首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strains of fungi imperfecti of generaAspergillus andRhizopus were tested for the ability to produce α-mannosidases. The most suitable α-mannosidase producer of a total of 20 strains under study wasAspergillus Ravus Link 69. The parameters studied during the cultivation included the growth rate expressed as cell dry weight, α-mannosidase activity of the extracellular medium withp-nitrophenyl α-D-mannopyranoside as substrate, and utilization ofSaccharomyces cerevisiae mannanvia its disappearance from the cultivation medium.  相似文献   

2.
Human promyelocytic leukemia HL-60 cells represent an in vitro model of acute promyelocytic leukemia (APL), and are inducible to terminally differentiate into morphologically mature granulocytes by incubation with all trans retinoic acid (ATRA). Lysosomal glycohydrolases are involved in the changes of the membrane surface proteins’ glycosylation, linked to the metastatic progression potential of neoplastic cells. In particular, it has been demonstrated that the Asn-linked glucidic residues were directly responsible for the metastatic potential, and it is known that the glycohydrolase α-d-mannosidase specifically hydrolyze the Asn-linked oligosaccharides. In this report, we present an in vitro study on the ATRA effects on lysosomal glycohydrolases expression and the eventual relationship with the retinoic acid-induced differentiation of HL-60 cells. We have investigated two highly expressed lysosomal glycohydrolases, namely β-d-hexosaminidase and α-d-mannosidase, and showed that they were differently affected by ATRA differentiating action. In particular, due to the specific action on Asn-linked oligosaccharides, we tested α-d-mannosidase enzymatic activity and observed that it was dramatically decreased after ATRA incubation, indicating a relationship with the differentiation state of the cells. These observations may directly be linked with the loss of metastatic progession of differentiated HL-60.  相似文献   

3.
4.
Proteins of a crude enzyme preparation obtained from the cultivation medium of the basidiomycetePhellinus abietis were separated by gel filtration and ion-exchange chromatography. The preparation contained a minimum of three enzymes capable of splitting α-d-mannosidic bonds: α-mannosidase, exomannanase, and endomannanase, which were separated. Some properties of the mannanase complex of the crude enzyme preparation, and of a partially purified α-mannosidase were examined. The mannanase complex exhibited two pH optima, its temperature optimum being at 46 °C The pH optimum of purified α-mannosidase was at pH 5.0, the temperature optimum was at 60 °C; the enzyme had a relatively high heat stability. The Km of α-mannosidase forp-nitrophenyl α-d-mannopyranoside was 1.5 x 10−5 M. Pure α-mannosidase did not split mannan.  相似文献   

5.
 The effects of various compounds bearing an N-OH group such as N-hydroxy-guanidines, amidoximes, and hydroxylamines, on bovine and rat liver arginases was studied. Some of these compounds with an l-α-amino acid function at an appropriate distance from the N-OH group acted as strong competitive liver arginase inhibitors, displaying Ki values between 4 and 150 μM. Two compounds, N ε-hydroxy-l-lysine and N ω-hydroxy-d,l-indospicine, which exhibited Ki values of 4 and 20 μM (at pH 7.4), were the most potent inhibitors of arginase described to date. The distance between the α-amino acid and N-OH functions appeared to be crucial for potent inhibition of arginase, as N δ-hydroxy-l-ornithine, which has one -CH2 group less than N ε-hydroxy-l-lysine, exhibited a 37-fold higher Ki value than N ε-hydroxy-l-lysine. Based on these results, a model for the interaction of N ω-hydroxyamino-l-α-amino acids with the arginase active site is proposed. This model involves the binding of the N-OH group of the inhibitors to the arginase Mn(II) center and suggests that N ε-hydroxy-l-lysine is a good transition state analog of arginase.  相似文献   

6.
The ability to degrade mannan in the yeastSaccharomyces cerevisiae, i.e. the ability to produce an enzyme of the α-mannosidase type was tested in 57 representatives of various genera and species of yeasts and yeast-like organisms. Their growth was simultaneously monitored on soluble mannan and on 4-nitrophenyl-α-D-mannopyranoside. The majority of strains produced α-mannosidase (EC 3.2.1.24).  相似文献   

7.
Two types of -d-mannosidase isozymes are present in human white blood cells, human diploid fibroblasts, and HeLa cells. One of these (the S isozyme) constitutes the major -d-mannosidase of the human cells, has a pH optimum of 4.4, and is associated with lysosomes. The other (the F isozyme) is most active at pH 6, is acid labile, and is located in the soluble portion of the cytoplasm. The expression of human lysosomal -d-mannosidase was examined in man-hamster hybrid clones, and was found to be concordant with that of phosphohexose isomerase in 54 of 55 primary clones. A locus specifying human lysosomal -d-mannosidase has therefore been assigned to chromosome 19.This work was supported by NIH Grants HD 04807-07 and HD 06285-04 and by a research grant (5 PO 1 HB 06276-04) to the Mental Retardation Research Center of the Children's Hospital Medical Center, Boston, Massachusetts, from the NIH.  相似文献   

8.
Previous studies demonstrated the presence in Candida albicans ATCC 26555 of two soluble α1,2-mannosidases: E-I and E-II. In contrast, in the C. albicans CAI-4 mutant only E-I was detected and it could be processed by a membrane-bound proteolytic activity from the ATCC 26555 strain, generating an active 43 kDa polypeptide. Here, α1,2-mannosidase E-I from strain ATCC 26555 was purified by conventional methods of protein isolation and affinity chromatography in Concanavalin A-Sepharose 4B. Analytical electrophoresis of the purified enzyme revealed two polypeptides of 52 and 23 kDa, the former being responsible for enzyme activity as revealed by zymogram analysis. Time course proteolysis with an aspartyl protease from Aspergillus saitoi, converted α1,2-mannosidase E-I into an active polypeptide of 43 kDa which trimmed Man9GlcNAc2, generating Man8GlcNAc2 isomer B and mannose. Trimming was inhibited preferentially by 1-deoxymannojirimycin. Both, the molecular mass and the enzyme properties of the proteolytic product were identical to those described for α1,2-mannosidase E-II therefore supporting the notion that E-I is the precursor of E-II.  相似文献   

9.
α-Mannosidase (EC 3.2.1.24) was purified from ‘Iseimo’, a native variety of Dioscorea opposita Thunb. Before purification, we investigated the composition of a viscous polysaccharide that interferes with column chromatography procedures. The polysaccharide consisted mainly of mannose, and also contained uronic acid. We used the cationic detergent cetylpyridinium chloride (CPC) to remove the polysaccharide. CPC treatment decreased viscosity without affecting α-mannosidase activity. We purified α-mannosidase 2,650-fold. The optimal pH of the enzyme was 6.0 and the optimum temperature was 65°C. The K m value for p-nitrophenyl-α-d-mannopyranoside was 0.35 ± 0.03 mM. Activity was inhibited by swainsonine but not kifunensine. The enzyme cleaved α-1,2 linkages preferentially to α-1,6 and α-1,3 linkages. The M r of purified α-mannosidase was estimated to be 250–260 kDa by gel filtration and native-PAGE. Four polypeptides (86, 83, 80, and 28 kDa) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is unclear whether the polypeptides are encoded by one gene or multiple genes. However, N-terminal sequence analysis suggested that post-translational cleavage and/or glycosylation resulted in the three large fragments, if these amino acids were encoded by the same gene. Homology searches and characterization of the enzyme’s properties indicated that Iseimo α-mannosidase belongs to the glycoside hydrolase family 38 proteins, and to the Class II mannosidase group.  相似文献   

10.
A xylanolytic yeast strain Aureobasidium pullulans NRRL Y 2311-1, was found to produce all enzymes required for complete degradation of galactomannan and galactoglucomannan. The enzymes differed in function and cellular localization: endo-β-1,4-mannanase was secreted into the culture fluid, β-mannosidase was strictly intracellular, and α-galactosidase and β-glucosidase were found both extracellularly and intracellularly. Among these enzyme components, only extracellular β-mannanase and intracellular β-mannosidase were inducible. The production of β-mannanase and β-mannosidase was 10- to 100-fold higher in galactomannan medium than in medium with one of the other carbon sources. β-mannanase and β-mannosidase were coinduced in glucose-grown cells by galactomannan, galactoglucomannan, and β-1,4-manno-oligosaccharides. The natural inducer of extracellular β-mannanase and intracellular β-mannosidase appeared to be β-1,4-mannobiose. Synthesis of both enzymes was completely repressed by glucose, mannose, or galactose. The synthetic glycoside methyl β-d-mannopyranoside served as a nonmetabolizable inducer of both β-mannosidase and β-mannanase. Received: 24 June 1996 / Accepted: 26 September 1996  相似文献   

11.
Selection of a large number of different strains of hyphal fungi of the genusAspergillus, capable of production of extracellular mannosidase and mannanase type enzymes, was carried out. Before cultivating the strains on liquid synthetic medium containing 0.5%Saccharomyces cerevisiae mannan as the carbon source, they were adapted by multiple passage on solid synthetic media containingd-mannose,d-mannose and α-mannan and lastly only α-mannan. The extracellular enzymatic preparations of the mould fungi were tested for their ability to hydrolyse three different substrates—Saccharomyces cerevisiae, Torulopsis ingeniosa andTorulopsis colliculosa mannan. The production of α-mannosidase was found to be specifically dependent on the character of the substrate used for cultivation of the fungus.  相似文献   

12.

Background  

Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-β-mannosidases (1,4-β-D-mannanases) catalyze the random hydrolysis of β-1,4-mannosidic linkages in the main chain of β-mannans. Biodegradation of β-mannans by the action of thermostable mannan endo-1,4-β-mannosidase offers significant technical advantages in biotechnological industrial applications, i.e. delignification of kraft pulps or the pretreatment of lignocellulosic biomass rich in mannan for the production of second generation biofuels, as well as for applications in oil and gas well stimulation, extraction of vegetable oils and coffee beans, and the production of value-added products such as prebiotic manno-oligosaccharides (MOS).  相似文献   

13.
α-Mannosidosis is a lysosomal storage disorder caused by α-mannosidase deficiency. Clinical course of the disease ranges from severe infantile to milder juvenile type and includes mental retardation, skeletal deformities, coarse facies, hepatomegaly and hearing loss. The aim of the study was to analyse mitochondrial ultrastructure and function in cultivated fibroblasts from three patients with α-mannosidosis. All patients were homozygous for the c.2248C>T mutation in the MAN2B1 gene encoding lysosomal α-mannosidase. The mutation results in incorrect protein folding and severe decrease of α-mannosidase activity. The misfolded protein is retained by the control system of endoplasmic reticulum (ER). In analysed fibroblasts, we observed dilated ER, higher amount of aberrant mitochondria and reduced mitochondrial mass compared to controls. Respiratory chain complex IV, cytochrome c oxidase (COX), activity and the ratio between COX and citrate synthase (control enzyme) were significantly increased in comparison to controls (P < 0.05). Furthermore, the activity at least from one of other respiratory chain complexes was increased in each studied cell line. Mitochondrial membrane potential as well as reactive oxygen species production were comparable with controls. Based on our results, we hypothesize more profound effect of swelled and damaged mitochondria and ER dilatation on tissues with higher energy demand than fibroblasts have.  相似文献   

14.
α-Mannosidosis is a lysosomal storage disorder caused by deficiency of lysosomal α-mannosidase (LAMAN). Major symptoms include mental retardation, skeletal changes and recurrent infections. Recently, a successful bone marrow transplantation (BMT) in an α-mannosidosis patient was reported. Here we show that this patient was homozygous for a novel mutation, a 1-bp insertion (1197–1198insA) in exon 9 of the LAMAN gene. By using this mutation as a marker, we demonstrate that 1 year post-BMT, the LAMAN genotype of the patient’s leukocytes was identical to that of the donor. This method of genotyping blood cells is a fast and accurate way to monitor the colonization of donor bone marrow cells. Received: 9 September 1998 / Accepted: 3 November 1998  相似文献   

15.
A simple and reliable continuous assay for measurement of α-mannosidase activity is described and demonstrated for analysis with two recombinant human enzymes using the new substrate resorufin α-d-mannopyranoside (Res-Man). The product of enzyme reaction, resorufin, exhibits fluorescence emission at 585 nm with excitation at 571 nm and has a pKa of 5.8, allowing continuous measurement of fluorescence turnover at or near physiological pH values for human lysosomal and Drosophila Golgi α-mannosidases. The assay performed using recombinant Drosophila Golgi α-mannosidase (dGMII) has been shown to give the kinetic parameters Km of 200 μM and Vmax of 11 nmol/min per nmol dGMII. Methods for performing the assay using several concentrations of the known α-mannosidase inhibitor swainsonine are also presented, demonstrating a potential for use of the assay as a simple method for high-throughput screening of inhibitors potentially useful in cancer treatment.  相似文献   

16.
Thioglycollate-stimulated murine peritoneal macrophages were cultured for eight days in the presence of swainsonine, or 1,4-dideoxy-1,4-imino-d-mannitol (DIM), or both of these competitive -mannosidase inhibitors together. Analysis of accumulated high-mannose oligosaccharides by reversed phase HPLC after perbenzoylation revealed that DIM- and DIM-plus swainsonine-treated macrophages contained larger amounts of Man7GlcNAc, Man8GlcNAc and Man9GlcNAc, while swainsonine-treated macrophages contained relatively more Man3GlcNAc and Man5GlcNAc. These results are consistent with the known inhibitory effects of DIM and swainsonine on Golgi mannosidases I and II, respectively, and on lysosomal -mannosidase. Depletion of stored oligosaccharides to control values was complete within seven days of terminating swainsonine treatment.  相似文献   

17.
Fucosidosis is a lysosomal storage disorder caused by deficiency of α-l-fucosidase. A biochemically and clinically well characterized canine model of fucosidosis exists in a colony of English Springer Spaniels. To facilitate its use as a model for gene therapy and enzyme replacement therapy in lysosomal storage disorders displaying neurological symptoms, isolation of the canine α-l-fucosidase cDNA was undertaken. Both the nucleotide sequence and the predicted amino acid sequence of canine fucosidase show high levels of identity with the human and rat sequences. Fucosidosis dogs were found to have a greatly reduced level of α-l-fucosidase mRNA when compared with normal dogs by Northern blot analysis. Direct PCR sequencing of products generated from cDNA demonstrated a 14-bp deletion in mRNA from affected dogs. This deletion creates a frameshift mutation and introduces a premature translation termination codon at amino acid position 152 and was shown to correspond to a deletion of the last 14 base pairs of exon 1 of the canine α-l-fucosidase gene. Rapid PCR-based screening for the mutation has now been performed on genomic DNA from dogs within the colony, enabling detection of both carriers and homozygotes. Received: 3 August 1995 / Accepted: 3 November 1995  相似文献   

18.
Sandhoff and Tay-Sachs disease are autosomal recessive GM2 gangliosidoses where a deficiency of lysosomal β-hexosaminidase results in storage of glycoconjugates. Imino sugar (2-acetamido-1,4-imino-1,2,4-trideoxy-L-arabinitol) inhibition of β-hexosaminidase in murine RAW264.7 macrophage-like cells led to lysosomal storage of glycoconjugates that were characterised structurally using fluorescence labelling of the free or glycolipid-derived oligosaccharides followed by HPLC and mass spectrometry. Stored glycoconjugates were confirmed as containing non-reducing GlcNAc or GalNAc residues resulting from the incomplete degradation of N-linked glycoprotein oligosaccharide and glycolipids, respectively. When substrate reduction therapeutics N-butyl-deoxynojirimycin (NB-DNJ) or N-butyldeoxygalactonojirimycin (NB-DGJ) were applied to the storage phenotype cells, an increase in glucosylated and galactosylated oligosaccharide species was observed due to endoplasmic reticulum α-glucosidases and lysosomal β-galactosidase inhibition, respectively. Hexosaminidase inhibition triggered a tightly regulated cytokine-mediated inflammatory response that was normalised using imino sugars NB-DNJ and NB-DGJ, which restored the GM2 ganglioside storage burden but failed to reduce the levels of GA2 glycolipid or glycoprotein-derived N-linked oligosaccharides. Using a chemically induced gangliosidosis phenotype that can be modulated with substrate lowering drugs, the critical role of GM2 ganglioside in the progression of inflammatory disease is also demonstrated.  相似文献   

19.
20.
α-mannosidase and mannanase of some wood-rotting fungi   总被引:1,自引:1,他引:0  
Cultivation media from 11 wood-rotting fungi contained α-mannosidase and mannanase activity. α-Mannosidase was studied in more detail inPhellinus abietis and mannanase was studied more intimately in basidiomycetesPhellinus abietis, Trametes sanguinea andPholiota aurivella. Suitable cultivation conditions and optimum conditions for the production of α-mannosidase and mannanase were determined. Both enzymes are constitutive; mannanase is extracellular, α-mannosidase was found in both mycelium and cultivation medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号