首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

p16INK4a is a tumor suppressor protein which is induced in cells upon the interaction of high-risk HPV E7 with the retinoblastoma protein by a positive feedback loop, but cannot exert its suppressing effect. Previous reports suggested that p16INK4a immunostaining allows precise identification of even small CIN or cervical cancer lesions in biopsies. The prognostic value of overexpressed p16INK4a in cervical cancer has been evaluated for several years while the results remain controversial. We performed a systematic review and meta-analysis of studies assessing the clinical and prognostic significance of overexpression of p16INK4a in cervical cancer.

Methods

Identification and review of publications assessing clinical or prognostic significance of p16INK4a overexpression in cervical cancer until March 1, 2014. A meta-analysis was performed to clarify the association between p16INK4a overexpression and clinical outcomes.

Results

A total of 15 publications met the criteria and comprised 1633 cases. Analysis of these data showed that p16INK4a overexpression was not significantly associated with tumor TNM staging (I+II vs. III+IV) (OR = 0.75, 95% confidence interval [CI]: 0.35–1.63, P = 0.47), the tumor grade (G1+ G2 vs. G3) (OR = 0.78, 95% CI: 0.39–1.57, P = 0.49), the tumor size (<4 vs. ≥4 cm) (OR = 1.10, 95% CI: 0.45–2.69, P = 0.83), or vascular invasion (OR = 1.20, 95% CI: 0.69–2.08, P = 0.52). However, in the identified studies, overexpression of p16INK4a was highly correlated with no lymph node metastasis (OR = 0.51, 95% CI: 0.28–0.95, P = 0.04), increased overall survival (relative risk [RR]: 0.42, 95% CI: 0.24–0.72, P = 0.002) and increased disease free survival (RR: 0.60, 95% CI: 0.44–0.82, P = 0.001).

Conclusions

This meta-analysis shows overexpression of p16INK4a in cervical cancer is connected with increased overall and disease free survival and thus marks a better prognosis.  相似文献   

2.
3.
Opioid growth factor (OGF) is an endogenous opioid peptide ([Met5]enkephalin) that interacts with the OGF receptor (OGFr) and serves as a tonically active negative growth factor in cell proliferation of normal cells. To clarify the mechanism by which OGF inhibits cell replication in normal cells, we investigated the effect of the OGF–OGFr axis on cell cycle activity in human umbilical vein endothelial cells (HUVECs) and human epidermal keratinocytes (NHEKs). OGF markedly depressed cell proliferation of both cell lines by up to 40% of sterile water controls. Peptide treatment induced cyclin-dependent kinase inhibitor (CKI) p16INK4a protein expression and p21WAF1/CIP1 protein expression in HUVECs and NHEKs, but had no effect on p15, p18, p19, or p27 protein expression in either cell type. Inhibition of either p16INK4a or p21WAF1/CIP1 activation by specific siRNAs blocked OGF inhibitory action. Human dermal fibroblasts and mesenchymal stem cells also showed a similar dependence of OGF action on p16INK4a and p21WAF1/CIP1. Collectively, these results indicate that both p16INK4a and p21WAF1/CIP1 are required for the OGF–OGFr axis to inhibit cell proliferation in normal cells.  相似文献   

4.
5.

Objective

A genomic region near the CDKN2A locus, encoding p16INK4a, has been associated to type 2 diabetes and atherosclerotic vascular disease, conditions in which inflammation plays an important role. Recently, we found that deficiency of p16INK4a results in decreased inflammatory signaling in murine macrophages and that p16INK4a influences the phenotype of human adipose tissue macrophages. Therefore, we investigated the influence of immune cell p16INK4a on glucose tolerance and atherosclerosis in mice.

Methods and Results

Bone marrow p16INK4a-deficiency in C57Bl6 mice did not influence high fat diet-induced obesity nor plasma glucose and lipid levels. Glucose tolerance tests showed no alterations in high fat diet-induced glucose intolerance. While bone marrow p16INK4a-deficiency did not affect the gene expression profile of adipose tissue, hepatic expression of the alternative markers Chi3l3, Mgl2 and IL10 was increased and the induction of pro-inflammatory Nos2 was restrained on the high fat diet. Bone marrow p16INK4a-deficiency in low density lipoprotein receptor-deficient mice did not affect western diet-induced atherosclerotic plaque size or morphology. In line, plasma lipid levels remained unaffected and p16INK4a-deficient macrophages displayed equal cholesterol uptake and efflux compared to wild type macrophages.

Conclusion

Bone marrow p16INK4a-deficiency does not affect plasma lipids, obesity, glucose tolerance or atherosclerosis in mice.  相似文献   

6.
Oncogene induced senescence (OIS) is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR), senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs). We showed here that hypoxia prevents execution of oncogene induced senescence (OIS), through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α). In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.  相似文献   

7.
p16INK4a and p21WAF1, two major cyclin-dependent kinase inhibitors, are the products of two tumor suppressor genes that play important roles in various cellular metabolic pathways. p21WAF1 is up-regulated in response to different DNA damaging agents. While the activation of p21WAF1 is p53-dependent following γ-rays, the effect of ultraviolet (UV) light on p21WAF1 protein level is still unclear. In the present report, we show that the level of the p21WAF1 protein augments in response to low UVC fluences in different mammalian cells. This up-regulation is mediated through the stabilization of p21WAF1 mRNA in a p16INK4a-dependent manner in both human and mouse cells. Furthermore, using p16-siRNA treated human skin fibroblast; we have shown that p16 controls the UV-dependent cytoplasmic accumulation of the mRNA binding HuR protein. In addition, HuR immunoprecipitations showed that UV-dependent binding of HuR to p21 mRNA is p16-related. This suggests that p16 induces p21 by enabling the relocalization of HuR from the nucleus to the cytoplasm. Accordingly, we have also shown that p16 is necessary for efficient UV-dependent p53 up-regulation, which also requires HuR. These results indicate that, in addition to its role in cell proliferation, p16INK4a is also an important regulator of the cellular response to UV damage.  相似文献   

8.
MCS-5A, an analog of sangivamycin, selectively inhibits the cyclin-dependent kinases CDK1 and 4 in HL-60 cells in vitro (IC50: 9.6 and 8.8 μΜ, respectively), while weakly inhibiting other housekeeping protein kinases. MCS-5A effectively induces HL-60 cell cycle arrest at the G1 and G2/M phases through direct inhibition of CDK1 and 4 activity. In addition, elevated expression of p16INK4a and a reduction in the level of hyperphosphorylated pRb showed that 3 μΜ MCS-5A also induces p16INK4a-mediated cell cycle arrest at the G1 phase. Furthermore, apoptotic induction in MCS-5A-treated HL-60 cells is associated with the release of cytochrome c from mitochondria, which, in turn, results in the activation of procaspase-8, -9 and -3, and the cleavage of poly(ADP-ribose) polymerase (PARP). In addition, the involvement of p16INK4a in this apoptotic induction was demonstrated using A549 cells with a homozygous deletion of p16INK4a. Based on these results, we conclude that MCS-5A is a candidate therapeutic agent for the treatment of human promyelocytic leukemia via the up-regulation of p16INK4a.  相似文献   

9.
10.

Background

p16INK4a and p21WAF1 are two independent cyclin-dependent kinase inhibitors encoded by the CDKN2A and CDKN1A genes, respectively. p16INK4a and p21WAF1 are similarly involved in various anti-cancer processes, including the regulation of the critical G1 to S phase transition of the cell cycle, senescence and apoptosis. Therefore, we sought to elucidate the molecular mechanisms underlying the link between these two important tumor suppressor proteins.

Methodology/Principal Findings

We have shown here that the p16INK4a protein positively controls the expression of p21WAF1 in both human and mouse cells. p16INK4a stabilizes the CDKN1A mRNA through negative regulation of the mRNA decay-promoting AUF1 protein. Immunoprecipitation of AUF1-associated RNAs followed by quantitative RT-PCR indicated that endogenous AUF1 binds to the CDKN1A mRNA in a p16INK4A-dependent manner. Furthermore, while AUF1 down-regulation increased the expression level of the CDKN1A mRNA, the concurrent knockdown of AUF1 and CDKN2A, using specific silencing RNAs, restored the normal expression of the gene. Moreover, we used EGFP reporter fused to the CDKN2A AU-rich element (ARE) to demonstrate that p16INK4A regulation of the CDKN1A mRNA is AUF1- and ARE-dependent. Furthermore, ectopic expression of p16INK4A in p16INK4A-deficient breast epithelial MCF-10A cells significantly increased the level of p21WAF1, with no effect on cell proliferation. In addition, we have shown direct correlation between p16INK4a and p21WAF1 levels in various cancer cell lines.

Conclusion/Significance

These findings show that p16INK4a stabilizes the CDKN1A mRNA in an AUF1-dependent manner, and further confirm the presence of a direct link between the 2 important cancer-related pathways, pRB/p16INK4A and p14ARF/p53/p21WAF1.  相似文献   

11.

Background

Genome-wide association studies have identified that multiple single nucleiotide polymorphisms on chromosome 9p21 are tightly associated with coronary artery disease (CAD). However, the mechanism linking this risk locus to CAD remains unclear.

Methodology/Principal Findings

The methylation status of six candidate genes (BAX, BCL-2, TIMP3, p14ARF, p15INK4b and p16INK4a) in 205 patients and controls who underwent coronary angiography were analyzed by quantitative MethyLight assay. Rs10757274 was genotyped and expression of INK4/ARF and antisense non-coding RNA in the INK4 locus (ANRIL) was determined by real-time RT-PCR. Compared with controls, DNA methylation levels at p15INK4b significantly increased in CAD patients (p = 0.006). To validate and dissect the methylation percentage of each target CpG site at p15INK4b, pyrosequencing was performed, finding CpG +314 and +332 remarkably hypermethylated in CAD patients. Further investigation determined that p15INK4b hypermethylation prevalently emerged in lymphocytes of CAD patients (p = 0.013). The rs10757274 genotype was significantly associated with CAD (p = 0.003) and GG genotype carriers had a higher level of ANRIL exon 1–5 expression compared among three genotypes (p = 0.009). There was a stepwise increase in p15INK4b and p16INK4a methylation as ANRIL exon 1–5 expression elevated (r = 0.23, p = 0.001 and r = 0.24, p = 0.001, respectively), although neither of two loci methylation was directly linked to rs10757274 genotype.

Conclusions/Significance

p15INK4b methylation is associated with CAD and ANRIL expression. The epigenetic changes in p15INK4b methylation and ANRIL expression may involve in the mechanisms of chromosome 9p21 on CAD development.  相似文献   

12.
Members of the INK4 protein family specifically inhibit cyclin-dependent kinase 4 (cdk4) and cdk6-mediated phosphorylation of the retinoblastoma susceptibility gene product (Rb). p16INK4A, a prototypic INK4 protein, has been identified as a tumor suppressor in many human cancers. Inactivation of p16INK4A in tumors expressing wild-type Rb is thought to be required in order for many malignant cell types to enter S phase efficiently or to escape senescence. Here, we demonstrate another mechanism of tumor suppression by implicating p16INK4A in a G1 arrest checkpoint in response to DNA damage. Calu-1 non-small cell lung cancer cells, which retain Rb and lack p53, do not arrest in G1 following DNA damage. However, engineered expression of p16INK4A at levels compatible with cell proliferation restores a G1 arrest checkpoint in response to treatment with γ-irradiation, topoisomerase I and II inhibitors, and cisplatin. A similar checkpoint can be demonstrated in p53−/− fibroblasts that express p16INK4A. DNA damage-induced G1 arrest, which requires the expression of pocket proteins such as Rb, can be abrogated by overexpression of cdk4, kinase-inactive cdk4 variants capable of sequestering p16INK4A, or a cdk4 variant incapable of binding p16INK4A. After exposure to DNA-damaging agents, there was no change either in overall levels of p16INK4A or in amounts of p16INK4A found in complex with cdks 4 and 6. Nonetheless, p16INK4A expression is required for the reduction in cdk4- and cdk6-mediated Rb kinase activity observed in response to DNA damage. During tumor progression, loss of p16INK4A expression may be necessary for cells with wild-type Rb to bypass this G1 arrest checkpoint and attain a fully transformed phenotype.  相似文献   

13.
14.

Objective

This study aimed to examine the prognostic value of overexpressed p16INK4a in vulvar cancer. Although the tumor suppressor p16INK4a has been shown to be of prognostic value in a wide variety of cancers and precancerous lesions, its role in the vulvar cancer is still unclear.

Methods

All publications in English language on the association between p16INK4a and clinicopathological features of vulvar cancer were searched from Pubmed, Embase, and Web of Science, and those in Chinese language were identified manually and online from the China National Knowledge Infrastructure. Strict inclusion and exclusion criteria were followed. Odds ratios(ORs) or risk ratios(RRs) with 95% confidence intervals(CIs) were pooled to assess the strength of association. Publication bias was estimated using funnel plots and the Egger’s regression test.

Results

A total of 17 studies with 2309 patients were included. The p16INK4a overexpression was found to correlate significantly with the lower International Federation of Gynecology and Obstetrics stage(I+II vs III+IV; OR = 0.60,95%CI:0.41–0.86,P = 0.006),negative lymph node metastasis(negative vs positive; OR = 0.61,95%CI:0.39–0.95,P = 0.029),patient’s age<55(OR = 0.54,95%CI:0.31–0.96,P = 0.034),human papillomavirus–positive status(OR = 0.01,95%CI:0.00–0.11,P<0.001),and higher overall survival(RR = 0.53,95%CI = 0.35–0.80,P = 0.003).

Conclusion

The p16INK4a might be associated with a higher survival and indicates better prognosis of vulvar cancer.  相似文献   

15.
16.

Background

The cyclin-dependent kinase inhibitors p15INK4b and p57KIP2 are important regulators of the cell cycle, and their abnormal expression has been detected in various tumors. However, little is known about the role of p15INK4b and p57KIP2 in the pathogenesis of vulvar carcinoma, and the prognostic impact is still unknown. In our current study, we examined the expression of p15INK4b and p57KIP2 in a large series of vulvar squamous cell carcinomas to elucidate the prognostic impact.

Methods

Expression of p15INK4b and p57KIP2 were examined in 297 vulvar squamous cell carcinomas using immunohistochemistry. Both uni- and multivariate analysis of prognostic factors were performed, and correlations with clinicopathologic parameters were examined.

Results

Compared to the high levels of p15INK4b and p57KIP2 in normal vulvar squamous epithelium, low levels of p15INK4b and p57KIP2 were found in 82% and 44% of vulvar carcinomas, respectively. Low levels of p15INK4b and p57KIP2 correlated significantly with malignant features, including large tumor diameter (p = 0.03 and p = 0.001, respectively) and increased invasiveness (p = 0.003 and p = 0.04, respectively). Although p15INK4b and p57KIP2 levels could not be identified as prognostic markers, combined analysis of p14ARF/p15INK4b/p16INK4a showed that patients whose tumors expressed low levels of two or three of these INK4 proteins had a worse prognosis than those with only low levels of one or no protein (univariate analysis p = 0.02). The independent prognostic significance of these INK4 proteins was confirmed by multivariate analysis (p = 0.008).

Conclusions

We show for the first time that p15INK4b and p57KIP2 may be involved in the progression of vulvar carcinomas and the combined p14ARF/p15INK4b/p16INK4a status was a statistically independent prognostic factor.  相似文献   

17.

Introduction

Recent evidence suggests that tissue accumulation of senescent p16INK4a-positive cells during the life span would be deleterious for tissue functions and could be the consequence of inherent age-associated disorders. Osteoarthritis (OA) is characterized by the accumulation of chondrocytes expressing p16INK4a and markers of the senescence-associated secretory phenotype (SASP), including the matrix remodeling metalloproteases MMP1/MMP13 and pro-inflammatory cytokines interleukin-8 (IL-8) and IL-6. Here, we evaluated the role of p16INK4a in the OA-induced SASP and its regulation by microRNAs (miRs).

Methods

We used IL-1-beta-treated primary OA chondrocytes cultured in three-dimensional setting or mesenchymal stem cells differentiated into chondrocyte to follow p16INK4a expression. By transient transfection experiments and the use of knockout mice, we validate p16INK4a function in chondrocytes and its regulation by one miR identified by means of a genome-wide miR-array analysis.

Results

p16INK4a is induced upon IL-1-beta treatment and also during in vitro chondrogenesis. In the mouse model, Ink4a locus favors in vivo the proportion of terminally differentiated chondrocytes. When overexpressed in chondrocytes, p16INK4a is sufficient to induce the production of the two matrix remodeling enzymes, MMP1 and MMP13, thus linking senescence with OA pathogenesis and bone development. We identified miR-24 as a negative regulator of p16INK4a. Accordingly, p16INK4a expression increased while miR-24 level was repressed upon IL-1-beta addition, in OA cartilage and during in vitro terminal chondrogenesis.

Conclusions

We disclosed herein a new role of the senescence marker p16INK4a and its regulation by miR-24 during OA and terminal chondrogenesis.  相似文献   

18.
19.
Stable epigenetic silencing of p16INK4a is a common event in hepatocellular carcinoma (HCC) cells, which is associated with abnormal cell proliferation and liberation from cell cycle arrest. Understanding the early epigenetic events in silencing p16INK4a expression may illuminate a prognostic strategy to block HCC development. Toward this end, we created a reprogram cell model by the fusion mouse HCC cells with mouse embryonic stem cells, in which the ES-Hepa hybrids forfeited HCC cell characteristics along with reactivation of the silenced p16INK4a. HCC characteristics, in terms of gene expression pattern and tumorigenic potential, was restored upon induced differentiation of these reprogrammed ES-Hepa hybrids. The histone methylation pattern relative to p16INK4a silencing during differentiation of the ES-Hepa hybrids was analyzed. H3K27 trimethylation at the p16INK4a promoter region, occurring in the early onset of p16INK4a silencing, was followed by H3K9 dimethylation at later stages. During the induced differentiation of the ES-Hepa hybrids, H3K4 di- and trimethylations were maintained at high levels during the silencing of p16INK4a, strongly suggesting that H3K4 methylation events did not cause the silencing of p16INK4a. Our results suggested that the enrichment of H3K27 trimethylation, independent of H3K9 dimethylation, trimethylation, and DNA methylation, was an early event in the silencing of p16INK4a during the tumor development. This unique chromatin pattern may be a heritable marker of epigenetic regulation for p16INK4a silencing during the developmental process of hepatocellular carcinogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号