive to environmental cues, since hSM-MSCs injected into the bloodstream engrafted in several tissues, but acquired the muscle phenotype only within skeletal muscle. When administered into dystrophic muscles of immunosuppressed mdx mice, hSM-MSCs restored sarcolemmal expression of dystrophin, reduced central nucleation, and rescued the expression of mouse mechano growth factor.  相似文献   

19.
Recent studies have shown that oxidative stress contributes to the pathogenesis of muscle damage in dystrophic (mdx) mice. In this study we have investigated the role of NADPH oxidase as a source of the oxidative stress in these mice. The NADPH oxidase subunits gp91(phox), p67(phox) and rac 1 were increased 2-3 fold in tibilais anterior muscles from mdx mice compared to wild type. Importantly, this increase occurred in 19 day old mice, before the onset of muscle necrosis and inflammation, suggesting that NADPH oxidase is an important source of oxidative stress in mdx muscle. In muscles from 9 week old mdx mice, gp91(phox) and p67(phox) were increased 3-4 fold and NADPH oxidase superoxide production was 2 times greater than wild type. In single fibers from mdx muscle NADPH oxidase subunits were all located on or near the sarcolemma, except for p67(phox),which was expressed in the cytosol. Pharmacological inhibition of NADPH oxidase significantly reduced the intracellular Ca(2+) rise following stretched contractions in mdx single fibers, and also attenuated the loss of muscle force. These results suggest that NADPH oxidase is a major source of reactive oxygen species in dystrophic muscle and its enhanced activity has a stimulatory effect on stretch-induced Ca(2+) entry, a key mechanism for muscle damage and functional impairment.  相似文献   

20.
Although the reduction in dystrophin-associated glycoproteins is the primary pathophysiological consequence of the deficiency in dystrophin, little is known about the secondary abnormalities leading to x-linked muscular dystrophy. As abnormal Ca(2+) handling may be involved in myonecrosis, we investigated the fate of key Ca(2+) regulatory membrane proteins in dystrophic mdx skeletal muscle membranes. Whereas the expression of the ryanodine receptor, the dihydropyridine receptor, the Ca(2+)-ATPase, and calsequestrin was not affected, a drastic decline in calsequestrin-like proteins of 150-220 kDa was observed in dystrophic microsomes using one-dimensional immunoblotting, two-dimensional immunoblotting with isoelectric focusing, diagonal two-dimensional blotting technique, and immunoprecipitation. In analogy, overall Ca(2+) binding was reduced in the sarcoplasmic reticulum of dystrophic muscle. The reduction in Ca(2+) binding proteins might be directly involved in triggering impaired Ca(2+) sequestration within the lumen of the sarcoplasmic reticulum. Thus disturbed sarcolemmal Ca(2+) fluxes seem to influence overall Ca(2+) homeostasis, resulting in distinct changes in the expression profile of a subset of Ca(2+) handling proteins, which might be an important factor in the progressive functional decline of dystrophic muscle fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号