首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the effect of 2-(6-(2-thieanisyl)-3(Z)-hexen-1,5-diynyl)aniline(THDA), a newly developed anti-cancer agent, on cell proliferation, cell cycle progression, and induction of apoptosis in K562 cells. THDA was found to inhibit the growth of K562 cells in a time-and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest and apoptosis in K562 cells following 24 h exposure to THDA. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a time-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that THDA did not change the steady-state levels of cyclin B1, cyclin D3 and Cdc25C, but decreased the protein levels of Cdk1, Cdk2 and cyclin A. THDA also caused a marked increase in apoptosis, which was associated with activation of caspase-3 and proteolytic cleavage of poly (ADP-ribose) polymerase. These molecular alterations provide an insight into THDA-caused growth inhibition, G2/M arrest and apoptotic death of K562 cells.  相似文献   

2.
Lu MC  Yang SH  Hwang SL  Lu YJ  Lin YH  Wang SR  Wu YC  Lin SR 《Life sciences》2006,78(20):2378-2383
Squamocin is one of the annonaceous acetogenins and has been reported to have anticancer activity. Squamocin was found to inhibit the growth of K562 cells in a time- and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest in K562 cells following 24 h exposure to squamocin. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a dose-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that squamocin did not change the steady-state levels of Cdk2, Cdk4, cyclin A, cyclin B1, cyclin D3 and cyclin E, but decreased the protein levels of Cdk1 and Cdc25C. These results suggest that squamocin inhibits the proliferation of K562 cells via G2/M arrest in association with the induction of p21, p27 and the reduction of Cdk1 and Cdc25C kinase activities.  相似文献   

3.
Overexpression of the cyclin-dependent kinase inhibitor p27(Kip1) has been demonstrated to induce cell cycle arrest and apoptosis in various cancer cell lines, but has also been associated with the opposite effect of enhanced survival of tumor cells and increased resistance towards chemotherapeutic treatment. To address the question of how p27(Kip1) expression is related to apoptosis induction, we studied doxycycline-regulated p27(Kip1) expression in K562 erythroleukemia cells. p27(Kip1) expression effectively retards proliferation, but it is not sufficient to induce apoptosis in K562 cells. p27(Kip1)-expressing K562 cells, however, become resistant to apoptosis induction by the proteasome inhibitors PSI, MG132 and epoxomicin, in contrast to wild-type K562 cells that are efficiently killed. Cell cycle arrest in the S phase by aphidicolin, which is not associated with an accumulation of p27(Kip1) protein, did not protect K562 cells against the cytotoxic effect of the proteasome inhibitor PSI. The expression levels of p27(Kip1) thus constitute an important parameter, which decides on the overall sensitivity of cells against the cytotoxic effect of proteasome inhibitors.  相似文献   

4.
In comparison with four tumor cell lines and three non transformed cell types, chronic myeloid leukemia K562 cells were selectively sensitive to proliferation inhibition by the oxoindole derivative XJW20, as determined by the MTT assay. Further investigation revealed that XJW20 selectively induced G2/M arrest and apoptosis in K562 cells. At the molecular level, XJW20-induced G2/M arrest was accompanied by up-regulation of cyclin B1 and phospho (p)-Cdc25C (Ser216) and down-regulation of CDK1. There is no change in the expression of CDK2. The increased apoptotic activity by XJW20 was characterized by an increase in reactive oxygen species (ROS) generation, the mitochondrial transmembrane potential (ΔΨm) dissipation, cytochrome C releasing, apoptotic nuclei (AO/EB double staining) and nuclei condensation (DAPI-staining). The down-regulation of phosphorylated ERK was also found in XJW20-treated K562 cells. These molecular events induced by XJW20 may provide insight into the mechanism of action that led to growth arrest and apoptosis.  相似文献   

5.
Polycyclic aromatic hydrocarbons (PAH) are common environmental pollutants that suppress the immune system in part by inducing pro/pre-B cell apoptosis. The PAH-induced death signaling pathway resembles the signaling cascade activated during clonal deletion and modeled by B cell receptor cross-linking or by dexamethasone exposure of immature surface Ig(+) B cells in that apoptosis is mediated by NF-kappa B down-regulation. Because a PAH-induced, clonally nonrestricted deletion of B cells would have important implications for B cell repertoire development, the nature of the PAH-induced intracellular death signal was studied further. Particular emphasis was placed on the roles of growth arrest and c-Myc, p27(Kip1), and p21(WAF1) expression, because all of these elements contribute to clonal deletion. As in clonal deletion models, and as predicted by the down-regulation of NF-kappa B, PAH-induced death of pro/pre-B cells was at least partially dependent on c-Myc down-regulation. Furthermore, whereas dexamethasone induced a G(0)/G(1) cell cycle arrest, PAH had no effect on pro/pre-B cell growth, indicating that growth arrest and apoptosis occur by separable signaling pathways in this early phase of B cell development. Finally, in contrast to clonal deletion, PAH-induced pro/pre-B cell death was not dependent on p27(Kip1) or p21(WAF1) up-regulation but did coincide with p53 induction. These results distinguish the PAH-induced apoptosis pathway from that activated during clonal deletion and indicate that signaling cascades leading to growth arrest and/or apoptosis in pro/pre-B cells differ from those active at later B cell developmental stages.  相似文献   

6.
Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosisinducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties.  相似文献   

7.
Kim HR  Lee CH  Choi YH  Kang HS  Kim HD 《IUBMB life》1999,48(4):425-428
Geldanamycin (GA), a benzoquinone ansamycin, is one of the specific inhibitors of 90-kDa heat shock protein and induces growth inhibition and apoptosis in certain cancer cell lines. We have investigated the mechanism of GA-induced growth inhibition in K562 erythroleukemic cells. DNA flow-cytometric analysis indicated that GA-induced growth arrest was associated with G2/M phase arrest of the cell cycle. GA treatment down-regulated the expression of cyclin B1 and inhibited phosphorylation of Cdc2 protein, both key regulatory proteins at the G2/M boundary. GA also markedly inhibited the Cdc2 kinase activity, which may be in part a result of up-regulation of p27KIP1 by GA. The present results suggest a novel mechanism that p27KIP1 could be involved in the regulation of G2 to M phase transition.  相似文献   

8.
9.
The E2F1 gene well known is its pivotal role in regulating the entry from G1 to S phase, while the salvage antitumoral pathway which implicates it, especially in the absence of p53, is not fully characterized. We therefore attempted to identify the up‐ and down‐stream events involved in the activation of the E2F1‐dependent pro‐apoptotic pathway. For this purpose, a amonafide analogue, 7‐d (2‐(3‐(2‐(Dimethylamino)ethylamino)propyl)‐6‐(dodecylamino)‐1H‐benzo[de]isoquinoline‐1,3(2H)‐dione) was screened, which exhibited high antitumor activity against p53‐deficient human Chronic Myelogenous Leukemia (CML) K562 cells. Analysis of flow cytometry and western blots of K562 cells treated with 7‐d revealed an appreciable G2/M cycle arrest and apoptosis in a dose and time‐dependent manner via p53‐independent pathway. A striking increase in “Comet tail” formation and γ‐H2AX expression showed that DNA double strand breaks (DSB) were caused by 7‐d treatment. ATM/ATR signaling was reported to connect E2F1 induction with apoptosis in response to DNA damage. Indeed, 7‐d‐induced G2/M arrest and apoptosis were antagonized by ATM/ATR signaling inhibitor, Caffeine, which suggested that ATM/ATR signaling was activated by 7‐d treatment. Furthermore, the increased expression of E2F1, p73, and Apaf‐1 and p73 dissociation from HDM2 was induced by 7‐d treatment, however, knockout of E2F1 expression reversed p73, Apaf‐1, and p21Cip1/WAF1 expression, reactivated cell cycle progression, and inhibited 7‐d‐induced apoptosis. Altogether our results for the first time indicate that 7‐d mediates its growth inhibitory effects on CML p53‐deficient cells via the activation of an E2F1‐dependent mitochondrial and cell cycle checkpoint signaling pathway which subsequently targets p73, Apaf‐1, and p21Cip1/WAF1. J. Cell. Biochem. 113: 3165–3177, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Engagement of the B cell receptor of WEHI 231 immature B cells leads sequentially to a drop in c-Myc, to induction of the cyclin-dependent kinase inhibitor p27Kip1, and finally to apoptosis. Recently we demonstrated that the drop in c-Myc expression promotes cell death, whereas the induction of p27 has been shown to lead to growth arrest. In this paper, we demonstrate that increased p27 expression also promotes apoptosis of WEHI 231 B cells. The rescue of WEHI 231 cells by CD40 ligand engagement of its receptor prevented the increase in p27 induction. Inhibition of p27-ablated apoptosis induced upon expression of antisense c-myc RNA. Furthermore, specific induction of p27 gene expression resulted in apoptosis of WEHI 231 cells. Lastly, inhibition of expression of c-Myc, upon induction of an antisense c-myc RNA vector, was sufficient to induce increased p27 levels and apoptosis. Thus, these findings define a signaling pathway during B cell receptor engagement in which the drop in c-Myc levels leads to an increase in p27 levels that promotes apoptosis.  相似文献   

11.
Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.  相似文献   

12.
Furano-1,2-naphthoquinone (FNQ), prepared from 2-hydroxy-1,4-naphthoquinone and chloroacetaldehyde in an efficient one-pot reaction, exhibits an anti-carcinogenic effect. FNQ exerted anti-proliferative activity with the G(2)/M cell cycle arrest and apoptosis in A549 cells. FNQ-induced G(2)/M arrest was correlated with a marked decrease in the expression levels of cyclin A and cyclin B, and their activating partner cyclin-dependent kinases (Cdk) 1 and 2 with concomitant induction of p53, p21, and p27. FNQ-induced apoptosis was accompanied with Bax up-regulation and the down-regulation of Bcl-2, X-linked inhibitor of apoptosis (XIAP), and survivin, resulting in cytochrome c release and sequential activation of caspase-9 and caspase-3. Western blot analysis revealed that FNQ suppressed EGFR phosphorylation and JAK2, STAT3, and STAT5 activation, but increased in activation of p38 MAPK and c-Jun NH2-terminal kinase (JNK) stress signal. The combined treatment of FNQ with AG1478 (a specific EGFR inhibitor) significantly enhanced the G(2)/M arrest and apoptosis, and also led to up-regulation in Bax, p53, p21, p27, release of mitochondrial cytochrome c, and down-regulation of Bcl-2, XIAP, survivin, cyclin A, cyclin B, Cdk1, and Cdk2 in A549 cells. These findings suggest that FNQ-mediated cytotoxicity of A549 cell related with the G(2)/M cell cycle arrest and apoptosis via inactivation of EGFR-mediated signaling pathway.  相似文献   

13.
14.
以药物敏感型细胞株K562/S和耐药型细胞株K562/A02为对象.观察原癌基因Bcl-2的表达量在两种细胞中的差异,以及神经酰胺作为一个新的脂质第二信使诱导细胞凋亡的能力,并利用酪氨酸激酶抑制剂genistein,酪氨酸磷酸酯酶抑制剂vanadate,观察酪氨酸可逆磷酸化与细胞凋亡间的关系.结果显示:在K562/A02中Bcl-2的表达量明显高于K562/S;外源性神经酰胺能成功地诱导K562/S,K562/A02细胞凋亡,凋亡细胞具有典型的形态学改变和DNA“Ladder”形成,FCM检测出现凋亡细胞峰,但在同样的诱导条件下,K562/S细胞凋亡明显高于K562/A02细胞.FCM检测genistein能显著改变这两种细胞生长周期,但细胞阻滞于G2/M期,便对神经酰胺诱导的细胞凋亡无明显作用,vanadate单独对细胞地明显作用,但与神经酰胺共同作用能明显提高细胞凋亡率.以上结果表明在药物诱导的细胞调亡中Bcl-2基因起重要作用,神经酰胺能诱导K562/S和K562/A02细胞调亡.  相似文献   

15.
16.
17.
18.
Proteasomes are highly expressed in rapidly growing neoplastic cells and essential for controlling the cell cycle process and mitochondrial homeostasis. Pharmacological inhibition of the proteasome shows a significant anticancer effect on hematopoietic malignancies that is usually associated with the generation of reactive oxygen species. In this study, we comprehensively investigated the role of endogenous oxidants in various cellular events of K562 leukemic cells in response to treatment with MG132, a proteasome inhibitor. MG132 at 1.4 µM potently triggered G2/M arrest, mitochondrial depolarization, and apoptosis. By such treatment, the protein level of inducible nitric oxide synthase (iNOS) was doubled and cellular oxidants, including nitric oxide, superoxide, and their derivatives, were increasingly produced. In MG132-treated cells, the increase in iNOS-derived oxidants was responsible for mitochondrial depolarization and caspase-dependent apoptosis, but was insignificant in G2/M arrest. The amount of iNOS was negatively correlated with that of manganese superoxide dismutase (MnSOD). Whereas iNOS activity was inhibited by aminoguanidine, cellular MnSOD levels as well as mitochondrial membrane potentials were upregulated, and consequentially G2/M arrest and apoptosis were thoroughly reversed. It is suggested that cells rich in functional mitochondria possess improved proteasome activity, which antagonizes the cytotoxic and cytostatic effects of MG132. In contrast to iNOS, endothelial NOS-driven cGMP-dependent signaling promoted mitochondrial function and survival of MG132-stressed cells. In conclusion, the functional interplay of proteasomes and mitochondria is crucial for leukemic cell growth, wherein iNOS plays a key role.  相似文献   

19.
20.
Cell cycle arrest is a major cellular response to DNA damage preceding the decision to repair or die. Many malignant cells have non-functional p53 rendering them more “aggressive” in nature. Arrest in p53-negative cells occurs at the G2M cell cycle checkpoint. Failure of DNA damaged cells to arrest at G2 results in entry into mitosis and potential death through aberrant mitosis and/or apoptosis. The pivotal kinase regulating the G2M checkpoint is Cdk1/cyclin B whose activity is controlled by phosphorylation. The p53-negative myeloid leukemia cell lines K562 and HL-60 were used to determine Cdk1 phosphorylation status during etoposide treatment. Cdk1 tyrosine 15 phosphorylation was associated with G2M arrest, but not with cell death. Cdk1 tyrosine 15 phosphorylation also led to suppression of nuclear cyclin B-associated Cdk1 kinase activity. However cell death, associated with broader tyrosine phosphorylation of Cdk1 was not attributed to tyrosine 15 alone. This broader phosphoryl isoform of Cdk1 was associated with cyclin A and not cyclin B. Alternative phosphorylations sites were predicted as tyrosines 4, 99 and 237 by computer analysis. No similar pattern was found on Cdk2. These findings suggest novel Cdk1 phosphorylation sites, which appear to be associated with p53-independent cell death following etoposide treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号