首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fungal cereal pathogen Fusarium graminearum produces deoxynivalenol (DON) during infection. The mycotoxin DON is associated with Fusarium head blight (FHB), a disease that can cause vast grain losses. Whilst investigating the suitability of Brachypodium distachyon as a model for spreading resistance to F. graminearum, we unexpectedly discovered that DON pretreatment of spikelets could reduce susceptibility to FHB in this model grass. We started to analyse the cell wall changes in spikelets after infection with F. graminearum wild‐type and defined mutants: the DON‐deficient Δtri5 mutant and the DON‐producing lipase disruption mutant Δfgl1, both infecting only directly inoculated florets, and the mitogen‐activated protein (MAP) kinase disruption mutant Δgpmk1, with strongly decreased virulence but intact DON production. At 14 days post‐inoculation, the glucose amounts in the non‐cellulosic cell wall fraction were only increased in spikelets infected with the DON‐producing strains wild‐type, Δfgl1 and Δgpmk1. Hence, we tested for DON‐induced cell wall changes in B. distachyon, which were most prominent at DON concentrations ranging from 1 to 100 ppb. To test the involvement of DON in defence priming, we pretreated spikelets with DON at a concentration of 1 ppm prior to F. graminearum wild‐type infection, which significantly reduced FHB disease symptoms. The analysis of cell wall composition and plant defence‐related gene expression after DON pretreatment and fungal infection suggested that DON‐induced priming of the spikelet tissue contributed to the reduced susceptibility to FHB.  相似文献   

2.
3.
We analysed interactions in the system of two Barley Yellow Dwarf Virus (BYDV) strains (MAV and PAV), and wheat (cv. Tinos) as host plant for the virus, and the cereal aphid Sitobion avenae (F.) as vector, in particular whether or not infection by the virus might alter host plant suitability in favour of vector development. By measuring the amino acid and sugar content in the phloem sap of infected and non‐infected wheat plants we found a significant reduction in the concentration of the total amount of amino acids on BYDV‐infected plants. Qualitative and quantitative analysis of honeydew and honeydew excretion indicated a lower efficiency of phloem sap utilisation by S. avenae on infected plants. In addition, S. avenae excreted less honeydew on infected plants. Both BYDV strains significantly affected aphid development by a reduction in the intrinsic rate of natural increase. Hence, infection by the virus reduced the host suitability in terms of aphid population growth potential on BYDV‐infected plants. However, more alate morphs developed on virus‐infected plants. These findings are discussed in relation to the population dynamics of S. avenae, and, as a consequence, the spread of BYDV.  相似文献   

4.
Fusarium head blight (FHB), also called scab, is a devastating and insidious disease of cereals including wheat (Triticum spp.) and barley (Hordeum vulgare L.) worldwide. Apart from direct yield losses, the most serious concern about FHB is the contamination of the crop with mycotoxins, which pose a health risk to human and livestock. Recent research reported that phylogenetic species F. asiaticum (Fa) and F. graminearum (Fg) were the major causal agents of FHB from infected wheat heads in China. To investigate the population structure of Fusarium species in China by species‐specific as well as the chemotype‐specific markers, sequence‐related amplified polymorphism (SRAP) markers were screened on representative isolates of F. asiaticum‐NIV, F. asiaticum‐ 3ADON and F. graminearum‐15ADON to find amplification products characteristic of either species or chemotypes. Selected amplified fragments were cloned and sequenced so that sequence‐characterized amplified region (SCAR) primer pairs could be developed which permit specific detection of Fusarium species using conventional PCR. Primer pairs SCAR‐Fa1 and SCAR‐Fg1 were confirmed to be able to amplify specific products only in F. asiaticum and F. graminearum isolates, respectively. These species‐specific primers were applied to determine genetic division of F. asiaticum and F. graminearum isolates collected in Yangtze–Huaihe valley. The results indicated that F. asiaticum was the predominant species causing FHB in this wheat production area. It is the first report that SRAP markers were adapted for species characterization in Fusarium isolates.  相似文献   

5.
6.
Fusarium head blight (FHB) in wheat and other small grain cereals is a globally devastating disease caused by toxigenic Fusarium pathogens. Controlling FHB is a challenge because germplasm that is naturally resistant against these pathogens is inadequate. Current control measures rely on fungicides. Here, an antibody fusion comprised of the Fusarium spp.‐specific recombinant antibody gene CWP2 derived from chicken, and the endochitinase gene Ech42 from the biocontrol fungus Trichoderma atroviride was introduced into the elite wheat cultivar Zhengmai9023 by particle bombardment. Expression of this fusion gene was regulated by the lemma/palea‐specific promoter Lem2 derived from barley; its expression was confirmed as lemma/palea‐specific in transgenic wheat. Single‐floret inoculation of independent transgenic wheat lines of the T3 to T6 generations revealed significant resistance (type II) to fungal spreading, and natural infection assays in the field showed significant resistance (type I) to initial infection. Gas chromatography–mass spectrometry analysis revealed marked reduction of mycotoxins in the grains of the transgenic wheat lines. Progenies of crosses between the transgenic lines and the FHB‐susceptible cultivar Huamai13 also showed significantly enhanced FHB resistance. Quantitative real‐time PCR analysis revealed that the tissue‐specific expression of the antibody fusion was induced by salicylic acid drenching and induced to a greater extent by F. graminearum infection. Histochemical analysis showed substantial restriction of mycelial growth in the lemma tissues of the transgenic plants. Thus, the combined tissue‐specific and pathogen‐inducible expression of this Fusarium‐specific antibody fusion can effectively protect wheat against Fusarium pathogens and reduce mycotoxin content in grain.  相似文献   

7.
Fusarium head blight (FHB) is a severe global wheat disease that may cause severe yield losses, especially during epidemic years. Transforming the regulatory genes in the metabolic pathways of disease resistance into wheat via transgenic methods is one way to improve resistance to FHB. ScNPR1 (Secale cereale‐NPR1), a regulatory gene for systemic acquired resistance (SAR), was isolated from S. cereale cv Jingzhouheimai and transformed into the moderately FHB‐susceptible wheat variety Ningmai 13. RT‐PCR analysis indicated that the ScNPR1 gene was stably expressed in transgenic plants. An evaluation of the resistance to FHB revealed that six ScNPR1 transgenic lines (NP1, NP2, NP3, NP4, NP5 and NP6) exhibited significantly higher FHB resistance than the wild‐type wheat Ningmai 13 and the null‐segregated plants. The expression of pathogenesis‐related (PR) genes after Fusarium graminearum inoculation was earlier or higher than those in the wild‐type variety Ningmai 13. The high expression in the early stages of PR genes should account for the enhanced FHB resistance in the transgenic lines. Our results suggest that overexpression of ScNPR1 could be used to improve FHB resistance in wheat.  相似文献   

8.
Barley yellow dwarf (BYD) is one of the most common diseases of cereal crops, caused by the phloem‐limited, cereal aphid‐borne Barley yellow dwarf virus (BYDV) (Luteoviridae). Delayed planting and controlling aphid vector numbers with insecticides have been the primary approaches to manage BYD. There is limited research on nitrogen (N) application effects on plant growth, N status, and water use in the BYDV pathosystem in the absence of aphid control. Such information will be essential in developing a post‐infection management plan for BYDV‐infected cereals. Through a greenhouse study, we assessed whether manipulation of N supply to BYDV‐infected winter wheat, Triticum aestivum L. (Poaceae), in the presence or absence of the aphid vector Rhopalosiphum padi L. (Hemiptera: Aphididae), could improve N and/or water uptake, and subsequently promote plant growth. Similar responses of shoot biomass and of water and N use efficiencies to various N application rates were observed in both BYDV‐infected and non‐infected plants, suggesting that winter wheat plants with only BYDV infection may be capable of outgrowing infection by the virus. Plants, which simultaneously hosted aphids and BYDV, suffered more severe symptoms and possessed higher virus loads than those infected with BYDV only. Moreover, in plants hosting both BYDV and aphids, aphid pressure was positively associated with N concentration within plant tissue, suggesting that N application and N concentration within foliar tissue may alter BYDV replication indirectly through their influence on aphid reproduction. Even though shoot biomass, tissue N concentration, and water use efficiency increased in response to increased N application, decision‐making on N fertilization to plants hosting both BYDV and aphids should take into consideration the potential of aphid outbreak and/or the possibility of reduced plant resilience to environmental stresses due to decreased root growth.  相似文献   

9.
10.
Abstract In the present study, a rabbit polyclonal antiserum against cell wall‐bound thionins from barley leaf and a mouse monoclonal antibody against hydroxyproline‐rich glycoproteins (HRGP) from maize were used to investigate the subcellular localization of thionins and HRGP or extensins in Fusarium culmorum‐infected wheat spikes by means of the immunogold labelling technique. The proteins were localized in cell walls of different tissues including the lemma, ovary and rachis, while the cytoplasm and organelles in these tissues showed almost no labelling. However, accumulation of thionins and HRGP in infected wheat spikes of resistant wheat cultivars differed distinctly from those of susceptible cultivars. Compared with the healthy tissues, labelling densities for the two types of proteins in cell walls of the infected lemma, ovary and rachis increased only slightly in the susceptible cultivar Agent, while in cell walls of infected tissues of the resistant cultivar Arina labelling densities of thionins and HRGP increased markedly. These findings indicated that accumulation of thionins and HRGP in cell walls of infected resistant wheat spikes may be involved in defence responses to infection and in spreading of F. culmorum.  相似文献   

11.
12.
Fusarium head blight (FHB) of wheat is caused by Fusarium graminearum which produces many secondary metabolites including the trichothecene mycotoxins deoxynivalenol (vomitoxin) and 3-acetyldeoxynivalenol. Coleoptile tissue segements from 14 spring wheat cultivars were exposed to the F. graminearum metabolites deoxynivalenol, 3-acetyldeoxynivalenol, butenolide (all known mycotoxins), sambucinol, culmorin and dihydroxycalonectrin in a bioassay. The tissue of most cultivars was inhibited, at a concentration of 10?6M by the trichothecenes tested and up to 10?3M for the other compounds. Deoxynivalenol and 3-acetyldeoxynivalenol, which affect protein synthesis at the ribosome, are therefore potent phytotoxins in addition to being mycotoxins. The resistance or susceptibility of each cultivar to FHB was established in a field experiment. A comparison of the two sets of data indicated that resistant cultivars could tolerate much higher concentrations of the metabolites tested than susceptible cultivars. Some resistant material can tolerate 10 to 1000 times the concentration of the trichothecenes, compared with susceptible cultivars, with no effect on growth. The data suggest that it may be possible to screen germplasm rapidly for FHB resistance in vitro and a new type of resistance in wheat to this disease is proposed based on the apparent insensitivity to trichothecenes by resistant cultivars, additional to the three types of resistance described in the literature.  相似文献   

13.
Fusarium head blight (FHB) is a disease of the floral tissues of wheat and barley for which highly resistant varieties are not available. Thus, there is a need to identify genes/mechanisms that can be targeted for the control of this devastating disease. Fusarium graminearum is the primary causal agent of FHB in North America. In addition, it also causes Fusarium seedling blight. Fusarium graminearum can also cause disease in the model plant Arabidopsis thaliana. The Arabidopsis–F. graminearum pathosystem has facilitated the identification of targets for the control of disease caused by this fungus. Here, we show that resistance against F. graminearum can be enhanced by flg22, a bacterial microbe-associated molecular pattern (MAMP). flg22-induced resistance in Arabidopsis requires its cognate pattern recognition receptor (PRR) FLS2, and is accompanied by the up-regulation of WRKY29. The expression of WRKY29, which is associated with pattern-triggered immunity (PTI), is also induced in response to F. graminearum infection. Furthermore, WRKY29 is required for basal resistance as well as flg22-induced resistance to F. graminearum. Moreover, constitutive expression of WRKY29 in Arabidopsis enhances disease resistance. The PTI pathway is also activated in response to F. graminearum infection of wheat. Furthermore, flg22 application and ectopic expression of WRKY29 enhance FHB resistance in wheat. Thus, we conclude that the PTI pathway provides a target for the control of FHB in wheat. We further show that the ectopic expression of WRKY29 in wheat results in shorter stature and early heading time, traits that are important to wheat breeding.  相似文献   

14.
In three separate experiments, the upper leaf surface of the fifth formed leaf of wheat cv. Highbury, the fourth and fifth leaves of barley cv. Julia and the third and fourth leaves of oat cv. Mostyn were inoculated in a spore settling tower with wheat brown rust (Puccinia recondita f. sp. tritici), barley brown rust (P. hordei) or oat crown rust (P. coronata f. sp. avenae), respectively. Fewer pustules developed on distal portions of leaves of plants infected with barley yellow dwarf virus (BYDV) than on similar portions of leaves from virus-free plants. There were no significant differences in the number of pustules on proximal leaf portions. In barley and oats, the number of pustules on distal leaf portions was negatively correlated with the amount of yellowing of the leaf areas scored. In wheat, symptoms of BYDV were mild and leaves were little affected by yellowing. The latent period of rust on wheat and oats was not affected by BYDV. In barley, BYDV reduced the latent period of rust on leaf 5, but not on leaf 4, and reduced it on proximal, but not distal, leaf portions. In other experiments, BYDV reduced the yield of wheat and oats by 44% and 66%, respectively, while BYDV-infected barley was almost sterile. The appropriate rust reduced the yield of wheat, barley and oats by 33%, 13% and 86%, respectively. When infected with both BYDV and rust, yield of wheat and oats was reduced by 63% and 91%, respectively. Neither BYDV nor rust affected the percentage crude protein content of wheat grain, nor did rust affect that of barley. In oats, BYDV and rust each significantly increased crude protein of grain, but rust infection of BYDV-infected plants tended to reduce it.  相似文献   

15.
The barley yellow dwarf virus (BYDV) epidemics, which occurred predominantly in northern Germany in 1988–90 and caused unusual yield losses of wheat, prompted our study on interactions of BYDV and Fusarium culmorum. At the late stages of plant development (EC 55/65) infections with BYDV resulted in a lower yield reduction of wheat plants than infections with F. culmorum. Combined infections at flowering resulted in severer yield reduction, indicating additive effects of the two pathogens. However, if wheat infected by BYDV at stage EC 25/35 was secondarily inoculated with the fungus at EC 55/65 the yield was less reduced than in combined infections at EC 55/65. Our results proved that the susceptibility of wheat plants to F. culmorum is increased when infection by BYDV takes place during the late stages of growth. These results correspond to observations during 3 years of the epidemic in Germany. In these years BYDV was spread mainly during the late spring, resulting in a severe secondary infection by the fungus. From the results of these investigations it may be concluded that during the years of BYDV epidemic the yield of wheat was reduced to an economically important extent because of the fungal infection, which was favoured by the virus infection.  相似文献   

16.
Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease in wheat (Triticum aestivum) that results in substantial yield losses and mycotoxin contamination. Reliable genetic resources for FHB resistance in wheat are lacking. In this study, we characterized glycoside hydrolase 12 (GH12) family proteins secreted by F. graminearum. We established that two GH12 proteins, Fg05851 and Fg11037, have functionally redundant roles in F. graminearum colonization of wheat. Furthermore, we determined that the GH12 proteins Fg05851 and Fg11037 are recognized by the leucine-rich-repeat receptor-like protein RXEG1 in the dicot Nicotiana benthamiana. Heterologous expression of RXEG1 conferred wheat responsiveness to Fg05851 and Fg11037, enhanced wheat resistance to F. graminearum and reduced levels of the mycotoxin deoxynivalenol in wheat grains in an Fg05851/Fg11037-dependent manner. In the RXEG1 transgenic lines, genes related to pattern-triggered plant immunity, salicylic acid, jasmonic acid, and anti-oxidative homeostasis signalling pathways were upregulated during F. graminearum infection. However, the expression of these genes was not significantly changed during infection by the deletion mutant ΔFg05851/Fg11037, suggesting that the recognition of Fg05851/Fg11037 by RXEG1 triggered plant resistance against FHB. Moreover, introducing RXEG1 into three other different wheat cultivars via crossing also conferred resistance to F. graminearum. Expression of RXEG1 did not have obvious deleterious effects on plant growth and development in wheat. Our study reveals that N. benthamiana RXEG1 remains effective when transferred into wheat, a monocot, which in turn suggests that engineering wheat with interfamily plant immune receptor transgenes is a viable strategy for increasing resistance to FHB.  相似文献   

17.
Life tables of brown and green color morphs of the English grain aphid, Sitobion avenae (Fabricius) reared on barley under laboratory conditions at 20 ± 1°C, 65% ± 5% relative humidity and a photoperiod of 16 : 8 h (L : D) were compared. The plants were either: (i) infected with the Barley yellow dwarf virus (BYDV); (ii) not infected with virus but previously infested with aphids; or (iii) healthy barley plants, which were not previously infested with aphids. Generally, both color morphs of S. avenae performed significantly better when fed on BYDV‐infected plants than on plants that were virus free but had either not been or had been previously infested with aphids. Furthermore, when fed on BYDV‐infected plants, green S. avenae developed significantly faster and had a significantly shorter reproductive period than the brown color morph. There were no significant differences in this respect between the two color morphs of S. avenae when they were reared on virus‐free plants that either had been or not been previously infested with aphids. These results indicate that barley infected with BYDV is a more favorable host plant than uninfected barley for both the color morphs of S. avenae tested, particularly the green color morph.  相似文献   

18.
19.
Homothallic Fusarium graminearum (teleomorph Gibberella zeae) and anamorphic F. culmorum are destructive pathogens causing Fusarium head blight (FHB) of small‐grain cereals worldwide, while heterothallic F. pseudograminearum (G. coronicola) seems to be restricted to Australia as a FHB pathogen. In a comprehensive treatise of pathogen population genetics, this review summarizes global knowledge of genetic diversity among isolates sampled at various spatial and temporal scales, examines the mechanisms that generate this diversity and explores the implications of pathogen diversity and plasticity to resistance breeding. Despite their different modes of reproduction, there is large variation among isolates of all three species originating from different countries and continents. With a few exceptions, haplotype diversity ranges from 60 to 100% even within populations from individual fields. In F. graminearum, over 90% of the variation is found within populations, even when samples are collected from areas as small as 0.25 m2. Variation among populations is low (4–8%) with negligible population subdivision. This indicates a high level of gene flow (Nm = 8–71) with linkage equilibrium for the majority of selectively neutral molecular marker loci analysed. These findings for F. graminearum point to large random mating populations driven by occasional outcrossing, high gene flow across large geographical distances and a relatively low host‐mediated directional selection. Similar conclusions can be drawn for the Canadian population of F. pseudograminearum, but not for populations from Australia, where different pathogen ecology may have reduced the frequency of sexual recombination. Phylogenetic analyses indicate delineation of lineages in F. graminearum, often along geographically separated lines, while the related F. pseudograminearum is a single recombining species with limited or no lineage development. The anamorphic F. culmorum shows no obvious clonal structure in its population as might have been expected. High levels of diversity within fields may have been caused by balancing selection from frequent alternation between saprophytic and parasitical life cycle and/or a hidden or recently extinct teleomorph. Other mechanisms including parasexual cycles or active transposable elements may also be involved but these have not been investigated as yet. Crosses between and among F. graminearum lineages have shown a rather simple, additive inheritance of pathogenicity and aggressiveness with frequent transgressive segregation in crosses among isolates with moderate aggressiveness. This raises the spectre of highly aggressive and/or toxigenic isolates evolving if a limited range of quantitative trait locus for FHB resistance is deployed on a large scale. Combining more than one genetically distinct sources of resistance, possibly with different modes of action against the pathogen, will be necessary to avoid severe FHB outbreaks in the future.  相似文献   

20.

Background  

The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB) disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON) contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine) and amino acids (e.g. arginine and ornithine) are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号