首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibitor of oxidative phosphorylation tri-n-butyltin chloride (TBTC) causes membrane damage and disintegration of isolated rat thymocytes at concentrations higher than 1 microM. From a concentration of 0.1 microM, TBTC disturbs energy metabolism as indicated by an increase in methylglucose uptake, glucose consumption and lactate production and by a decrease in cellular ATP levels. Over the same TBTC concentration range, the incorporation of DNA, RNA and protein precursors are markedly reduced. Moreover the production of cyclic AMP upon stimulation of the cells with prostaglandin E1 is effectively inhibited. These effects cannot be explained by an inhibition of nucleoside kinase activity, amino acid uptake or adenylate cyclase activity. The effects of TBTC on macromolecular synthesis and cyclic AMP production are possibly due to a disturbance of the cellular energy state.  相似文献   

2.
Platelet-activated factor (PAF) ( ), formyl-methionyl-leucyl-phenylalanine (fMPL) ( ), phorbol 12-myristate 13 acetate (PMA) ( ), opsonized zymosan (OPZ) (0.01–1 mg/ml) were potent stimuli to superoxide generated by guinea-pig peritoneal macrophages. Superoxide generation by low (≤ −8M) concentrations but not high (≥−7M) concentrations of PAF or fMLP were attenuated by rolipram (100 μM) in the presence of 1 μM prostaglandin E2 (PGE2). That stimulated by PMA or OPZ, however, was unaffected. At 1μM, staurosporine was a potent inhibitor of superoxide generation stimulated by both fMLP and PAF but was without effect on that stimulated by OPZ. Superoxide generation stimulated by fMLP, PAF and OPZ was inhibited by 100 μM mepacrine. We conclude that superoxide generation stimulated by the chemoattractants fMLP and PAF involves a cyclic AMP regulated and cyclic AMP independent process. The cyclic AMP independent process is mediated by protein kinase C. Although protein kinase C seems a central element in the respiratory burst stimulated by fMLP, PAF and PMA that stimulated by OPZ bypasses this mechanism. Phospholipase A2 however, represents a common stage in the signal transduction pathway.  相似文献   

3.
The effects of histamine (HA), and selective HA, H1-, H2 and H3-receptor agonists on cyclic AMP formation were investigated in intact thick and duck pineal glands. HA potently stimulated the pineal cyclic AMP formation. The effect of HA was mimicked fully by N-methylated histamines, and partially by several histaminergic drugs: 2-thiazolylethylamine (H1), amthamine (H2) and R-methylhistamine (H3). Dimaprit, another selective H2-agonist showed marginal activity. Forskolin highly potentiated the action of HA, and only weakly affected the effects of 2-thiazolyethylamine and amthamine. In the chick pineal, the stimulatory effects of HA and the tested histaminergic drugs were not blocked by mepyramine and thioperamide (H1- and H3-blockers, respectively), but they were antagonized by H2-receptor selective compounds ranitidine and aminopotentidine, which, however, acted in a noncompetitive manner. Another H2-selective blocker zolantidine antagonized the HA effect only when used at very high (30–100 μM) concentrations. In the duck pineal, the stimulatory effect of HA on cyclic AMP production was unaffected by mepyramine (H1), thioperamide (H3), and ranitidine (H2), and only partially inhibited by the H2-blocker aminopotentidine. Electrophysiological experiments revealed that HA is capable of evoking inward currents in most of the tested cells acutely isolated from chick pineal gland. The present findings further indicate that the pharmacological profile of the avian pineal HA receptor, whose stimulation leads to activation of cyclic AMP production, is different from any known HA receptor type (H1, H2, H3), and suggest the existence of either an avian-specific HA receptor, or a novel HA receptor subtype. Electrophysiological data suggest that the pineal HA receptor may be somehow linked to activation of an ionic channel.  相似文献   

4.
We describe synthesis and evaluation of a series of cyclic urea derivatives with hydroxylethylamine isostere. Modification of P3, P1, and P2′ and combination of SAR display a >100-fold increase in potency with good cellular activity (IC50 = 0.15 μM) relative to the previously reported compound 3.  相似文献   

5.
P  l Wiik 《Regulatory peptides》1988,20(4):323-333
The effect of agonists on VIP receptor regulation has been investigated in mononuclear human blood leucocytes. VIP receptor number and affinity, as well as VIP-stimulated cyclic AMP accumulation were measured after pretreatment with VIP, PHM-27 or secretin. Pretreatment for 30 min with 0.1 μM VIP caused 28% (S.E.M. = 15) reduction in specific binding, and 52% (S.E.M. = 12) reduction in cyclic AMP accumulation, while 3 h of pretreatment caused 59% (S.E.M. = 10) and 68% (S.E.M. = 12) reduction. Only VIP concentrations at the nanomolar level and higher were shown to have any effect. Bmax of the high-affinity receptor was reduced by 66% (S.E.M. = 8) after 30 min, and 95% (S.E.M. = 3) after 3 h of exposure to 0.1 μM VIP. No significant change was observed in receptor affinity, in Bmax of the low-affinity receptor, in ED50, or in ED100 of VIP-stimulated cyclic AMP accumulation. Pretreatment with PHM-27 (0.1 μM, 3 h) caused 24% reduction in [125I]VIP binding and 25% reduction in cyclic AMP accumulation, while no effect was detected after pretreatment with secretin (0.1 μM, 3 h).  相似文献   

6.
Increase in cytoplasmic cyclic AMP concentration stimulates Ca2+ influx through the cyclic AMP-gated cation channel in the plasma membrane of cultured carrot cells. However, the Ca2+ current terminated after a few minutes even in the presence of high concentrations of cyclic AMP indicating that hydrolysis of the nucleotide is not responsible for stop of the Ca2+ influx. Cyclic AMP evoked discharge of Ca2+ from inside-out sealed vesicles of carrot plasma membrane, and it was strongly inhibited when the suspension of the vesicles was supplemented with 1 μM of free Ca2+, while Ca2+ lower than 0.1 μM did not affect the Ca2+-release. The Ca2+ flux across plasma membrane was restored from this Ca2+-induced inhibition by the addition of calmodulin inhibitors or anti-calmodulin. These results suggest that Ca2+ influx initiated by the increase in intracellular cAMP in cultured carrot cells is terminated when the cytosolic Ca2+ concentration reaches the excitatory level in the cells, and calmodulin located in the plasma membrane plays an important role in the response decay of the cyclic nucleotide-gated Ca2+ channel.  相似文献   

7.
8.
The possible interaction of l-3,3′,-5-triiodthyronine (T3) and cycli AMP on hepatic gluconeogenesis was investigated in perfused livers isolated from hypothyroid rats starved for 24 h. T3 (1·10?6) and cyclic AMP (2·10?4 M) increased hepatic gluconeogenesis from alanine within 30–60 min perfusion time (+85%/ + 90%), both were additive in their action (+191%). Concomitantly, α-amino[14C]isobutyric acid as well as net alanine uptake and urea production were elevated by T3 and by cyclic AMP. T3 increased the oligomycin-sensitive O2 consumption and the tissue ‘overall’ ATP/ADP ratio, whereas cyclic AMP showed only a minor effect on cellular energy metabolism. As was observed recently for cyclic AMP, the stimulating action of T3 on hepatic gluconeogenesis was independent of exogenous Ca2+ concentration. T3 by itself affected neither the total nor the protein-bound hepatic cyclic AMP contents, pyruvate kinese (v:0.15 mM) activation nor the tissue levels of gluconeogenic intermediates. In contrast, cyclic AMP itself — although less effective than in euthyroid livers — decreased pyruvate kinase activity in hypothyroid livers with a concomitant increase in hepatic phosphoenolpyruvate concentration. This resulted in a ‘crossover’ between pyruvate and phosphoenolpyruvate. Cyclic AMP action was not affected by the further addition of T3. Glucagon (1·10?8 M) was less effective in hypo-than in euthyroid livers in increasing endogenous cyclic AMP content, deactivating pyruvate kinase and stimualting glucose production; this is normalized by the further addition of 1-methyl-3-isobutylxanthine (50 μM). It is concluded that T3 stimulats hepatic gluconeogenesis by a cyclic-AMP-independent mechanism. In addition, the stimulatory action of cyclic AMP and glucagon with respect to hepatic gluconeogenesis is reduced in hypothyroidism. This may be explained by an increase in hepatic phosphodiesterase activity.  相似文献   

9.
1. By the action of 1-methyl-3-isobutylxanthine (isobutyltheophylline, 2 - 3 × 10−4 M), the content of cyclic 3', 5'-AMP in the antral and duodenal muscles of the rabbit is increased by 72 % and 126 %, respectively; by 1.8 × 10−7 M 13-norleucine-motilin and 1.8 × 10−6 M acetylcholine it is not changed. 13-norleucine-motilin is an analogue of the recently discovered duodenal tissue hormone motilin and has identical effects. 1-methyl-3-isobutylxanthine has a more powerful inhibiting effect on phosphodiesterase than has theophylline.2. 3 × 10−4 M isobutyltheophylline reduces the tone of the duodenal muscle while simultaneously increasing the content of cyclic AMP and negates the tone-enhancing effect of nle-motilin on the duodenal muscle, while nle-motilin increases the muscle tone lowered by isobutyltheophylline.3. The basic tone of the antral muscle is not reduced by isobutyltheophylline. However, the contraction-promoting effect of nle-motilin after an increase in cyclic AMP due to isobutyltheophylline is significantly lower.4. It is assumed that the changes in the tone or in the response of the antral and duodenal muscles to nle-motilin observed after the administration of isobutyltheophylline, are due to the increase of cyclic AMP in the tissue.5. The antagonistic effects of cyclic AMP and motilin on the gastro-intestinal muscles might be of physiological importance for the regulation of the gastro-intestinal motor activity.  相似文献   

10.
M A Oleshansky 《Life sciences》1980,27(12):1089-1095
Cyclic AMP phosphodiesterase activity in a particulate fraction of rat striatum is stimulated two fold by cyclic GMP. An investigation of the effects of various purine compounds on basal and cyclic GMP-stimulated cyclic AMP phosphodiesterase activity as measured at a low substrate concentration (3 uM) was carried out. Adenosine inhibits cyclic GMP-stimulated cyclic AMP phosphodiesterase activity with an IC50 of 400 uM while inhibiting basal cyclic AMP phosphodiesterase activity with an IC50 of 2.4 mM. Adenosine blocks cyclic GMP stimulation of cyclic AMP hydrolysis with an IC50 of 80 uM. Inosine and hypoxanthine have a similar profile of action but are less effective with IC50's of 200 and 400 uM respectively on cyclic GMP stimulation of phosphodiesterase activity and only 20–40% inhibition of basal enzyme activity up to 2.4 mM. Adenine, guanosine and guanine block cyclic GMP stimulation of cyclic AMP phosphodiesterase activity with IC50's of 100–200 uM. Classical phosphodiesterase inhibitors of the alkylxanthine type are also selective for the stimulated enzyme with IC50's of 200 and 25 uM for theophylline and IBMX on cyclic GMP-stimulated cyclic AMP hydrolysis and IC50's of 500 and 50 uM respectively on basal phosphodiesterase activity. Theophylline and IBMX are potent inhibitors of cyclic GMP stimulation of cyclic AMP phosphodiesterase activity with IC50's of 50 and 5 uM. These findings suggest a role for physiologically available purine compounds and alkylxanthines in the regulation of cyclic nucleotide metabolism through interaction with cyclic GMP stimulation of cyclic AMP phosphodiesterase activity.  相似文献   

11.
Polycyclic aromatic hydrocarbons have been shown to cause oxidative stress in vitro and in vivo in various animal models but the mechanisms by which these compounds produce oxidative stress are unknown. In the current study we have investigated the role of the aryl hydrocarbon receptor (AHR) in the production of reactive oxygen species (ROS) by its cognate ligands and the consequent effect on cyp1a1 activity, mRNA and protein expressions. For this purpose, Hepa 1c1c7 cells wild-type (WT) and C12 mutant cells, which are AHR-deficient, were incubated with increasing concentrations of the AHR-ligands, benzo[a]pyrene (B[a]P, 0.25-25 μM), 3-methylcholanthrene (3MC, 0.1-10 μM) and β-naphthoflavone (βNF, 1-50 μM). The studied AHR-ligands dose-dependently increased lipid peroxidation in WT but not in C12 cells. However, only B[a]P and βNF, at the highest concentrations tested, significantly increased H2O2 production in WT but not C12 cells. The increase in lipid peroxidation and H2O2 production by AHR-ligands were accompanied by a decrease in the cyp1a1 catalytic activity but not mRNA or protein expressions, which were significantly induced in a dose-dependent manner by all AHR-ligands, suggesting a post-translational mechanism is involved in the decrease of cyp1a1 activity. The AHR-ligand-mediated decrease in cyp1a1 activity was reversed by the antioxidant N-acetylcysteine. Our results show that the AHR-ligands induce oxidative stress by an AHR-dependent pathway.  相似文献   

12.
13.
The Ca2+-mobilizing metabolite cyclic ADP-ribose (cADPR) has been shown to release Ca2+ from ryanodine-sensitive stores in many cells. We show that this metabolite at a concentration of 17μM, but not its precursor β-NAD+ nor non-cyclic ADPR at the same concentration, is active in releasing Ca2+ from rabbit skeletal muscle sarcoplasmic reticulum. The release was not sensitive to Ruthenium red (1μM) nor to the ryanodine receptor-specific scorpion toxin Buthotus1-1 (10 μM). In planar bilayer single channel recordings, concentrations up to 50μM cADPR did not increase the open probability of Ruthenium red and toxin-sensitive Ca2+ release channels. Thus Ca2+ release induced by cADPR in skeletal muscle sarcoplasmic reticulum may not involve opening of ryanodine receptors.  相似文献   

14.
The adenosine transport in cultured chromaffin cells was inhibited by the presence of the adenylate cyclase activator, forskolin, and a cAMP analog. The Vmax values of this transport obtained for control and in the presence of 8-(-4-chlorophenylthio)adenosine-3′:5′-monophosphate cyclic (ClPhcAMP, 100 μM) or forskolin (0.5 μM) were 85 ± 5; 45 ± 1.5 and 38 ± 3 pmol/106 cells/min, respectively. The Km values were not significantly modified.

The number of adenosine transporters in cultured chromaffin cells, measured by nitrobenzylthioinosine (NBTI) binding, were decreased by the above mentioned effectors. The values of binding sites per cell were 30,000 ± 3200; 12,000 ± 1000 and 21,300 ± 2000 for control, ClPhcAMP and forskolin, respectively; without changing the dissociation constant.

When the binding studies were conducted with cellular homogenates, a significant decrease in the maximal binding capacity for nitrobenzylthioinosine was obtained. The values were as follows: 0.087 ± 0.01 pmol/mg protein for control, 0.044 ± 0.02 pmol/mg protein for ClPhcAMP; and 0.032 ± 0.01 pmol/mg protein for forskolin.

In this neural tissue, the adenosine transport system seems to be inhibited by stimulation of the adenylate cyclase or by the cyclic AMP analogue that enters the cells. These results suggest that this inhibition could be mediated by a molecular modification of adenosine transporters, the binding with NBTI is therefore a possible parameter of this modification.  相似文献   


15.
Gary Bailin   《BBA》1977,462(3):689-699
A human skeletal actin · tropomyosin · troponin complex was phosphorylated in the presence of [γ-32P]ATP, Mg2+, adenosine 3′:5′-monophosphate (cyclic AMP) and cyclic AMP-dependent protein kinase (protein kinase). Phosphorylation was not observed when the actin complex was incubated in the absence of protein kinase or 1 μM cyclic AMP. In the presence of 10−7 M Ca2+ and protein kinase 0.1 mole of [32P]phosphate per 196 000 g of protein was incorporated. This was two-fold higher than the [32P]phosphate content of a rabbit skeletal actin complex but two-fold lower than that of a bovine cardiac actin complex. At high Ca2+, 5 · 10−5 M, little change in the phosphorylation of a human skeletal actin complex occurred. Phosphoserine and phosphothreonine were identified in the [32P]phosphorylated actin complex. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that 60% of the label was associated with the tropomyosin binding component of troponin. The inhibitory component of troponin contained 16% of the bound [32P]phosphate. Increasing the Ca2+ concentration did not significantly decrease the [32P]phosphate content of the phosphorylated proteins in the actin complex. No change in the distribution of phosphoserine or phosphothreonine was observed. Half maximal calcium activation of the ATPase activity of reconstituted human skeletal actomyosin made with the [32P]phosphorylated human skeletal actin complex was the same as a reconstituted actomyosin made with an actin complex incubated in the absence of protein kinase at low or high Ca2+.  相似文献   

16.
The effects of epinephrine on cyclic AMP content and protein kinase activity were examined in an in situ rat heart preparation. Bolus injection of epinephrine into the superior vena cava caused an increase in the activity ratio (—cyclic AMP/+cyclic AMP) of 12 000 × g supernatant protein kinase. The increase was significant within 5 s and maximal in 10 s. Epinephrine produced a dose-dependent increase in both protein kinase activity ratio and cyclic AMP content. The increases in both parameters exhibited a high degree of correlation. The increase in protein kinase activity ratio observed with low doses of epinephrine (less than or equal to 1 μg/kg) resulted from an increase in independent protein kinase activity (—cyclic 2 AMP) without a change in total protein observ activity (+cyclic AMP). However, the increase in the activity ratio observed with higher doses of epinephrine (greater than 1 μg/kg) was due mainly to a decrease in total protein kinase activity rather than a further increase in independent protein kinase activity. The loss of supernatant total protein kinase activity could be accounted for by an increase in activity associated with particulate fractions obtained from the homogenates. A similar redistribution of protein kinase could be demonstrated by the addition of cyclic AMP to homogenates prepared from hearts not stimulated with epinephrine. These results demonstrate that epinephrine over a wide dose range produces a parallel increase in the content of cyclic AMP and the activation of soluble protein kinase. The findings also suggest that protein kinase translocation to particulate material may depend on the degree of epinephrine-induced enzyme activation.  相似文献   

17.
The regulatory role of cyclic nucleotide phosphodiesterase(s) and cyclic AMP metabolism in relation to progesterone production by gonadotropins has been studied in isolated rat ovarian cells. Low concentrations of choriogonadotropin (0.4-5ng/ml) increased steroid production without any detectable increase in cyclic AMP, when experiments were carried out in the absence of phosphodiesterase inhibitors. The concentration of choriogonadotropin (10ng/ml) that stimulated progesterone synthesis maximally resulted in a minimal increase in cyclic AMP accumulation and choriogonadotropin binding. Choriogonadotropin at a concentration of 10ng/ml and higher, however, significantly stimulated protein kinase activity and reached a maximum between 250 and 1000ng of hormone/ml. Higher concentrations (50-2500ng/ml) of choriogonadotropin caused an increase in endogenous cyclic AMP, and this increase preceded the increase in steroid synthesis. Analysis of dose-response relationships of gonadotropin-stimulated cyclic AMP accumulation, progesterone production and protein kinase activity revealed a correlation between these responses over a wide concentration range when experiments were performed in the presence of 3-isobutyl-1-methylxanthine. The phosphodiesterase inhibitors papaverine, theophylline and 3-isobutyl-1-methylxanthine each stimulated steroid production in a dose-dependent manner. Incubation of ovarian cells with dibutyryl cyclic AMP or 8-bromo cyclic AMP mimicked the steroidogenic action of gonadotropins and this effect was dependent on both incubation time and nucleotide concentration. Maximum stimulation was obtained with 2mm-dibutyryl cyclic AMP and 8-bromo cyclic AMP, and this increase was close to that produced by a maximally stimulating dose of choriogonadotropin. Other 8-substituted derivatives such as 8-hydroxy cyclic AMP and 8-isopropylthio cyclic AMP, which were less susceptible to phosphodiesterase action, also effectively stimulated steroidogenesis. The uptake and metabolism of cyclic [(3)H]AMP in ovarian cells was also studied in relation to steroidogenesis. When ovarian cells were incubated for 2h in the presence of increasing concentrations of cyclic [(3)H]AMP, the radioactivity associated with the cells increased almost linearly up to 250mum-cyclic [(3)H]AMP concentration in the incubation medium. The (3)H label in the cellular extract was recovered mainly in the forms ATP, ADP, AMP, adenosine and inosine, with cyclic AMP accounting for less than 1% of the total tissue radioactivity. Incubation of cyclic AMP in vitro with ovarian cells resulted in a rapid breakdown of the nucleotide in the medium. The degradation products in the medium have been identified as AMP, adenosine and inosine. The rapid degradation of cyclic AMP by phosphodiesterase(s) makes it difficult to correlate changes in cyclic AMP concentrations with steroidogenesis. These observations thus provide an explanation for the previously observed lack of cyclic AMP accumulation under conditions in which low doses of choriogonadotropin stimulated steroidogenesis without any detectable changes in cyclic AMP accumulation.  相似文献   

18.
The ability of prostaglandin I2 (PGI2) to stimulate cyclic AMP production by granulosa cells, isolated from intact immature rats, has been demonstrated in vitro. The minimal effective dose was 15 ng/ml, which was comparable to the minimal effective dose for PGE2. However, a concentration of 15 μg/ml PGI2 was required to stimulate cyclic AMP production maximally, compared to a concentration of 1 μg/ml PGE2, which produced the maximum response. It therefore appears that PGI2 is not more effective than PGE2 in stimulating cyclic AMP production in granulosa cells, and is possibly less effective. Submaximal concentrations of PGI2 appeared to be able to modify the stimulation of cyclic AMP production by follicle- stimulating hormone (FSH), but whether or not PGI2 plays any role in follicular function remains to be established.  相似文献   

19.
20.
The effects of glucagon, gastric inhibitory peptide (GIP) and somatostatin on the generation of cyclic AMP have been studied under basal and histamine- or secretin-stimulated conditions in tubular gastric glands isolated by means of EDTA from the rat fundus and antrum. Four types of cell could be identified by electron microscopy; namely, parietal, mucous, peptic and some endocrine cells with a good morphological preservation of the cellular topography as seen in the intact mucosa. Immunoreactive somatostatin was found in antral glands (210 +/- 16 ng/g cell, wet wt., n = 9) as well as in fundic glands, but in smaller concentration (50 +/- 8 ng/g cell, wet wt., n = 9). (1) In rat fundic glands, glucagon, in supraphysiologic doses (3 . 10(-9) -5 . 10(-7) M), raised cyclic AMP levels 46 times above the basal. At maximally effective doses, combination of glucagon plus histamine was not additive whereas glucagon and secretin stimulations resulted in an additive response. Somatostatin (10(-10) -10(-7) M) inhibited both glucagon- and histamine-induced cyclic AMP production, whereas cimetidine specifically blocked the histaminergic stimulation. (2) In the same conditions, 10(-6)M glucagon produced a marginal effect (4-fold increase) in rat antrum, whereas GIP (10(-9) -10(-6)M) was unable to induce a significant rise of cyclic AMP production in either fundic or antral glands, or to prevent cyclic AMP production stimulated by histamine. (3) The present data do not support the view that circulating glucagon or GIP may regulate gastric secretion directly by a cyclic AMP-dependent mechanism in rat gastric glands and raise the possibility that gastric somatostatin may be the final mediator of the inhibitory actions of these hormones on acid secretion. (4) It is proposed that pancreatic glucagon acts through a receptor-cyclic AMP system which is specific for the bioactive peptide enteroglucagon ('oxyntomodulin'), probably in rat parietal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号