首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ginkgo biloba L. is a large tree native in China with evolutionary affinities to the conifers and cycads. However unlike conifers, the gymnosperm G. biloba is not able to synthesize chlorophyll (Chl) in the dark, in spite of the presence of genes encoding subunits of light-independent protochlorophyllide oxidoreductase (DPOR) in the plastid genome. The principal aims of the present study were to investigate the presence of DPOR protein subunits (ChlL, ChlN, ChlB) as well as the key regulatory step in Chl formation: aminolevulinic acid (ALA) synthesis and abundance of the key regulatory enzyme in its synthesis: glutamyl-tRNA reductase (GluTR). In addition, functional stage of photosynthetic apparatus and assembly of pigment-protein complexes were investigated. Dark-grown, illuminated and circadian-grown G. biloba seedlings were used in our experiments. Our results clearly showed that no protein subunits of DPOR were detected irrespective of light conditions, what is consistent with the absence of Chl and Chl-binding proteins (D1, LHCI, LHCIIb) in the dark. This correlates with low ALA-synthesizing capacity and low amount of GluTR. The concentration of protochlorophyllide (Pchlide) in the dark is low and non-photoactive form (Pchlide633) was predominant. Plastids were developed as typical etioplasts with prollamelar body and few prothylakoid membranes. Continual illumination (24 h) only slightly stimulated ALA and Chl synthesis, although Pchlide content was reduced. Prollamelar bodies disappeared, but no grana were formed, what was consistent with the absence of D1, LHCI, LHCIIb proteins. Lightinduced development of photosynthetic apparatus is extremely slow, as indicated by Chl fluorescence and gas exchange measurements. Even after 72 h of continuous illumination, the values of maximum (Fv/Fm) and effective quantum yield (ΦPSII) and rate of net photosynthesis (P N) did not reach the values comparable with circadian-grown plants.  相似文献   

2.
NYB is chlorophyll-less barley mutant, which is controlled by a recessive nuclear gene. The mutation mechanism is revealed. The activities of enzymes transforming 5-aminolevulinic acid into protochlorophyllide were the same in both NYB and the wild type (WT), but the activity of the protochlorophyllide oxidoreductase (POR) in WT was much higher than that of NYB. Most of the photosystem 2 apoproteins were present in both WT and NYB, suggesting that the capability of protein synthesis was probably fully preserved in the mutant. Thus chlorophyll (Chl) biosynthesis in NYB was hampered at conversion form protochlorophyllide (Pchlide) into chlorophyllide. The open reading frame of porB gene in NYB was inserted with a 95 bp fragment, which included a stop codon. The NYB mutant is a very useful material for studies of Chl biosynthesis, chloroplast signalling, and structure of light-harvesting POR-Pchlide complex (LHPP).  相似文献   

3.
Chlorophyll biosynthesis in plants is subjected to modulation by various environmental factors. To understand the modulation of the chlorophyll (Chl) biosynthesis during greening process by salt, 100–200 mM NaCl was applied to the roots of etiolated rice seedlings 12 h prior to the transfer to light. Application of 200 mM NaCl to rice seedlings that were grown in light for further 72 h resulted in reduced dry matter production (–58%) and Chl accumulation (–66%). Ionic imbalance due to salinity stress resulted in additional downregulation (41–45%) of seedling dry weight, Chl and carotenoid contents over and above that of similar osmotic stress induced by polyethylene glycol. Downregulation of Chl biosynthesis may be attributed to decreased activities of Chl biosynthetic pathway enzymes, i.e. 5‐aminolevulinic acid (ALA) dehydratase (EC‐2.4.1.24), porphobilinogen deaminase (EC‐4.3.1.8), coproporphyrinogen III oxidase (EC‐1.3.3.3), protoporphyrinogen IX oxidase (EC‐1.3.3.4), Mg‐protoporphyrin IX chelatase (EC‐6.6.1.1) and protochlorophyllide oxidoreductase (EC‐1.3.33.1). Reduced enzymatic activities were due to downregulation of their protein abundance and/or gene expression in salt‐stressed seedlings. The extent of downregulation of ALA biosynthesis nearly matched with that of protochlorophyllide and Chl to prevent the accumulation of highly photosensitive photodynamic tetrapyrroles that generates singlet oxygen under stress conditions. Although, ALA synthesis decreased, the gene/protein expression of glutamyl‐tRNA reductase (EC‐1.2.1.70) increased suggesting it may play a role in acclimation to salt stress. The similar downregulation of both early and late Chl biosynthesis intermediates in salt‐stressed seedlings suggests a regulatory network of genes involved in tetrapyrrole biosynthesis.  相似文献   

4.
5.
Dark-grown leaves of wheat fed with δ-aminolevulinic acid accumulate protochlorophyllide636 in excess. After the leaves had been illuminated with high intensity red light (154 W × m?2) for half a minute, a treatment which blocks the phototrans-formation protochlorophyllide chlorophyllide, the sensitivity of chlorophyllide and protochlorophyllide to light was examined. The decrease in pigment content, caused by photo-oxidation was found to be very close to a second order reaction. The second order “rate constant” for decrease in absorbance was found to be eight times greater for the formed chlorophyllide than for protochlorophyllide. The light intensity dependence of the decomposition was found to be linear within the intensity range used (E= 25 – 154 W × m?2). In samples in which the pigments had been heat denatured, it was possible to photodecompose the chlorophyllide without affecting the protochlorophyllide. The results are discussed in connection with the theory of a photodynamic action involving oxygen in the singlet state (1ΔO2).  相似文献   

6.
In all photosynthetic organisms, chlorophylls function as light‐absorbing photopigments allowing the efficient harvesting of light energy. Chlorophyll biosynthesis recurs in similar ways in anoxygenic phototrophic proteobacteria as well as oxygenic phototrophic cyanobacteria and plants. Here, the biocatalytic conversion of protochlorophyllide to chlorophyllide is catalysed by evolutionary and structurally distinct protochlorophyllide reductases (PORs) in anoxygenic and oxygenic phototrophs. It is commonly assumed that anoxygenic phototrophs only contain oxygen‐sensitive dark‐operative PORs (DPORs), which catalyse protochlorophyllide reduction independent of the presence of light. In contrast, oxygenic phototrophs additionally (or exclusively) possess oxygen‐insensitive but light‐dependent PORs (LPORs). Based on this observation it was suggested that light‐dependent protochlorophyllide reduction first emerged as a consequence of increased atmospheric oxygen levels caused by oxygenic photosynthesis in cyanobacteria. Here, we provide experimental evidence for the presence of an LPOR in the anoxygenic phototrophic α‐proteobacterium Dinoroseobacter shibae DFL12T. In vitro and in vivo functional assays unequivocally prove light‐dependent protochlorophyllide reduction by this enzyme and reveal that LPORs are not restricted to cyanobacteria and plants. Sequence‐based phylogenetic analyses reconcile our findings with current hypotheses about the evolution of LPORs by suggesting that the light‐dependent enzyme of D. shibae DFL12T might have been obtained from cyanobacteria by horizontal gene transfer.  相似文献   

7.
Fumarylacetoacetate hydrolase (FAH) catalyses the final step of the tyrosine degradation pathway, which is essential to animals but was of unknown importance in plants until we found that mutation of Short‐day Sensitive Cell Death1 (SSCD1), encoding Arabidopsis FAH, results in cell death under short‐day conditions. The sscd1 mutant accumulates succinylacetone (SUAC), an abnormal metabolite caused by loss of FAH. Succinylacetone is an inhibitor of δ‐aminolevulinic acid (ALA) dehydratase (ALAD), which is involved in chlorophyll (Chl) biosynthesis. In this study, we investigated whether sscd1 cell death is mediated by Chl biosynthesis and found that ALAD activity is repressed in sscd1 and that protochlorophyllide (Pchlide), an intermediate of Chl biosynthesis, accumulates at lower levels in etiolated sscd1 seedlings. However, it was interesting that Pchlide in sscd1 might increase after transfer from light to dark and that HEMA1 and CHLH are upregulated in the light–dark transition before Pchlide levels increased. Upon re‐illumination after Pchlide levels had increased, reactive oxygen species marker genes, including singlet oxygen‐induced genes, are upregulated, and the sscd1 cell death phenotype appears. In addition, Arabidopsis WT seedlings treated with SUAC mimic sscd1 in decline of ALAD activity and accumulation of Pchlide as well as cell death. These results demonstrate that increase in Pchlide causes cell death in sscd1 upon re‐illumination and suggest that a decline in the Pchlide pool due to inhibition of ALAD activity by SUAC impairs the repression of ALA synthesis from the light–dark transition by feedback control, resulting in activation of the Chl biosynthesis pathway and accumulation of Pchlide in the dark.  相似文献   

8.
Abstract The effects of gabaculin (3-amino 2,3-dihydrobenzoic acid) and laevulinic acid on the regeneration of protochlorophyllide from exogenous δ-aminolaevulinic acid in leaves of dark-grown barley (Hordeum vulgare) after a brief light treatment were compared. Gabaculin, a potent inhibitor of chlorophyll biosynthesis, did not inhibit this process showing that it affects the formation of δ-aminolaevulinic acid rather than its further metabolism. Laevulinic acid, which is an inhibitor of δ-aminolaevulinic acid dehydratase, prevented regeneration of protochlorophyllide provided pools of intermediates in the biosynthetic sequence were depleted. Formation of relatively large amounts of protochlorophyllide in some experiments suggests a lack of control in the utilization of δ-aminolaevulinic acid for protochlorophyllide synthesis.  相似文献   

9.
Light-independent chlorophyll (Chl) biosynthesis is a prerequisite for the assembly of photosynthetic pigment–protein complexes in the dark. Dark-grown Larix decidua Mill. seedlings synthesize Chl only in the early developmental stages and their Chl level rapidly declines during the subsequent development. Our analysis of the key regulatory steps in Chl biosynthesis revealed that etiolation of initially green dark-grown larch cotyledons is connected with decreasing content of glutamyl-tRNA reductase and reduced 5-aminolevulinic acid synthesizing capacity. The level of the Chl precursor protochlorophyllide also declined in the developing larch cotyledons. Although the genes chlL, chlN and chlB encoding subunits of the light-independent protochlorophyllide oxidoreductase were constitutively expressed in the larch seedlings, the accumulation of the ChlB subunit was developmentally regulated and ChlB content decreased in the fully developed cotyledons. The efficiency of chlB RNA-editing was also reduced in the mature dark-grown larch seedlings. In contrast to larch, dark-grown seedlings of Picea abies (L.) Karst. accumulate Chl throughout their whole development and show a different control of ChlB expression. Analysis of the plastid ultrastructure, photosynthetic proteins by Western blotting and photosynthetic parameters by gas exchange and Chl fluorescence measurements provide additional experimental proofs for differences between dark and light Chl biosynthesis in spruce and larch seedlings.  相似文献   

10.
In the presence of large accumulations of protochlorophyllide, derived from exogenous δ-aminolevulinic acid, chlorophyll synthesis in excised leaves of two varieties of barley was less than in untreated leaves. In oat leaves the accumulated protochlorophyllide, from exogenous δ-laminolevulinic acid, stimulated chlorophyll synthesis to above the control level. — These relationships could only be demonstrated when phtodestruction of pigments was minimised by the use of flash illumination (2 milliseconds every 3 minutes). — These was no evidence from in vivo absorption spectra that the pigments in the barley leaves were different to those in leaves studied by other workers. However, the presence of the accumulated protochlorophyllide appeared to prevent the shift of the chlorophyll absorption maximum from 673 nm to 677 nm. — Possible mechanisms of inhibition are discussed.  相似文献   

11.
The phototransformation of protochlorophyllide forms was studied in epicotyls of dark-germinated pea (Pisum sativum L. cv. Zsuzsi) seedlings. Middle segments were illuminated with white or 632.8 nm laser flash or continuous light at room temperature and at −15°C. At low light intensities, photoreduction could be distinguished from bleaching. 77 K fluorescence emission spectra were measured, difference spectra of illuminated and non-illuminated samples were calculated and/or the spectra were deconvoluted into Gaussian components. The 629 nm-emitting protochlorophyllide form, P629 (Pxxx where xxx is the fluorescence emission maximum), was inactive. For short-period (2–100 ms) and/or low-intensity (0.75–1.5 µmol m−2 s−1) illumination, particularly with laser light, the transformation of P636 into the 678 nm-emitting chlorophyllide form, C678 (Cxxx where xxx is the fluorescence emission maximum), was characteristic. This process was also found when the samples were cooled to −15°C. The transformation of P644 into C684 usually proceeded in parallel with the process above as a result of the strong overlap of the excitation bands of P636 and P644. The Shibata shift of C684 into a short-wavelength form, C675–676, was observed. Long-period (20–600 s) and/or high-intensity (above 10 µmol m−2 s−1) illumination resulted in the parallel transformation of P655 into C692. These results demonstrate that three flash-photoactive protochlorophyllide forms function in pea epicotyls. As a part of P636 is flash photoactive, its protochlorophyllide molecule must be bound to the active site of a monomer protein unit [Böddi B, Kis-Petik K, Kaposi AD, Fidy J, Sundqvist C (1998) The two short wavelength protochlorophyllide forms in pea epicotyls are both monomeric. Biochim Biophys Acta 1365: 531–540] of the NADPH:protochlorophyllide oxidoreductase (EC 1.3.1.33). Dynamic interconversions of the protochlorophyllide forms into each other, and their regeneration, were also found, which are summarized in a scheme.  相似文献   

12.
Dark grown wheat leaves (Triticum aestivum L. cv. Starke II Weibull), treated with δ-aminolevulinic acid in darkness, showed an increased oxygen uptake as measured by a Warburg method. The production of CO2 was also increased in darkness, giving an RQ ? 1. The increased respiration was dependent on the treatment time as well as on the concentration of the δ-aminolevulinic acid. Potassium cyanide suppressed both the normal and the increased respiration. The treatment with δ-aminolevulinic acid caused accumulation of high amounts of protochlorophyllide. Levulinic acid suppressed the increased oxygen uptake as well as the protochlorophyllide accumulation in δ-aminolevulinic acid treated leaves. Irradiation rapidly decreased the protochlorophyllide content with a simultaneous increase in oxygen uptake over the dark value. The peak value of the increase in oxygen uptake was reached after about 5 min. The light induced oxygen uptake was dependent on the amount of PChlide present at the onset of irradiation. Also the CO2 production was increased during the first minutes of irradiation but soon fell under the buffer control value. Neither potassium cyanide nor heat denaturation affected the oxygen uptake in light in contrast to the effect on the CO2 production, which was blocked by heat denaturation. The increased oxygen uptake in light initially seems to be a purely photochemical process leading to a release of CO2, which release is probably an enzymatic process induced by the photo-oxidative decomposition of pigment.  相似文献   

13.
    
Summary A Mendelian mutant r-1 in chlamydomonas reinhardtii has been shown to make the synthesis of -aminolevulinic acid (ALA) insensitive to inhibition by protoporphyrin. We have now combined the r-1 mutant with the protochlorophyllideaccumulating mutant y-1. From the phenotype of the double mutant y-1 r-1 and the phenocopy produced by feeding ALA to y-1, we conclude that r-1 also makes the synthesis of ALA insensitive to the inhibition by protochlorophyllide. To explain the fact that both ALA-fed y-1 and y-1 r-1 accumulate large amounts of protoporphyrin and smaller amounts of protochlorophyllide, we propose a new control feedback loop in the porphyrin biosynthetic pathway from protochlorophyllide to the step which converts protoporphyrin to magnesium protoporphyrin.  相似文献   

14.
Absorbancy changes in dark-grown, excised wheal leaves fed with δ-aminolevulinic acid are measured in vivo. The treatment with σ-aminolevulinic acid caused accumulation of protochlorophyllide, absorbing at 636 nm. After flashlight this form is found to convert in darkness to protochlorophyllide, absorbing at 650 nm. The conversion starts instantly after the leaves have been exposed to the flashlight, and the pre-existent pool of protocholorophyllidc absorbing at 650 nm will become emptied. The conversion is completed after 15–20 minutes, when a new pool of protochlorophyllide has been filled up. This new pool is transformed to chlorophyllide by a second flash and the sequence is repeated. The conversion may be composed of two reactions, a conclusion which can be drawn from the behaviour at different temperatures. One of these reactions is fairly temperature independent while the other is temperature dependent. The action of the protochlorophyllide holochrome is discussed.  相似文献   

15.
The effects of modulated ADP/ATP and NADPH/NADP+ ratios, and of protein kinase inhibitors, on the in vitro reformation of phototransformable protochlorophyllide, i.e. the aggregated ternary complexes between NADPH, protochlorophyllide, and NADPH-protochlorophyllide oxidoreductase (POR, EC 1.3.1.33), in etioplast membranes isolated from dark-grown wheat (Triticum aestivum) were investigated. Low temperature fluorescence emission spectra (–196 °C) were used to determine the state of the pigments. The presence of spectral intermediates of protochlorophyllide and the reformation of phototransformable protochlorophyllide were reduced at high ATP, but favoured by high ADP. Increased ADP level partly prevented the chlorophyllide blue-shift. The protein kinase inhibitor K252a prevented reformation of phototransformable protochlorophyllide without showing any effect on the chlorophyllide blue-shift. Addition of NADPH did not overcome the inhibition. The results indicate that protein phosphorylation plays a role in the conversion of the non-phototransformable protochlorophyllide to POR-associated phototransformable protochlorophyllide. The possible presence of a plastid ADP-dependent kinase, the activity of which favours the formation of PLBs, is discussed. Reversible protein phosphorylation is suggested as a regulatory mechanism in the prolamellar body formation and its light-dependent dispersal by affecting the membrane association of POR. By the presence of a high concentration of phototransformable protochlorophyllide, prolamellar bodies can act as light sensors for plastid development. The modulation of plastid protein kinase and protein phosphatase activities by the NADPH/NADP+ ratio is suggested. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Dark-grown seedlings of Picea abies (L) Karst. are able to accumulate the highest amounts of chlorophyll (Chl) and its precursor protochlorophyllide (Pchlide) in all Pinaceae, but calli derived from 14-d-old green cotyledons of P. abies are completely white during the cultivation in the dark. Pchlide reduction is catalysed in the dark by light-independent protochlorophyllide oxidoreductase (DPOR). This enzyme complex consists of three protein subunits ChlL, ChlN and ChlB, encoded by three plastid genes chlL, chlN and chlB. Using semiquantitative RT-PCR, we observed very low expression of chlLNB genes in dark-grown calli. It seems, that chlLNB expression and thus Chl accumulation could be modulated by light in P. abies calli cultures. This hypothesis is supported by the fact, that we observed low contents of glutamyl-tRNA reductase and Flu-like protein, which probably affected Chl biosynthetic pathway at the step of 5-aminolevulinic acid formation. ChlB subunit was not detected in dark-grown P. abies calli cultures. Our results indicated limited ability to synthesize Chl in callus during cultivation in the dark.  相似文献   

17.
The influence of phytohormones on chlorophyll and carotenoid formation during the greening of irradiated dark grown wheat leaves (Triticum aestivum L. cv. Starke II Weibull) was studied. Leaves were floated on solutions of abscisic acid, gibberellic acid and kinetin for 24 h. The chlorophyll and carotenoid contents were determined during a subsequent period of 48 h of continuous irradiation. Leaves treated with abscisic acid showed a longer lag phase and a lower rate of accumulation of chlorophyll as compared to the control than did leaves treated with gibberellic acid and kinetin. The carotenoid content was low both in leaves treated with abscisic acid and in those treated with gibberellic acid. Treatment with abscisic acid lowered the protochlorophyllide regeneration after a saturating light flash while gibberellic acid as well as kinetin had no effect. The influence of ABA was partly dependent on an increase of the wounded part of the cut leaf segments. The accumulation of protochlorophyllide in leaves treated with δ-aminolevulinic acid was not affected by the different hormonal treatments. These results suggest that the main effect of abscisic acid is probably outside the chloroplast, i.e. on the formation or transport of δ-aminolevulinic acid.  相似文献   

18.
The chlorophyll repair potential of mature Cucumis chloroplasts incubated in a simple Tris-HCI/sucrose medium is described. The chloroplasts were isolated from green, fully expanded Cucumis cotyledons which were capable of chlorophyll repair. This was evidenced by a functional chlorophyll biosynthetic pathway in the mature tissue. The biosynthesis of protochlorophyllide from exogenous δ-aminolevulinic acid was used as a marker for the operation of the chlorophyll biosynthetic chain between δ-aminolevulinic acid and protochlorophyllide. The conversion of exogenous protochlorophyllide into chlorophyll a was used as a marker for the operation of the chlorophyll pathway beyond protochlorophyllide. It appeared from these studies that contrary to published reports, unfortified fully developed Cucumis chloroplasts incubated in Tris-HCl/sucrose without the addition of cofactors exhibited a partial and limited chlorophyll repair capability. Their net tetrapyrrole biosynthetic competence from δ-aminolevulinic acid was confined to the accumulation of coproporphyrin. No net tetrapyrrole biosynthesis beyond coproporphyrin was observed. However, the plastids were capable of incorporating small amounts of δ-amino-[4-14C]levulinic acid into [14C] protochlorophyllide but were incapable of converting exogenous protochlorophyllide into chlorophyll. After prolonged incubation of the unfortified chloroplasts in the dark, a fluorescent protochlorophyllide-like compound accumulated. This compound [Cp (E430-F631)] exhibited a soret excitation maximum at 430 nm (E430) and a fluorescence emission maximum at 631 nm (F631) in methanol/acetone (4 : 1, v/v). Cp (E430-F631) was shown to be neither protochlorophyllide nor zinc-protochlorophyllide but an enzymatic degradation product of chlorophyll. The exact chemical identity of this compound has not yet been determined.  相似文献   

19.
In angiosperms, chlorophyll biosynthesis is light dependent. A key factor in this process is protochlorophyllide oxidoreductase (POR), which requires light to catalyze the reduction of protochlorophyllide to chlorophyllide. It is believed that this protein originated from an ancient cyanobacterial enzyme that was introduced into proto‐plant cells during the primary symbiosis. Here we report that PORs from the cyanobacteria Gloeobacter violaceus PCC7421 and Synechocystis sp. PCC6803 function in plastids. First, we found that the G. violaceus POR shows a higher affinity to its substrate protochlorophyllide than the Synechocystis POR but a similar affinity to plant PORs. Secondly, the reduced size of prolamellar bodies caused by a knockdown mutation of one of the POR genes, PORA, in Arabidopsis could be complemented by heterologous expression of the cyanobacterial PORs. Photoactive protochlorophyllide in the etioplasts of the complementing lines, however, was retained at a low level as in the parent PORA knockdown mutant, indicating that the observed formation of prolamellar bodies was irrelevant to the assembly of photoactive protochlorophyllide. This work reveals a new view on the formation of prolamellar bodies and provides new clues about the function of POR in the etioplast–chloroplast transition.  相似文献   

20.
Herein, we report the development of a microbial bioprocess for high‐level production of 5‐aminolevulinic acid (5‐ALA), a valuable non‐proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5‐ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5‐ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl‐CoA for enhanced 5‐ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high‐level 5‐ALA biosynthesis from glycerol (~30 g L?1) under both microaerobic and aerobic conditions, achieving up to 5.95 g L?1 (36.9% of the theoretical maximum yield) and 6.93 g L?1 (50.9% of the theoretical maximum yield) 5‐ALA, respectively. This study represents one of the most effective bio‐based production of 5‐ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio‐based production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号