首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Conservation Breeding Programs (CBP's) are playing an important role in the protection of critically endangered anuran amphibians, but for many species recruitment is not successful enough to maintain captive populations, or provide individuals for release. In response, there has been an increasing focus on the use of Assisted Reproductive Technologies (ART), including the administration of reproductive hormones to induce gamete release followed by in vitro fertilisation. The objective of this study was to test the efficacy of two exogenous hormones to induce gamete release, for the purpose of conducting in vitro fertilisation (IVF), in one of Australia's most critically endangered frog species, Pseudophryne corroboree.  相似文献   

2.
Hybridization and polyploidy play an important role in animal speciation. European water frogs of the Pelophylax esculentus complex demonstrate unusual genetic phenomena associated with hybridization, clonality and polyploidy which presumably indicate an initial stage of reticulate speciation. The Seversky Donets River drainage in north‐eastern Ukraine is inhabited by both sexes of the diploid and triploid hybrid P. esculentus and only one parental species Pelophylax ridibundus. Based on the presence of various types of hybrids, all populations studied can be divided into three geographical groups: I) P. ridibundusP. esculentus without triploids; II) P. ridibundusP. esculentus without diploid hybrids; and III) P. ridibundusP. esculentus with a mixture of diploids and triploids. A study of gametogenesis revealed that diploid P. esculentus in populations of the first type usually produced haploid gametes of P. ridibundus and a mixture of haploid gametes that carried one or another parental genome (hybrid amphispermy). In populations of the second type, hybrids are derived from crosses of P. ridibundus males with triploid hybrid females producing haploid eggs with a genome of P. lessonae. Therefore, we suggest that clonal genome duplication in these eggs might be the result of suppression of second polar body formation or extra precleavage endoreduplication. In populations of the third type, some diploid females can produce diploid gametes. Fertilization of these eggs with haploid sperm can result in triploid hybrids. Other hybrids here produce haploid gametes with one or another parental genome or their mixture giving rise to new diploid hybrids.  相似文献   

3.
In plant species, variation in levels of clonality, ploidy and interspecific hybridization can interact to influence geographic patterns of genetic diversity. These factors commonly vary in plants that specialize on saline habitats (halophytes) and may play a role in how they adapt to salinity variation across their range. One such halophyte is the turfgrass and emerging genomic model system seashore paspalum (Paspalum vaginatum Swartz). To investigate how clonal propagation, ploidy variation, and interspecific hybridization vary across ecotypes and local salinity levels in wild P. vaginatum, we employed genotyping‐by‐sequencing, cpDNA sequencing and flow cytometry in 218 accessions representing > 170 wild collections from throughout the coastal southern United States plus USDA germplasm. We found that the two morphologically distinct ecotypes of P. vaginatum differ in their adaptive strategies. The fine‐textured ecotype is diploid and appears to reproduce in the wild both sexually and by clonal propagation; in contrast, the coarse‐textured ecotype consists largely of clonally‐propagating triploid and diploid genotypes. The coarse‐textured ecotype appears to be derived from hybridization between fine‐textured P. vaginatum and an unidentified Paspalum species. These clonally propagating hybrid genotypes are more broadly distributed than clonal fine‐textured genotypes and may represent a transition to a more generalist adaptive strategy. Additionally, the triploid genotypes vary in whether they carry one or two copies of the P. vaginatum subgenome, indicating multiple evolutionary origins. This variation in subgenome composition shows associations with local ocean salinity levels across the sampled populations and may play a role in local adaptation.  相似文献   

4.

Key message

Through high-throughput sequencing, we compared the relative expression levels of miRNA in three full-sib Populus triploid populations with that in their parents and one diploid hybrid population. We found similar numbers of miRNAs differentially expressed between the parents and the four progeny hybrid populations. In addition, unbalanced parental expression level dominance of miRNAs were found in the three allotriploid and interspecific hybrid populations, which may reprogram gene expression networks and contribute to the growth of Populus hybrids. These results indicated that hybridization has a great impact on the miRNA expression variation in the newly synthesized Populus triploid and diploid hybrid populations. However, we also found no significant differences in miRNA expression among one diploid and three triploid hybrid populations, hinting that miRNA abundances do not increase with the genome content. No dosage effect of miRNA expression could lead to dosage-dependent negative effects on target genes and their downstream pathway in polyploids. We speculate that polyploids may gain advantages from the slight decrease in miRNA regulation, suggesting an important molecular mechanism of polyploid advantage.

Abstract

Hybridization with three types of induced 2n gametes transmitted different parental heterozygosities has been proven as an efficient method for Populus triploid production. Several researches have shown that miRNA could be non-additively expressed in allopolyploids. However, it is still unclear whether the non-additively expressed miRNAs result from the effect of hybridization or polyploidization, and whether a dose response to the additional genomic content exists for the expression of miRNA. Toward this end, through high-throughput sequencing, we compared the expression levels of miRNA in three full-sib Populus triploid populations with that in their parents and one interspecific hybrid population. We found similar numbers of miRNAs differentially expressed between the parents and the four progeny hybrid populations. Unbalanced parental expression level dominance of miRNAs were found in the three triploid and diploid hybrid populations, which may reprogram gene expression networks and affect the growth of Populus hybrids. These results indicated that hybridization has a great impact on the miRNA expression variation in the newly synthesized Populus triploid and diploid hybrid populations. However, we also found no significant differences in miRNA expression among the three triploid populations and the diploid hybrid population. No dosage effect of miRNA expression could lead to dosage-dependent negative effects on target genes and their downstream pathway in polyploids. We speculate that polyploids may gain advantages from the decrease in miRNA negative regulation, suggesting an important molecular mechanism of polyploid advantage.
  相似文献   

5.
Polyploidy is one of the most important evolutionary processes in plants. In natural populations, polyploids usually emerge from unreduced gametes which either fuse with reduced ones, resulting in triploid offspring (triploid bridge), or with other unreduced gametes, resulting in tetraploid embryos. The frequencies of these two pathways, and male versus female gamete contributions, however, are largely unexplored. Ranunculus kuepferi occurs with diploid, triploid and autotetraploid cytotypes in the Alps, whereby diploids are mostly sexual, while tetraploids are facultative apomicts. To test for the occurrence of polyploidization events by triploid bridge, we investigated 551 plants of natural populations via flow cytometric seed screening. We assessed ploidy shifts in the embryo to reconstruct female versus male gamete contributions to polyploid embryo and/or endosperm formation. Seed formation via unreduced egg cells (BIII hybrids) occurred in all three cytotypes, while only in one case both gametes were unreduced. Polyploids further formed seeds with reduced, unfertilized egg cells (polyhaploids and aneuploids). Pollen was highly variable in diameter, but only pollen >27 μm was viable, whereby diploids produced higher proportions of well-developed pollen. Pollen size was not informative for the formation of unreduced pollen. These results suggest that a female triploid bridge via unreduced egg cells is the major pathway toward polyploidization in R. kuepferi, maybe as a consequence of constraints of endosperm development. Triploids resulting from unreduced male gametes were not observed, which explains the lack of obligate sexual tetraploid individuals and populations. Unreduced egg cell formation in diploids represents the first step toward apomixis.  相似文献   

6.
Information on the spatial distribution of cytotypes and karyotype variation in plants is critical for studies of the origin and evolution of polyploid complexes. Here, the spatial distribution of cytological races and intraspecific variation in the karyotype of Lycoris radiata, an endemic species to East Asia, is investigated. Conventional karyotype analysis methods were used to determine ploidy level and karyotypical characteristics in 2,420 individuals from 114 populations of Lradiata nearly covering the whole distribution areas in China. Of 114 populations studied, 52 (45.61%), 58 (50.88%), and 4 (3.51%) are diploid, triploid, and mixoploid populations, respectively, with 1,224, 1,195, and 1 individuals being diploid, triploid, and tetraploid, respectively. The triploid possesses a much wider distribution range than the diploid, with the former almost occupying the entire range of this complex species in East Asia and the latter distributing in the middle and east regions of China. Triploids tend to occur at high altitudes, and the relationship between the ploidy and altitude is significantly positive but low (r= 0.103, p < 0.01). About 98.6% of examined bulbs have a common karyotype consisting of 22 or 33 acrocentric (A) chromosomes. Some aberrant chromosomes which should be generated from A‐type chromosome have been found including metacentrics (m), small metacentrics (m′), and B‐type chromosome. The results can provide a fundamental cytogeographic data for further studies on the evolutionary origins and adaptive divergences of polyploids, especially the triploid, within Lradiata using molecular and/or ecological methods in the future.  相似文献   

7.

Background  

The role of hybridization in generating diversity in animals is an active area of discovery and debate. We assess hybridization across a contact zone of northern (Myodes rutilus) and southern (M. gapperi) red-backed voles using variation in skeletal features and both mitochondrial and nuclear loci. This transect extends approximately 550 km along the North Pacific Coast of North America and encompasses 26 populations (n = 485). We establish the history, geographic extent and directionality of hybridization, determine whether hybridization is ongoing, and assess the evolutionary stability of novel genomic combinations.  相似文献   

8.
Coexistence of sperm‐dependent asexual hybrids with their sexual progenitors depends on genetic and ecological interactions between sexual and asexual forms. In this study, we investigate genotypic composition, modes of hybridogenetic gametogenesis and habitat preferences of European water frogs (Pelophylax esculentus complex) in a region of sympatric occurrence. Pelophylax esculentus complex comprises parental species P. ridibundus and P. lessonae, whose primary hybridization leads to hybridogenetic lineages of P. esculentus. Hybrids clonally transmit one parental genome and mate with the other parental species, forming a new generation of hybrids. In the region of western Slovakia, we found syntopic occurrence of diploid and triploid hybrids with P. lessonae, syntopic occurrence of all three taxa as well as the existence of pure P. ridibundus populations. All triploid hybrids were exclusively male possessing one ridibundus and two different lessonae genomes (RLL). Sex ratio in diploid hybrids was substantially female‐biased. Irrespective of the population composition, diploid hybrids excluded the lessonae genome from their germ line and produced ridibundus gametes. Contrarily, RLL males unequivocally eliminated the ridibundus genome and produced diploid lessonae sperms. Perpetuation of RLL males in studied populations is most likely achieved by their mating with diploid hybrid females. The composition of water frog populations is also shaped by taxon‐specific habitat preferences. While P. ridibundus preferred larger water bodies (gravelpits, fishery ponds, dead river arms), P. lessonae was most frequently found in marshes and smaller sandpits. Pelophylax esculentus occupied predominately similar habitats as its sexual host P. lessonae.  相似文献   

9.
The European water frog Pelophylax esculentus is a natural hybrid between P. lessonae (genotype LL) and P. ridibundus (RR). It reproduces through hybridogenesis, eliminating one parental genome from its germline and producing gametes containing the genome of the other parental species. According to previous studies, this elimination and transmission pattern is very diverse. In mixed populations, where only diploid hybrids (LR) live in sympatry and mate with one or both parental species, the excluded genome varies among regions, and the remaining genome is transmitted clonally to haploid gametes. In all‐hybrid populations consisting of diploid (LR) and triploid (LLR and/or LRR) frogs, diploid individuals also produce gametes clonally (1n in males, 2n in females), whereas triploids eliminate the genome they have in single copy and produce haploid gametes containing the recombined other genome. However, here, too, regional differences seem to exist, and some triploids have been reported to produce diploid gametes. In order to systematically study such regional and genotype differences in gamete production, their potential origin, and their consequences for the breeding system, we sampled frogs from five populations in three European countries, performed crossing experiments, and investigated the genetic variation through microsatellite analysis. For four populations, one in Poland, two in Germany, and one in Slovakia, our results confirmed the elimination and transmission pattern described above. In one Slovakian population, however, we found a totally different pattern. Here, triploid males (LLR) produce sperm with a clonally transmitted diploid LL genome, rather than a haploid recombined L genome, and LR females clonally produce haploid R eggs, rather than diploid LR eggs. These differences among the populations in gamete production go along with differences in genomotype composition, breeding system (i.e., the way triploids are produced), and genetic variation. These differences are strong evidence for a polyphyletic origin of triploids. Moreover, our findings shed light on the evolutionary potential inherent to the P. esculentus complex, where rare events due to untypical gametogenetic processes can lead to the raise, the perpetuation, and the dispersion of new evolutionary significant lineages which may also deserve special conservation measures.  相似文献   

10.
Polyploidization is a rare yet sometimes successful way for animals to rapidly create geno‐ and phenotypes that may colonize new habitats and quickly adapt to environmental changes. In this study, we use water frogs of the Pelophylax esculentus complex, comprising two species (Pelophylax lessonae, genotype LL; Pelophylax ridibundus, RR) and various diploid (LR) and triploid (LLR, LRR) hybrid forms, summarized as P. esculentus, as a model for studying recent hybridization and polyploidization in the context of speciation. Specifically, we compared the geographic distribution and genetic diversity of diploid and triploid hybrids across Europe to understand their origin, maintenance and potential role in hybrid speciation. We found that different hybrid and parental genotypes are not evenly distributed across Europe. Rather, their genetic diversity is structured by latitude and longitude and the presence/absence of parental species but not of triploids. Highest genetic diversity was observed in central and eastern Europe, the lowest in the northwestern parts of Europe. This gradient can be explained by the decrease in genetic diversity during postglacial expansion from southeastern glacial refuge areas. Genealogical relationships calculated on the basis of microsatellite data clearly indicate that hybrids are of multiple origin and include a huge variety of parental genomes. Water frogs in mixed‐ploidy populations without any parental species (i.e. all‐hybrid populations) can be viewed as evolutionary units that may be on their way towards hybrid speciation. Maintenance of such all‐hybrid populations requires a continuous exchange of genomes between diploids and triploids, but scenarios for alternative evolutionary trajectories are discussed.  相似文献   

11.
In isogamous brown algae, the sexuality of populations needs to be tested by laboratory crossing experiments, as the sexes of gametophytes are morphologically indistinguishable. In some cases, gamete fusion is not observed and the precise reproductive mode of the populations is unknown. In the isogamous brown alga Scytosiphon lomentaria in Japan, both asexual (gamete fusion is unobservable) and sexual populations (gamete fusion is observable) have been reported. In order to elucidate the reproductive mode of asexual populations in this species, we used PCR‐based sex markers to investigate the sex ratio of three asexual and two sexual field populations. The markers indicated that the asexual populations consisted only of female individuals, whereas sexual populations are composed of both males and females. In culture, female gametes of most strains from asexual populations were able to fuse with male gametes; however, they had little to no detectable sexual pheromones, significantly larger cell sizes, and more rapid parthenogenetic development compared to female/male gametes from sexual populations. Investigations of sporophytic stages in the field indicated that alternation of gametophytic and parthenosporophytic stages occur in an asexual population. These results indicate that the S. lomentaria asexual populations are female populations that lack sexual reproduction and reproduce parthenogenetically. It is likely that females in the asexual populations have reduced a sexual trait (pheromone production) and have acquired asexual traits (larger gamete sizes and rapid parthenogenetic development).  相似文献   

12.

Background and Aims

Interspecific hybridization and polyploidy are key processes in plant evolution and are responsible for ongoing genetic diversification in the genus Sorbus (Rosaceae). The Avon Gorge, Bristol, UK, is a world ‘hotspot’ for Sorbus diversity and home to diploid sexual species and polyploid apomictic species. This research investigated how mating system variation, hybridization and polyploidy interact to generate this biological diversity.

Methods

Mating systems of diploid, triploid and tetraploid Sorbus taxa were analysed using pollen tube growth and seed set assays from controlled pollinations, and parent–offspring genotyping of progeny from open and manual pollinations.

Key Results

Diploid Sorbus are outcrossing and self-incompatible (SI). Triploid taxa are pseudogamous apomicts and genetically invariable, but because they also display self-incompatibility, apomictic seed set requires pollen from other Sorbus taxa – a phenomenon which offers direct opportunities for hybridization. In contrast tetraploid taxa are pseudogamous but self-compatible, so do not have the same obligate requirement for intertaxon pollination.

Conclusions

The mating inter-relationships among Avon Gorge Sorbus taxa are complex and are the driving force for hybridization and ongoing genetic diversification. In particular, the presence of self-incompatibility in triploid pseudogamous apomicts imposes a requirement for interspecific cross-pollination, thereby facilitating continuing diversification and evolution through rare sexual hybridization events. This is the first report of naturally occurring pseudogamous apomictic SI plant populations, and we suggest that interspecific pollination, in combination with a relaxed endosperm balance requirement, is the most likely route to the persistence of these populations. We propose that Avon Gorge Sorbus represents a model system for studying the establishment and persistence of SI apomicts in natural populations.  相似文献   

13.
Hybrids between the minnows Phoxinus eos and Phoxinus neogaeus coexist with a population of P. eos in East Inlet Pond, Coos Co., New Hampshire. Chromosome counts and flow cytometric analysis of erythrocyte DNA indicate that these hybrids include diploids, triploids, and diploid-triploid mosaics. The mosaics have both diploid and triploid cells in their bodies, even within the same tissues. All three hybrid types are heterozygous at seven putative loci for which P. eos and P. neogaeus are fixed for different allozymes, indicating that the hybrids carry one eos and one neogaeus haploid genome. The diploid hybrids are therefore P. eos-neogaeus, whereas the triploids and mosaics are derived from P. eos-neogaeus but have an extra eos or neogaeus genome in all or some of their cells. Diploid, triploid, and mosaic hybrids accept tissue grafts from diploid hybrids, indicating that all individuals carry the identical eos-neogaeus diploid genome. Thus, one P. eos-neogaeus clone exists at East Inlet Pond. Grafts among the triploids and mosaics or from these individuals to diploid hybrids are rejected, indicating that the third genome is different in each triploid and mosaic individual. In this study, diploid and mosaic hybrids, carrying the clonal eos-neogaeus genome, were bred in the laboratory with males of P. eos or P. neogaeus. Both diploid and mosaic hybrids produced diploid, triploid, and mosaic offspring, revealing the source of the three hybrid types present at East Inlet Pond. These offspring accepted grafts from P. eos-neogaeus individuals, indicating that they all had inherited the identical eos-neogaeus genome. Most grafts among triploid and mosaic progeny, or from these individuals to their diploid broodmates, were rejected, indicating that the third genome was different in each triploid and mosaic (as was observed in the wild hybrids) and was contributed by sperm from males of P. eos or P. neogaeus. Diploid progeny are produced if sperm serves only to stimulate embryogenesis; triploid or mosaic progeny are produced if the sperm genome is incorporated. Although based on a mode of reproduction that by definition results in a genetically identical community of individuals, i.e., gynogenesis, reproduction in hybrid Phoxinus results in a variety of genetically distinct individuals by the incorporation of sperm into approximately 50% of the diploid ova produced.  相似文献   

14.

Background

Simultaneous detection of multiple QTLs (quantitative trait loci) may allow more accurate estimation of genetic effects. We have analyzed outbred commercial pig populations with different single and multiple models to clarify their genetic properties and in addition, we have investigated pleiotropy among growth and obesity traits based on allelic correlation within a gamete.

Methods

Three closed populations, (A) 427 individuals from a Yorkshire and Large White synthetic breed, (B) 547 Large White individuals and (C) 531 Large White individuals, were analyzed using a variance component method with one-QTL and two-QTL models. Six markers on chromosome 4 and five to seven markers on chromosome 7 were used.

Results

Population A displayed a high test statistic for the fat trait when applying the two-QTL model with two positions on two chromosomes. The estimated heritabilities for polygenic effects and for the first and second QTL were 19%, 17% and 21%, respectively. The high correlation of the estimated allelic effect on the same gamete and QTL test statistics suggested that the two separate QTL which were detected on different chromosomes both have pleiotropic effects on the two fat traits. Analysis of population B using the one-QTL model for three fat traits found a similar peak position on chromosome 7. Allelic effects of three fat traits from the same gamete were highly correlated suggesting the presence of a pleiotropic QTL. In population C, three growth traits also displayed similar peak positions on chromosome 7 and allelic effects from the same gamete were correlated.

Conclusion

Detection of the second QTL in a model reduced the polygenic heritability and should improve accuracy of estimated heritabilities for both QTLs.  相似文献   

15.

Background  

Reproductive character displacement (RCD) is a common and taxonomically widespread pattern. In marine broadcast spawning organisms, behavioral and mechanical isolation are absent and prezygotic barriers between species often operate only during the fertilization process. Such barriers are usually a consequence of differences in the way in which sperm and egg proteins interact, so RCD can be manifest as faster evolution of these proteins between species in sympatry than allopatry. Rapid evolution of these proteins often appears to be a consequence of positive (directional) selection. Here, we identify a set of candidate gamete recognition proteins (GRPs) in the ascidian Ciona intestinalis and showed that these GRPs evolve more rapidly than control proteins (those not involved in gamete recognition). Choosing a subset of these gamete recognition proteins that show evidence of positive selection (CIPRO37.40.1, CIPRO60.5.1, CIPRO100.7.1), we then directly test the RCD hypothesis by comparing divergence (omega) and polymorphism (McDonald-Kreitman, Tajima's D, Fu and Li's D and F, Fay and Wu's H) statistics in sympatric and allopatric populations of two distinct forms of C. intestinalis (Types A and B) between which there are strong post-zygotic barriers.  相似文献   

16.
The hypothesis of gene flow between species with large differences in chromosome numbers has rarely been tested in the wild, mainly because species of different ploidy are commonly assumed to be reproductively isolated from each other because of instantaneous and strong postzygotic barriers. In this study, a broad‐scale survey of molecular variation was carried out between two orchid species with different ploidy levels: Epidendrum fulgens (2n = 2x = 24 chromosomes) and Epidendrum puniceoluteum (2n = 4x = 52 chromosomes). To test the strength of their reproductive barriers, we investigated the distribution of genetic variation in sympatric and allopatric populations of these two species and conducted crossing experiments. Nuclear and plastid microsatellite loci were used to genotype 463 individuals from eight populations across the geographical range of both species along the Brazilian coastal plain. All six sympatric populations analysed presented hybrid zones, indicating that hybridization between E. fulgens and E. puniceoluteum is a common phenomenon. Bayesian assignment analysis detected the presence of F1 and F2 individuals and also signs of introgression, demonstrating a high potential for interspecific gene flow. Introgression occurs preferentially from E. fulgens to E. puniceoluteum. Pure parental individuals of both species display strong genotype–habitat associations, indicating that environment‐dependent selection could be acting in all hybrid zones. This study suggests that hybridization and introgression are evolutionary processes playing a role in the diversification of Epidendrum and indicates the importance of investigations of hybrid zones in understanding reproductive barriers and speciation processes in Neotropical orchid species.  相似文献   

17.
Natural populations of triploid females resembling the gynogenetic teleost, Poecilia formosa (Girard), occur in northeastern Mexico where they intermingle with diploid populations of this species and the members of congeneric bisexual species such as P. mexicana or P. latipinna. Mitotic configurations from gill epithelial cells show 46 chromosomes for the diploid fishes, but 69 chromosomes for members of the triploid clones associated with P. formosa. Triploid females have erythrocytes that are significantly larger than those from diploid specimens and also show a roughly 50% elevation in the average DNA content of their somatic nuclei. Similar analyses of two functionally incompetent males of P. formosa, of a number of bisexual F1 and F2 hybrid offpsring from P. latipinna x P. mexicana, and of females from several other poeciliid species consistently show only diploid DNA levels and somatic chromosome complements where 22N=46. Demonstration of cytogenetic criteria by which females from triploid clones may be clearly distinguished from sympatric diploid specimens of P. formosa or P. mexicana leaves unresolved, for the present, problems of an appropriate systematic designation for natural populations of triploid gynogenetic fishes. The role of sympatric speciation in the evolution of poeciliid genomes is discussed in terms of alternative mechanisms to account for the persistence in nature of a vertebrate triploid of hybrid origin.This work was supported by grants from the National Science Foundation (GB 7393) and from the U.S. Public Health Service (GM 14644).Recipient of a Research Career Development Award from the U.S. Public Health Service (1 K3 GM 3455).  相似文献   

18.

Background  

Obligate asexual reproduction is rare in the animal kingdom. Generally, asexuals are considered evolutionary dead ends that are unable to radiate. The phytophagous mite genus Bryobia contains a large number of asexual species. In this study, we investigate the origin and evolution of asexuality using samples from 111 populations in Europe, South Africa and the United States, belonging to eleven Bryobia species. We also examine intraspecific clonal diversity for one species, B. kissophila, by genotyping individuals from 61 different populations. Knowledge on the origin of asexuality and on clonal diversity can contribute to our understanding of the paradox of sex.  相似文献   

19.

Background and Aims

St. John''s wort (Hypericum perforatum) is becoming an important model plant system for investigations into ecology, reproductive biology and pharmacology. This study investigates biogeographic variation for population genetic structure and reproduction in its ancestral (European) and introduced (North America) ranges.

Methods

Over 2000 individuals from 43 localities were analysed for ploidy, microsatellite variation (19 loci) and reproduction (flow cytometric seed screen). Most individuals were tetraploid (93 %), while lower frequencies of hexaploid (6 %), diploid (<1 %) and triploid (<1 %) individuals were also identified.

Key Results

A flow cytometric analysis of 24 single seeds per individual, and five individuals per population demonstrated opposite patterns between ploidy types, with tetraploids producing more apomictic (73 %) than sexual (24 %) seed, while hexaploids produced more sexual (73 %) than apomictic (23 %) seed. As hexaploids are derived from tetraploids, these data imply that gene dosage, in addition to the effects of hybridization, influences the switch from apomictic to sexual reproduction. No significant differences in seed production were found between Europe and North America. An analysis of population structure based upon microsatellite profiling demonstrated three major genetic clusters in Europe, whose distribution was reflective of Pleistocene glaciation (e.g. refugia) and post-glacial recolonization of Europe.

Conclusions

The presence of pure and mixed populations representing all three genetic clusters in North America demonstrates that H. perforatum was introduced multiple times onto the continent, followed by gene flow between the different gene pools. Taken together, the data presented here suggest that plasticity in reproduction has no influence on the invasive potential of H. perforatum.  相似文献   

20.

Background  

Androgens and estrogens are crucial for mammalian sperm differentiation but their role in biology of mature male gamete is not still defined. The expression of proteins involved in the biosynthesis and action of these steroid hormones has been demonstrated in human spermatozoa, but very few data have been reported in mature sperm from non human species. The purpose of the current study was to investigate the expression of aromatase (P450arom), estrogen (ERalpha/ERbeta) and androgen (AR) receptors in ejaculated spermatozoa of pig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号