共查询到20条相似文献,搜索用时 0 毫秒
1.
UV-irradiated Chinese hamster cells on post-irradiation treatment with caffeine in growth medium for 24 h gave rise to biphasic UV-survival curves. At caffeine concentrations between 0.001 and 0.1 mM, control and caffeine-grown cells had similar survival curves initially from 0 to 30 J/m2. At fluences greater than 30 J/m2, there was effectively only little further killing of caffeine-grown cells beyond that observed at 30 J/m2. At concentrations of caffeine greater than 0.5 mM, there was a gradual sensitization in the early part of the survival curve with increasing caffeine concentrations; but at fluences greater than 3 J/m2, the slopes in the survival curves decreased very much.It has been proposed that the initial sensitization observed at low UV fluences is due to the suppression of post-replication repair by caffeine. After high fluences of UV exposures in these excision-deficient cells, in the presence of caffeine, the possibility of an induced ‘SOS’-like repair process has been suggested. This suggestion was supported by the observation that caffeine increased the yield of the UV-induced 8-azaguanine-resistant mutants only for the cell population exposed to UV fluences greater than 30 J/m2. 相似文献
2.
Ataxia telangiectasia is one of a group of recessive hereditary genomic instability disorders and is characterized by progressive neurodegeneration, immunodeficiency and cancer susceptibility. Heterozygotes for the mutated gene are more susceptible to cancer and to ischaemic heart disease. The affected gene, ATM (ataxia telangiectasia mutated), has been cloned and codes for a protein kinase (ATM), which orchestrates the cellular response to DNA double-strand breaks after ionising radiation. An underlying feature of ataxia telangiectasia is oxidative stress and there is chronic activation of stress response pathways in tissues showing pathology such as the cerebellum, but not in the cerebrum or liver. ATM has also been shown to be activated by insulin and to have a wider role in signal transduction and cell growth. Many, but not all, aspects of the phenotype can be attributed to a defective DNA damage response. The oxidative stress may result directly from accumulated DNA damage in affected tissues or ATM may have an additional role in sensing/modulating redox homeostasis. The basis for the observed tissue specificity of the oxidative damage in ataxia telangiectasia is not clear. 相似文献
3.
McKinnon PJ 《EMBO reports》2004,5(8):772-776
Ataxia telangiectasia (AT) has long intrigued the biomedical research community owing to the spectrum of defects that are characteristic of the disease, including neurodegeneration, immune dysfunction, radiosensitivity and cancer predisposition. Following the identification of mutations in ATM (ataxia telangiectasia, mutated) as the underlying cause of the disease, biochemical analysis of this protein kinase has shown that it is a crucial nexus for the cellular response to DNA double-stranded breaks. Many ATM kinase substrates are important players in the cellular responses that prevent cancer. Accordingly, AT is a disease that results from defects in the response to specific types of DNA damage. Thus, although it is a rare neurodegenerative disease, understanding the biology of AT will lead to a greater understanding of the fundamental processes that underpin cancer and neurodegeneration. 相似文献
4.
5.
Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients 总被引:21,自引:0,他引:21
N G Jaspers R A Gatti C Baan P C Linssen D Bootsma 《Cytogenetics and cell genetics》1988,49(4):259-263
Cultured cells from patients with ataxia telangiectasia (AT) or Nijmegen breakage syndrome (NBS) are hypersensitive to ionizing radiation. After radiation exposure, the rate of DNA replication is inhibited to a lesser extent than in normal cells, whereas the frequency of chromosomal aberrations is enhanced. Both of these features have been used in genetic complementation studies on a limited series of patients. Here we report the results of extended complementation studies on fibroblast strains from 50 patients from widely different origins, using the radioresistant DNA replication characteristic as a marker. Six different genetic complementation groups were identified. Four of these, called AB, C, D, and E (of which AB is the largest), represent patients with clinical signs of AT. Patients having NBS fall into two groups, V1 and V2. An individual with clinical symptoms of both AT and NBS was found in group V2, indicating that the two disorders are closely related. In AT, any group-specific patterns with respect to clinical characteristics or ethnic origin were not apparent. In addition to the radiosensitive ATs, a separate category of patients exists, characterized by a relatively mild clinical course and weak radiosensitivity. It is concluded that a defect in one of at least six different genes may underlie inherited radiosensitivity in humans. To facilitate research on defined defects, a complete list of genetically characterized fibroblast strains is presented. 相似文献
6.
A. Baumer Ulrike Bernthaler Werner Wolz Holger Hoehn Detlev Schindler 《Human genetics》1996,98(2):246-249
We report the detection of four new mutations in the ataxia telangiectasia gene (ATM). Reverse-transcribed RNA extracted
from cultured cells was analysed for mutations by polymerase chain reaction amplifications and restriction endonuclease fingerprinting.
Three deletions and a base substitution are described. The deletions reported here would result in severe disruptions of the
ATM gene product by leading either to a protein truncation (a 4-bp deletion) or the loss of stretches of 53 and 58 amino acids
(a 159-bp deletion and a 174-bp deletion, respectively); whereas the base substitution would lead to an amino acid change
from a highly conserved glycine to an arginine residue.
Received: 15 April 1996 / Revised: 24 April 1996 相似文献
7.
The ability of a number of Epstein-Barr virus-transformed lymphoblastoid cells from ataxia telangiectasia (AT) patients to repair γ-radiation damage to DNA was determined. All of these AT cells were previously shown to be hypersensitive to γ-irradiation. Two methods were used to determine DNA-repair synthesis: isopycnic gradient analysis and a method employing hydroxyurea to inhibit semiconservative DNA synthesis. Control, AT heterozygote and AT homozygote cells were demonstrateed to have similar capacities for repair of radiation damage to DNA. In addition at high radiation doses (10–40 krad) the extent of inhibition of DNA synthesis was similar in the different cell types. 相似文献
8.
Porcedda P Turinetto V Lantelme E Fontanella E Chrzanowska K Ragona R De Marchi M Delia D Giachino C 《DNA Repair》2006,5(8):904-913
The repair of DNA double-strand breaks is critical for genome integrity and tumor suppression. Here we show that following treatment with the DNA-intercalating agent actinomycin D (ActD), normal quiescent T cells accumulate double-strand breaks and die, whereas T cells from ataxia telangiectasia (AT) and Nijmegen breakage syndrome (NBS) patients are resistant to this death pathway despite a comparable amount of DNA damage. We demonstrate that the ActD-induced death pathway in quiescent T lymphocytes follows DNA damage and H2AX phosphorylation, is ATM- and NBS1-dependent and due to p53-mediated cellular apoptosis. In response to genotoxic 2-Gy gamma-irradiation, on the other hand, quiescent T cells from normal donors survive following complete resolution of the damage thus induced. T cells from AT and NBS patients also survive, but retain foci of phosphorylated H2AX due to a subtle double-strand break (DSB) repair defect. A common consequence of these two genetic defects in the DSB response is the apparent tolerance of cells containing DNA breaks. We suggest that this tolerance makes a major contribution to the oncogenic risk of patients with chromosome instability syndromes. 相似文献
9.
10.
Lee JH Xu B Lee CH Ahn JY Song MS Lee H Canman CE Lee JS Kastan MB Lim DS 《Molecular cancer research : MCR》2003,1(9):674-681
Phosphorylation of NBS1, the product of the gene mutated in Nijmegen breakage syndrome (NBS), by ataxia telangiectasia mutated (ATM), the product of the gene mutated in ataxia telangiectasia, is required for activation of the S phase checkpoint in response to ionizing radiation (IR). However, NBS1 is also thought to play additional roles in the cellular response to DNA damage. To clarify these additional functions of NBS1, we generated NBS cell lines stably expressing various NBS1 mutants from retroviral vectors. The ATM-dependent activation of CHK2 by IR was defective in NBS cells but was restored by ectopic expression of wild-type NBS1. The defects in ATM-dependent activation of CHK2, S phase checkpoint control, IR-induced nuclear focus formation, and radiation sensitivity apparent in NBS cells were not corrected by expression of NBS1 mutants that lack an intact MRE11 binding domain, suggesting that formation of the NBS1-MRE11-RAD50 complex is required for the corresponding normal phenotypes. Expression of NBS1 proteins with mutated ATM-targeted phosphorylation sites (serines 278 or 343) did not restore S phase checkpoint control but did restore the ability of IR to activate CHK2 and to induce nuclear focus formation and normalized the radiation sensitivity of NBS cells. Expression of NBS1 containing mutations in the forkhead-associated or BRCA1 COOH terminus domains did not correct the defects in radiation sensitivity or nuclear focus formation but did restore S phase checkpoint control in NBS cells. Together, these data demonstrate that multiple functional domains of NBS1 are required for ATM-dependent activation of CHK2, nuclear focus formation, S phase checkpoint control, and cell survival after exposure to IR. 相似文献
11.
Little JB Nagasawa H Dahlberg WK Zdzienicka MZ Burma S Chen DJ 《Radiation research》2002,158(3):319-326
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder. Originally thought to be a variant of ataxia telangiectasia (AT), the cellular phenotype of NBS has been described as almost indistinguishable from that of AT. Since the gene involved in NBS has been cloned and its functions studied, we sought to further characterize its cellular phenotype by examining the response of density-inhibited, confluent cultures of human diploid fibroblasts to irradiation in the G(0)/G(1) phase of the cell cycle. Both NBS and AT cells were markedly sensitive to the cytotoxic effects of radiation. NBS cells, however, were proficient in recovery from potentially lethal damage and exhibited a pronounced radiation-induced G(1)-phase arrest. Irradiated AT cells showed no potentially lethal damage and no G(1)-phase arrest. Both cell types were hypersensitive to the induction of chromosomal aberrations, whereas the distribution of aberrations in irradiated NBS cells was similar to that of normal controls, AT cells showed a high frequency of chromatid-type aberrations. TP53 and CDKN1A (also known as p21(Waf1)) expression was attenuated in irradiated NBS cells, but maximal induction occurred 2 h postirradiation, as was observed in normal controls. The similarities and differences in cellular phenotype between irradiated NBS and AT cells are discussed in terms of the functional properties of the signaling pathways downstream of AT involving the NBS1 and TP53 proteins. 相似文献
12.
Unusual features in the inheritance of ataxia telangiectasia 总被引:2,自引:0,他引:2
Summary A prevalence study of ataxia telangiectasia was conducted in the West Midlands, with a population of over 5 million. The prevalence in those aged 50 or less was found to be 1 in 514 000 and the birth frequency to be about 1 in 300 000. A genetic study of 47 families ascertained throughout the United Kingdom was carried out concurrently. A low parental consanguinity rate was found, no parents being first cousins or more closely related, whereas 10% had been expected. The incidence of ataxia telangiectasia in the 79 sibs of index cases was 1 in 7. These two features demonstrate that ataxia telangiectasia may not always be an autosomal recessive condition. Other possible explanations are that some cases are double heterozygotes or new dominant mutations. 相似文献
13.
Cohen BD 《Molecular and cellular biochemistry》2007,298(1-2):195-198
Guanidinosuccinic acid is an aberrant metabolite isolated 40 years ago in the blood and urine of uremic subjects and a suspect
in the toxicity associated with renal failure. It plays a minor role in the bleeding diathesis of uremia, contributes to the
methyl group deficiency of dialysis patients, and is a factor in the premature atherosclerosis of end stage renal disease
through the induction of hyperhomocysteinemia. As a major player, however, in the diversity and severity of uremic symptoms,
it is a disappointment.
Recently its source has been identified. It results from the superoxidation of argininosuccinic acid, which leads, also, to
the production of gamma glutamic semialdehyde, an advanced glycation end product (AGE), which normally results from from the
Maillard reaction, the non-enzymatic browning of protein. AGEs stimulate cross-linkages in protein that lead ultimately to
loss of function, phagocytosis, and removal, and are important elements in the premature aging characteristic of renal disease,
and diabetes. 相似文献
14.
Stress-induced premature senescence in hTERT-expressing ataxia telangiectasia fibroblasts 总被引:4,自引:0,他引:4
In addition to replicative senescence, normal diploid fibroblasts undergo stress-induced premature senescence (SIPS) in response to DNA damage caused by oxidative stress or ionizing radiation (IR). SIPS is not prevented by telomere elongation, indicating that, unlike replicative senescence, it is triggered by nonspecific genome-wide DNA damage rather than by telomere shortening. ATM, the product of the gene mutated in individuals with ataxia telangiectasia (AT), plays a central role in cell cycle arrest in response to DNA damage. Whether ATM also mediates signaling that leads to SIPS was investigated with the use of normal and AT fibroblasts stably transfected with an expression vector for the catalytic subunit of human telomerase (hTERT). Expression of hTERT in AT fibroblasts resulted in telomere elongation and prevented premature replicative senescence, but it did not rescue the defect in G(1) checkpoint activation or the hypersensitivity of the cells to IR. Despite these remaining defects in the DNA damage response, hTERT-expressing AT fibroblasts exhibited characteristics of senescence on exposure to IR or H(2)O(2) in such a manner that triggers SIPS in normal fibroblasts. These characteristics included the adoption of an enlarged and flattened morphology, positive staining for senescence-associated beta-galactosidase activity, termination of DNA synthesis, and accumulation of p53, p21(WAF1), and p16(INK4A). The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which mediates signaling that leads to senescence, was also detected in both IR- or H(2)O(2)-treated AT and normal fibroblasts expressing hTERT. These results suggest that the ATM-dependent signaling pathway triggered by DNA damage is dispensable for activation of p38 MAPK and SIPS in response to IR or oxidative stress. 相似文献
15.
Summary Cytogenetic findings on a family with ataxia telangiectasia (A-T) in which three of four sibs were affected are described. The affected individuals had approximately twice the level of spontaneous chromosome breakage of a normla control, while the parents and the normal sib had no significant increase. Lymphocytes from all three A-T homozygotes showed specific stable chromosomal rearrangements involving chromosomes 7 and 14. All of these abnormalities involved breakage at the usual four sites associated with A-T (7p14, 7q35, 14q12, and 14q32). Two rearrangements detected in the eldest and most severely affected patient were clones, one of which [t(14;14)(p11;q12)] is not commonly found in A-T cells. No chromosomal rearrangements were encountered in lymphocytes from the control, the parents, or the normal sib. Lymphocytes from the A-T patients also were found to be 7–11 times more sensitive to the induction of chromatid aberrations by X-irradiation than control cells. Lymphocytes from the parents and normal sib showed a moderately increased frequency of X-ray induced aberrations compared with that of the control. 相似文献
16.
Yorek MA Dunlap JA Manzo-Fontes A Bianchi R Berry GT Eichberg J 《Biochimica et biophysica acta》1999,1437(3):287-300
Ataxia telangiectasia (AT) is a complex autosomal recessive disorder that has been associated with a wide range of physiological defects including an increased sensitivity to ionizing radiation and abnormal checkpoints in the cell cycle. The mutated gene product, ATM, has a domain possessing homology to phosphatidylinositol-3-kinase and has been shown to possess protein kinase activity. In this study, we have investigated how AT affects myo-inositol metabolism and phospholipid synthesis using cultured human fibroblasts. In six fibroblast lines from patients with AT, myo-inositol accumulation over a 3-h period was decreased compared to normal fibroblasts. The uptake and incorporation of myo-inositol into phosphoinositides over a 24-h period, as well as the free myo-inositol content was also lower in some but not all of the AT fibroblast lines. A consistent finding was that the proportion of 32P in total labeled phospholipid that was incorporated into phosphatidylglycerol was greater in AT than normal fibroblasts, whereas the fraction of radioactivity in phosphatidic acid was decreased. Turnover studies revealed that AT cells exhibit a less active phospholipid metabolism as compared to normal cells. In summary, these studies demonstrate that two manifestations of the AT defect are alterations in myo-inositol metabolism and phospholipid synthesis. These abnormalities could have an effect on cellular signaling pathways and membrane production, as well as on the sensitivity of the cells to ionizing radiation and proliferative responses. 相似文献
17.
Summary This article summarizes the genetics and clinical features of ataxia telangiectasia (AT) and then reviews recent cytogenetic, cellular, and biochemical studies which support the hypothesis that a defect in DNA repair is responsible for the various manifestations of the disease. The biochemical evidence further indicates that the defect specifically reduces the cellular capacity to remove bases and nucleotides damaged by ionizing radiation, without affecting the cells' ability to scavenge free radicals or to rejoin breaks in the sugar-phosphate backbone of DNA. Suggestions for additional research to more precisely identify the repair defect will also be presented. 相似文献
18.
Ionizing radiation-dependent gamma-H2AX focus formation requires ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related 总被引:1,自引:0,他引:1 下载免费PDF全文
The histone variant H2AX is rapidly phosphorylated at the sites of DNA double-strand breaks (DSBs). This phosphorylated H2AX (gamma-H2AX) is involved in the retention of repair and signaling factor complexes at sites of DNA damage. The dependency of this phosphorylation on the various PI3K-related protein kinases (in mammals, ataxia telangiectasia mutated and Rad3-related [ATR], ataxia telangiectasia mutated [ATM], and DNA-PKCs) has been a subject of debate; it has been suggested that ATM is required for the induction of foci at DSBs, whereas ATR is involved in the recognition of stalled replication forks. In this study, using Arabidopsis as a model system, we investigated the ATR and ATM dependency of the formation of gamma-H2AX foci in M-phase cells exposed to ionizing radiation (IR). We find that although the majority of these foci are ATM-dependent, approximately 10% of IR-induced gamma-H2AX foci require, instead, functional ATR. This indicates that even in the absence of DNA replication, a distinct subset of IR-induced damage is recognized by ATR. In addition, we find that in plants, gamma-H2AX foci are induced at only one-third the rate observed in yeasts and mammals. This result may partly account for the relatively high radioresistance of plants versus yeast and mammals. 相似文献
19.
Flow cytometric analysis of 5-bromodeoxyuridine (BrdU) incorporation during DNA synthesis was used to characterize the effects of X-rays on cell-cycle kinetics in the DNA-repair deficiency disease ataxia telangiectasia (AT). Cultured fibroblasts from homozygotes (at/at), heterozygotes (at/+) and normal controls (+/+) were either: (1) irradiated, cultured, then pulsed with BrdU and harvested, or (2) pulsed with BrdU, irradiated, cultured and then harvested. Cells were then fixed and stained with both a fluoresceinated monoclonal antibody against BrdU to identify S-phase cells and with propidium diiodide to measure total DNA content. Irradiation of +/+ and at/+ cells induced a similar, transient G2/M arrest detectable within 8 h, which subsequently delayed by 6-8 h the passage of cells into G1 and depleted early S phase. In contrast, at/at cells failed to arrest in G2/M phase and entered the next cell cycle without pausing to repair radiation-induced damage. X-Rays also blocked entry of +/+ G1 cells into S phase, subsequently reducing the total S-phase population. This effect was not observed in at/at cells. These cell-cycle responses to radiation may be of diagnostic use and ultimately may help explain the basic defect in AT. 相似文献
20.
Watts JA Morley M Burdick JT Fiori JL Ewens WJ Spielman RS Cheung VG 《American journal of human genetics》2002,71(4):791-800
The defining characteristic of recessive diseases is the absence of a phenotype in the heterozygous carriers. Nonetheless, subtle manifestations may be detectable by new methods, such as expression profiling. Ataxia telangiectasia (AT) is a typical recessive disease, and individual carriers cannot be reliably identified. As a group, however, carriers of an AT disease allele have been reported to have a phenotype that distinguishes them from normal control individuals: increased radiosensitivity and risk of cancer. We show here that the phenotype is also detectable, in lymphoblastoid cells from AT carriers, as changes in expression level of many genes. The differences are manifested both in baseline expression levels and in response to ionizing radiation. Our findings show that carriers of a recessive disease may have an "expression phenotype." In the particular case of AT, this suggests a new approach to the identification of carriers and enhances understanding of their increased cancer risk. More generally, we demonstrate that genomic technologies offer the opportunity to identify and study unaffected carriers, who are hundreds of times more common than affected patients. 相似文献