首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
'Patch-clamp' experiments in the cell-attached configuration have shown the existence of three distinct types of ion channels in the plasma membrane of Dictyostelium discoideum. Channels DI (slope conductance 11 pS) and DII (slope conductance 6 pS) promote an outward current at depolarizing voltages. A third ion channel (HI, slope conductance 3 pS) opens preferentially at hyperpolarization and promotes inward current flow. It is suggested that under physiological conditions current through the DI and DII channels is carried by K+, whereas Ca2+ may be the current carrier in the HI channel. The density of these ion channels in the membrane of D. discoideum is low: approx. 0.1/micron 2 for the DI and HI channel and 0.02/micron 2 for the DII channel. The gating properties of the ion channels appear to be complicated because openings are grouped into bursts of activity. The probability of the DI channel being in the open state increases with depolarization. The mean channel life-time is about 20 ms and voltage-independent. The burst duration increases with depolarization whereas the interburst time decreases. The minimal kinetic model accounting for the behaviour of the DI channel is a three-state model with two closed and one open state. A detailed analysis of the gating of the DII and the HI channel was prevented by their low rate of occurrence (DII) or fast inactivation (HI). The formation of a seal resistance greater than or equal to 1 G omega depends critically on the composition of the pipette solution. Examination of a series of monovalent and divalent cations as well as different organic and inorganic anions has shown that 'gigaseals' are formed only in the presence of at least 1 mM Ca2+ or Sr2+, whereas Ba2+, Mg2+ and monovalent cations (Li+, Na+, K+, Rb+, Cs+) do not support the formation of high seal resistances. Anions seem not to affect the seal formation.  相似文献   

2.
Chromaffin granules are involved in catecholamine synthesis and traffic in the adrenal glands. The transporting membrane proteins of chromaffin granules play an important role in the ion homeostasis of these organelles. In this study, we characterized components of the electrogenic 86Rb+ flux observed in isolated chromaffin granules. In order to study single channel activity, chromaffin granules from the bovine adrenal medulla were incorporated into planar lipid bilayers. Four types of cationic channel were found, each with a different conductance. The unitary conductances of the potassium channels are 360 ± 10 pS, 220 ± 8 pS, 152 ± 8 pS and 13 ± 3 pS in a gradient of 450/150 mM KCl, pH 7.0. A multiconductance potassium channel with a conductivity of 110 ± 8 pS and 31 ± 4 pS was also found. With the exception of the 13 pS conductance channel, all are activated by depolarizing voltages. One type of chloride channel was also found. It has a unitary conductance of about 250 pS in a gradient of 500/150 mM KCl, pH 7.0.  相似文献   

3.
Z Qi  M Sokabe  K Donowaki    H Ishida 《Biophysical journal》1999,76(2):631-641
Ion conduction properties of a de novo synthesized channel, formed from cyclic octa-peptides consisting of four alternate L-alanine (Ala) and N'-acylated 3-aminobenzoic acid (Aba) moieties, were studied in bilayer membranes. The single-channel conductance was 9 pS in symmetrical 500 mM KCl. The channel favored permeation of cations over anions with a permeability ratio (PCl-/PK+) of 0.15. The selectivity sequence among monovalent cations based on permeability ratio (PX+/PK+) fell into an order: NH4+(1.4) > Cs+(1. 1) >/= K+(1.0) > Na+(0.4) >> Li+(0). The conductance-activity relationship of the channel in K+ solutions followed simple Michaelis-Menten kinetics with a half-maximal saturating activity of 8 mM and a maximal conductance of 9 pS. The permeability ratio PNa+/PK+ remained constant ( approximately 0.40) under biionic concentrations from 10 to 500 mM. These results suggests that the channel is a one-ion channel. The pore diameter probed by a set of organic cations was approximately 6 A. The single-channel current was blocked by Ca2+ in a dose-dependent manner that followed a single-site titration curve with a voltage-dependent dissociation constant of 0.6 mM at 100 mV. The electric distance of the binding site for Ca2+ was 0.07 from both entrances of the channel, indicating the presence of two symmetrical binding sites in each vicinity of the channel entrance. Correlations between conduction properties and structural aspects of the channel are discussed in terms of a three-barrier and two-binding-site (3B2S) model of Eyring rate theory. All available structural information supported an idea that the channel was formed from a tail-to-tail associated dimer of the molecule, the pore of which was lined with hydrophobic acyl chains. This is the first report to have made a systematic analysis of ion permeation through a hydrophobic pore.  相似文献   

4.
Tolaasin is a peptide toxin produced by Pseudomonas tolaasii and causes brown blotch disease of the cultivated mushrooms. Two types of ion channels were identified by the incorporation of tolaasin into lipid bilayer. The slope conductance of type 1 channel measured in the buffer containing 100 mM KCl was 150 pS with a linear current vs. voltage relationship. The type 2 tolaasin channel had two subconductance states of 300 and 500 pS. Both channels were inhibited by Zn(2+). Ion channel formations of tolaasin were concentration-dependent and single channel currents were successfully obtained at 0.6 unit tolaasin, 15.9 nM. The type 1 channel was obtained more frequently than the type 2 channel and the ratio of their appearance was approximately 4:1, respectively.  相似文献   

5.
Crown ether architectures were explored for the inclusion of Cs+ and Sr2+ ions within nano-cavity of macrocyclic crown ethers using density functional theory (DFT) modeling. The modeling was undertaken to gain insight into the mechanism of the complexation of Cs+ and Sr2+ ion with this ligand experimentally. The selectivity of Cs+ and Sr2+ ions for a particular size of crown ether has been explained based on the fitting and binding interaction of the guest ions in the narrow cavity of crown ethers. Although, Di-Benzo-18-Crown-6 (DB18C6) and Di-Benzo-21-Crown-7 (DB21C7) provide suitable host architecture for Sr2+ and Cs+ ions respectively as the ion size match with the cavity of the host, but consideration of binding interaction along with the cavity matching both DB18C6 and DB21C7 prefers Sr2+ ion. The calculated values of binding enthalpy of Cs metal ion with the crown ethers were found to be in good agreement with the experimental results. The gas phase binding enthalpy for Sr2+ ion with crown ether was higher than Cs metal ion. The ion exchange reaction between Sr and Cs always favors the selection of Sr metal ion both in the gas and in micro-solvated systems. The gas phase selectivity remains unchanged in micro-solvated phase. We have demonstrated the effect of micro-solvation on the binding interaction between the metal ions (Cs+ and Sr2+) and the macrocyclic crown ethers by considering micro-solvated metal ions up to eight water molecules directly attached to the metal ion and also by considering two water molecules attached to metal-ion-crown ether complexes. A metal ion exchange reaction involving the replacement of strontium ion in metal ion-crown ether complexes with cesium ion contained within a metal ion-water cluster serves as the basis for modeling binding preferences in solution. The calculated O-H stretching frequency of H2O molecule in micro-solvated metal ion-crown complexes is more red-shifted in comparison to hydrated metal ions. The calculated IR spectra can be compared with an experimental spectrum to determine the presence of micro-solvated metal ion–crown ether complexes in extractant phase.  相似文献   

6.
Summary Patch-clamp studies of single ion channel currents in freshly isolated murine B lymphocytes are characterized here according to their respective unitary conductances, ion selectivities, regulatory factors, distributions and kinetic behavior. The most prevalent ion channel in murine B lymphocytes is a large conductance (348 pS) nonselective anion channel. This report characterizes additional conductances including: two chloride channels (40 and 128 pS), a calcium-activated potassium channel (93 pS), and an outwardly rectifying potassium channel which displays two distinct conductances (18 and 30 pS). Like the anion channel, both chloride channels exhibit little activity in the cellattached patch configuration. The kinetic behavior of all of these channels is complex, with variable periods of bursting and flickering activity interspersed between prolonged closed/open intervals (dwell times). It is likely that some of these channels play an important role in the signal transduction of B cell activation.  相似文献   

7.
M2, an integral membrane protein of influenza A virus, was purified from either influenza A virus-infected CV-1 cells or from Spodoptera frugiperda (Sf9) cells infected with a recombinant-M2 baculovirus. The purified protein, when incorporated into phospholipid bilayer membranes, produced ion-permeable channels with the following characteristics: (1) The channels appeared in bursts during which unit conductances of diverse magnitudes (25–500 pS) were observed. (2) The most probable open state was usually the lowest unit conductance (25–90 pS). (3) The channels were selective for cations; t Na = 0.75 when 150 mm NaCl bathed both sides of the membrane. (4) Amantadine reduced the probability of opening of the high conductance state and also the conductance of the most probable state. (5) Reducing pH increased the mean current through the open channel as well as the conductance of the most probable state. (6) The sequence of selectivity for group IA monovalent cations was Rb > K > Cs ~ Na > Li. The pH activation, amantadine block and ion selectivity of the M2 protein ion channel in bilayers are consistent with those observed on expression of the M2 protein in oocytes of Xenopus laevis as well as for those predicted for the proposed role of an ion channel in the uncoating process of influenza virus. The finding that the M2 protein has intrinsic ion channel activity supports the hypothesis that it has ion channel activity in the influenza virus particle.  相似文献   

8.
A carboxy-terminal, 18 kD fragment of colicin Ia, a bacterial toxin, forms ion channels in artificial phospholipid bilayers. This fragment, which comprises a quarter of the intact 70 kD molecule, is resistant to extensive protease digestion and probably constitutes a structural domain of the protein. The ion channels formed by the 18 kD fragment are functionally heterogeneous, having conductances that range from 15 to 30 pS at positive voltages and from 70 to 250 pS at negative voltages, and open lifetimes that range from at least 25 msec to 5 sec. In contrast, ion channels formed by whole colicin Ia open only at negative voltages, at which their conductances range from 6 to 30 pS, and their open lifetimes range from 1 sec to 3 min. Additionally, the open state of the 18 kD fragment channel is characterized by noisy fluctuations in current, while the open state of the whole molecule ion channel is often marked by numerous, stable subconductance states. Since the properties of the fragment channel differ substantially from those of the whole molecule channel, we suggest that portions of the molecule outside of the 18 kD fragment are involved in forming the whole molecule ion channel.  相似文献   

9.
The conduction properties of inositol (1,4,5)-trisphosphate (InsP3)- gated calcium (Ca) channels (InsP3R) from canine cerebellum for divalent cations and the regulation of the channels by intraluminal Ca were studied using channels reconstituted into planar lipid bilayers. Analysis of single-channel recordings performed with different divalent cations present at 55 mM on the trans (intraluminal) side of the membrane revealed that the current amplitude at 0 mV and the single- channel slope conductance fell in the sequence: Ba (2.2 pA, 85 pS) > Sr (2.0 pA, 77 pS) > Ca (1.4 pA, 53 pS) > Mg (1.1 pA, 42 pS). The mean open time of the InsP3R recorded with Ca (2.9 ms) was significantly shorter than with other divalent cations (approximately 5.5 ms). The "anomalous mole fraction effect" was not observed in mixtures of divalent cations (Mg and Ba), suggesting that these channels are single- ion pores. Measurements of InsP3R activity at different intraluminal Ca levels demonstrated that Ca in the submillimolar range did not potentiate channel activity, and that very high levels of intraluminal Ca (> or = 10 mM) decreased channel open probability 5-10-fold. When InsP3R were measured with Ba as a current carrier in the presence of 110 mM cis potassium, a PBa/PK of 6.3 was estimated from the extrapolated value for the reversal potential. When the unitary current through the InsP3R at 0 mV was measured as a function of the permeant ion (Ba) concentration, the half-maximal current occurred at 10 mM trans Ba. The following conclusions are drawn from these data: (a) the conduction properties of InsP3R are similar to the properties of the ryanodine receptor, another intracellular Ca channel, and differ dramatically from the properties of voltage-gated Ca channels of the plasma membrane. (b) The estimated size of the Ca current through the InsP3R under physiological conditions is 0.5 pA, approximately four times less than the Ca current through the ryanodine receptor. (c) The potentiation of InsP3R by intraluminal Ca in the submillimolar range remains controversial. (d) A quantitative model that explains the inhibitory effects of high trans Ca on InsP3R activity was developed and the kinetic parameters of InsP3R gating were determined.  相似文献   

10.
Using the lipid bilayer technique we have optimized recording conditions and confirmed that alpha human atrial natriuretic peptide [alpha-hANP(1-28)] forms single ion channels. The single channel currents recorded in 250/50 mM KCl cis/trans chambers show that the ANP-formed channels were heterogeneous, and differed in their conductance, kinetic, and pharmacological properties. The ANP-formed single channels were grouped as: (i) H202- and Ba2+-sensitive channel with fast kinetics; the nonlinear current-voltage (I-V) relationship of this channel had a reversal potential (Erev) of -28.2 mV, which is close to the equilibrium potential for K+ (EK = -35 mV) and a maximal slope conductance (gmax) of 68 pS at positive potentials. Sequential ionic substitution (KCl, K gluconate and choline Cl) of the cis solution suggests that the current was carried by cations. The fast channel had three modes (spike mode, burst mode, and open mode) that differed in their kinetics but not in their conductance properties. (ii) A large conductance channel possessing several subconductance levels that showed time-dependent inactivation at positive and negative membrane potentials (Vm). The inactivation ratio of the current at the end of the voltage step (Iss) to the initial current (Ii) activated immediately after the voltage step, (Iss/Ii), was voltage dependent and described by a bell-shaped curve. The maximal current-voltage (I-V) relationship of this channel, which had an Erev of +17.2 mV, was nonlinear and the value of gmax was 273 pS at negative voltages. (iii) A transiently-activated channel: the nonlinear I-V relationship of this channel had an Erev of -29.8 mV and the value of gmax was 160 pS at positive voltages. We propose that the voltage-dependence of the ionic currents and the kinetic parameters of these channel types indicate that if they were formed in vivo and activated by cytosolic factors they could change the membrane potential and the electrolyte homeostasis of the cell.  相似文献   

11.
The crowned coumarin complexes are well known compounds for their ion recognition abilities. They undergo photophysical changes upon cation binding. On the basis of density functional theory calculations, we examined the sodium cation (Na+) binding energies of coumarin-crown ethers based on 15-Crown-5 (15 C5) and 18-Crown-6 (18 C6) as well as the optical absorptions of coumarin-crown ethers based on 12-Crown-4 (12 C4), 15 C5 and 18 C6. We explored why the attachment of crown ether ring to coumarin affects the Na+ binding energies of coumarin-crown ethers and also why the optical absorption of coumarin is modified by the crown ethers. Our study reveals that the Na+ ion binding energies of coumarin-crown ethers depend strongly on the size of the crown ether ring and also on the attachment position of the ether ring on coumarin. These factors affect the intramolecular charge transfer and overall stability of the complexes. The absorptions of the coumarin and ether ring parts of coumarin-crown ether are red shifted from those of isolated coumarin and crown ether, respectively. The red-shift of the coumarin ester group absorption is much stronger depending on the attachment position of the ether ring to coumarin. The absorption intensity of the coumarin part in coumarin-crown ethers is reduced for the benzene group absorption, but is enhanced for the ester group absorption.
Figure
In this study, the several Na+ - coumarin-crown ether coordination complexes based on 12-Crown-4, 15-Crown-5 and 18-Crown-6 were examined by the density functional theory method. The structural effects on the Na+ binding energies and optical properties were studied.  相似文献   

12.
Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

13.
One of the hypotheses concerning the pathogenic properties of the prion protein considers its influence on cellular ion homeostasis. Using the lipid bilayer technique, the influence of prion-derived peptides on the lipid bilayer conductance was characterized. To evaluate the physiological significance and possible pathological functions of the peptides, their effect on the membrane potential and respiration rate of hippocampal mitochondria was also studied. We used a peptide bearing the human prion protein sequence YSNQNNF (PrP [169-175]), and peptide SSQNNF (PrP [170-175]) bearing a naturally-occurring mutation in position 171 [N(r)S] linked to schizoaffective diseases in humans (Samaia, H.B., Mari, J.J., Vallada, H.P., Moura R.P., Simpson A.J.G., Brentani R.R. A prion-linked psychiatric disorder. Nature 390 (1997) 241). In this report, we show that PrP [170-175] N171S increases the conductance of planar lipid bilayers. Based on the conductance of single channel currents recorded in 500/500 mM KCl (cis/trans), we found a single channel conductance of 8 to 26 pS. The native prion peptide PrP [169-175] does not form ion channels in the lipid bilayer. Neither of the peptides significantly changed the membrane potential or respiration rate of isolated rat hippocampal mitochondria. We propose a possible mechanism for channel formation by aggregation of the prion-derived peptide.  相似文献   

14.
Human sperm cells were fractionated and plasma membrane proteins were separated by molecular gel sieving chromatography (Sephacryl S-200 followed by HPLC). A pore-forming protein was extracted from sperm cell membranes. The partially purified protein migrated with Mr 100,000-110,000, as determined by molecular sieving gel chromatography, and with a Mr 90,000 when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. The channel activity was also extracted with Triton X-114, suggesting a hydrophobic nature for this protein. This protein was incorporated into planar lipid bilayers, resulting in the formation of voltage-dependent ion channels. Single channel fluctuations of 130 pS/unit in 0.1 M NaCl were resolved; however, channels preferentially aggregated in triplets having an open state life-time that persisted for several seconds. The channels studied here were more selective for monovalent cations than anions, but also showed some permeability to anions and larger electrolytes, suggesting a large functional pore diameter. The role of this sperm channel in normal sperm physiology and/or fertilization is presently unclear.  相似文献   

15.
The synthesis and metal binding properties of cation-sensitive fluorescent indicators intended for biological applications are described. The increase of the crown ether ring size enhances the affinity for larger cations, but weakens the fluorescent response and selectivity. A compound having a 15-crown-5 chelator directly attached to a 2,7-difluoroxanthenone fluorophore loads into live cells and responds to sodium ion concentration changes with large fluorescence increases in the visible wavelength range.  相似文献   

16.
The aromatic polyene antibiotic levorin A2 forms ion channels permeable to monovalent cations, in lipid membranes containing cholesterol or ergosterol. Channel conductivity is in the range 0.3-0.5 pS. The channel has two main states: conducting (open) and nonconducting (closed). The potential-dependent formation of levorin A2 channels is observed in lipid membranes. The system responsible for the ion-channel selectively is localized on the hydrophilic side of the lactone ring of the polyene molecule.  相似文献   

17.
The effects of the divalent cations Ca and Mg on the properties of ACh-activated channels at the frog neuromuscular junction were studied using a two-microelectrode voltage clamp. The divalent cation concentration was varied from 2 to 40 mM in solutions containing 50% normal Na. The reversal potential was determined by interpolation of the acetylcholine (ACh)-induced current versus voltage relationship. The single-channel conductance and the mean channel lifetime were calculated from fluctuation analysis of the ACh-induced end-plate current. Extracellular Na and/or divalent cations affected the reversal potential of endplate channels in a way that cannot be described by the Goldman-Hodgkin-Katz equation or by a simple two-barrier, one-binding site model of the channel if the assumption was made that permeability ratios were constant and not a function of ion concentrations. Increasing the divalent cation concentration decreased the single-channel conductance to approximately 10 pS in solutions with 50% Na and 40 mM divalent cation concentrations. The effect of the divalent cations Ca and Mg on the mean channel lifetime was complex and dependent on whether the divalent cation was Ca or Mg. The mean channel lifetime was not significantly changed in most solutions with increased Ca concentration, while it was slightly prolonged by increased Mg concentration.  相似文献   

18.
A mechanosensitive ion channel in Schizosaccharomyces pombe.   总被引:2,自引:0,他引:2       下载免费PDF全文
X L Zhou  C Kung 《The EMBO journal》1992,11(8):2869-2875
Protoplast protuberances (blebs) of Schizosaccharomyces pombe were examined using the patch-clamp technique. In addition to several voltage-gated ion channels, we encountered the activities of a mechanosensitive ion channel with a conductance of 180 pS. Microscopic currents of one or two units were observed in some excised patches and ensemble currents of several tens of units were observed in all blebs examined in whole-bleb configuration. This channel opens at pressures of cm Hg applied to whole blebs and it passes cations, including Ca2+. It is inactivated by membrane depolarizations and blocked by Gd3+. We discuss the possible functions of such a channel, including its activation upon cell cycle dependent cytoskeletal reorganizations.  相似文献   

19.
Single stretch-activated ion channels were studied on the soma and primary dendrites of stretch receptor neurons of the crayfish Orconectes limosus. When the membrane of the patch was deformed by applying suction to the pipette, a marked nonlinear increase in single-channel activity could be observed in two types of channels. These were indistinguishable on the basis of their single-channel conductances but differed in their voltage range of activation. One type showed strong inward rectification (RSA channel) and the second type was largely voltage independent (SA channel). A linear relationship was found between negative pressure and the natural logarithm of the channels' open probability. For an e-fold change in pressure, the average sensitivity was 8.7 +/- 0.4 (SD, n = 5) mmHg for the RSA channel and 5.6 +/- 2.2 (n = 5) mmHg for the SA channel. Both channels were found to be permeable to mono- and divalent cations. Current-voltage relationships were linear with slope conductances for the SA channel of: 71 +/- 11 (SD, n = 3) pS for K+, 50 +/- 7.4 (n = 5) pS for Na+, and 23 pS for Ca++. Similar values were found for the RSA channel. The data suggest that the SA channel is responsible for the mechanotransduction process in the stretch receptor neuron.  相似文献   

20.
Microsomal membranes from rye (Secale cereale L.) roots wereseparated by isopycnic sucrose density gradient centrifugation.The ion channels present in gradient fractions were assayedby reconstitution into planar 1-palmitoyl-2-oleoyl phosphatidylethanolaminebilayers (PLB) and the distributions of ion channel activitieswere compared with membrane markerenzyme activities. A numberof ion channel activities were observed and could be distinguishedon the combined bases of their conductance, selectivity, kineticsand pharmacology. A voltage-dependent maxi (498 pS) cation-channel,a voltage-dependent 199-pS cationchannel, 48-pS and 18-pS K+channels, and a 148-pS Cl channel (all unitary conductancesdetermined in asymmetrical cis trans 325:100mM KCl) colocalizedwith the plasma membrane marker-enzyme, vanadatesensitive ATPase.A weakly K +-selective (108 pS) channel, a 1249-pS cation-channeland a 98-pS K + channel colocalized with the tonoplast markerenzyme,nitrate-sensitive ATPase. A 706-pS K+ channel colocalized withthe expected distribution of intact plastids and a 38-pS Clchannel colocalized with either plastid or ER membranes. Themembrane location of several other channels including a hypervoltage-sensitivemaxi (497 pS) cation-channel, a 270-pS K+ channel, an 8-pS K+channel and a 4-pS K+ channel was equivocal, but they were tentativelyassigned to the Golgi. Thus, the plasma membrane and tonoplastorigin of ion channels previously characterized following theincorporation of plasma membrane prepared by aqueous-polymertwo-phase partitioning or tonoplast derived from isolated vacuolesinto PLB was confirmed and the ion channel complement of previouslyunassayed membranes was defined. This demonstrates the usefulnessof PLB in identifying and characterizing ion channels from plantcell membranes, in particular, those of membranes which areinaccessible to patch-clamp electrodes. Key words: Chloride (Cl) channel, potassium (K+) channel, planar lipid bilayer, root, rye, Secale cerealeL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号