首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A monoclonal antibody (mAb) against human Toll-like receptor (TLR) 3 was established and its effect on TLR3-mediated responses was tested using human fibroblast cell lines expressing TLR3 on the cell surface. Fibroblasts are known to produce IFN-beta upon viral infection or treatment with double-stranded RNA (dsRNA) through distinct signaling pathways. Here, we show the mAb to TLR3 suppressed poly(I):poly(C)-mediated IFN-beta production by human fibroblasts naturally expressing TLR3 on their surface. By reporter gene assay using HEK293 cells transfected with a human TLR3 expression vector, TLR3 recognized dsRNA to activate NF-kappaB and the IFN-beta promoter. TLR3 signaling was not elicited by either single-stranded RNA (ssRNA) or dsDNA. Thus, specific recognition of dsRNA by extracellular TLR3 is essential for induction of type I IFN: the interassociation between dsRNA and TLR3, regardless of direct or indirect binding, should be disrupted by mAb being attached to TLR3. The mAb against TLR3 reported herein may serve as a regulator for virus-mediated immune response via an alternative pathway involving the dsRNA-TLR3 recognition which might occur on host cells.  相似文献   

2.
Recognition of microbial components by TLR2 requires cooperation with other TLRs. TLR6 has been shown to be required for the recognition of diacylated lipoproteins and lipopeptides derived from mycoplasma and to activate the NF-kappaB signaling cascade in conjunction with TLR2. Human TLR2 is expressed on the cell surface in a variety of cells, including monocytes, neutrophils, and monocyte-derived, immature dendritic cells (iDCs), whereas the expression profile of TLR6 in human cells remains obscure. In this study we produced a function-blocking mAb against human TLR6 and analyzed TLR6 expression in human blood cells and cell lines and its participation in ligand recognition. TLR6 was expressed, although at a lower level than TLR2, on the cell surface in monocytes, monocyte-derived iDCs, and neutrophils, but not on B, T, or NK cells. Confocal microscopic analysis revealed that TLR6 was colocalized with TLR2 at the plasma membrane of monocytes. Importantly, TLR2/6 signaling did not require endosomal maturation, and anti-TLR6 mAb inhibited cytokine production in monocytes and iDCs stimulated with synthetic macrophage-activating lipopeptide-2 or peptidoglycan, indicating that TLR6 recognized diacylated lipopeptide and peptidoglycan at the cell surface. In addition, TLR2 mutants C30S and C36S (Cys(30) and Cys(36) in TLR2 were substituted with Ser), which were expressed intracellularly in HEK293 cells, failed to induce NF-kappaB activation upon macrophage-activating lipopeptide-2 stimulation even in the presence of TLR6. Thus, coexpression of TLR2 and TLR6 at the cell surface is crucial for recognition of diacylated lipopeptide and peptidoglycan and subsequent cellular activation in human cells.  相似文献   

3.
Type I interferons (IFN-alpha/beta) play an essential role in both innate and adaptive antiviral immune responses. IFN- beta is produced by fibroblasts and myeloid dendritic cells (DCs) upon viral infection or in response to doublestranded RNA (dsRNA). Several intracellular molecules having a dsRNA-binding motif such as dsRNA-dependent protein kinase recognize dsRNA in a sequence-independent manner and induce antiviral innate responses. Toll-like receptor (TLR) 3, a member of TLR family proteins, recognizes extracellular dsRNA and activates NF- kappaB and the IFN-beta promoter leading to the induction of IFN-beta production. Here we analyzed the dsRNA structure capable of inducing TLR3-mediated IFN-beta production using various synthetic RNA duplexes. In contrast to the recognition of dsRNA by intracellular molecules, TLR3 preferentially recognizes polyriboinocinic:polyribocytidylic acid (poly(I:C)) rather than synthetic virus-derived dsRNAs. 2'-O-methyl or 2'-fluoro modification of cytidylic acid abolished the IFN-beta-inducing ability of the poly(I:C) duplex, and these modified dsRNAs inhibited poly(I:C)-induced TLR3-mediated IFN-beta production by fibroblasts and DCs. In addition, poly(dI:dC), a non-IFN inducer, also blocked poly(I:C)-induced IFN-beta induction. Since TLR3 is localized in the intracellular compartment of DCs where signaling occurs, modified dsRNAs may compete with poly(I:C) for binding to the cell-surface receptor that transfers dsRNA into TLR3-enriched vesicles. Thus, TLR3 recognizes a unique dsRNA structure that largely differs from those recognized by other dsRNA-binding proteins.  相似文献   

4.
Anti-viral host defense harbors a variety of strategies to coup with viral infection. Recent findings suggested that Toll-like receptors (TLRs) and their signaling pathways involve type I IFN induction in response to virus-specific molecular patterns. TLR 3 and TLR 4 in myeloid dendritic cells (mDCs) recognize viral dsRNA and putative viral products, respectively, to induce IFN-beta via IRF-3 activation. On the other hand, TLR 7 and TLR 9 in plasmacytoid DCs (pDCs) induce IFN-alpha in response to their ligands, U/G-rich ssRNA and non-methylated CpG DNA. We identified TICAM-1 which is recruited to the cytoplasmic domain (designated TIR) of TLR 3 and allows to select the pathway to activation of IRF-3. We also identified TICAM-2 which binds TLR 4 and together with TICAM-1 activates IRF-3. TICAM-1 knockdown by RNAi supported the key role of TICAM-1 in IFN-beta induction. Hence, the IFN-beta induction in mDCs appears in part due to the function of TICAM-1. Viruses are known to activate kinases that directly activate IRF-3 inside the cells, and this pathway may merge with the TLR 3-TICAM-1 pathway. Here we review the relationship between the TLR 3-TICAM-1 pathway and viral infection.  相似文献   

5.
Dendritic cells (DCs) respond to microbial infections by undergoing phenotypic maturation and by producing multiple cytokines. In the present study, we analyzed the ability of influenza A and Sendai viruses to induce DC maturation and activate tumor necrosis factor alpha (TNF-alpha), alpha/beta interferon (IFN-alpha/beta), and IFN-like interleukin-28A/B (IFN-lambda2/3) and IL-29 (IFN-lambda1) gene expression in human monocyte-derived myeloid DCs (mDC). The ability of influenza A virus to induce mDC maturation or enhance the expression of TNF-alpha, IFN-alpha/beta, interleukin-28 (IL-28), and IL-29 genes was limited, whereas Sendai virus efficiently induced mDC maturation and enhanced cytokine gene expression. Influenza A virus-induced expression of TNF-alpha, IFN-alpha, IFN-beta, IL-28, and IL-29 genes was, however, dramatically enhanced when cells were pretreated with IFN-alpha. IFN-alpha priming led to increased expression of Toll-like receptor 3 (TLR3), TLR7, TLR8, MyD88, TRIF, and IFN regulatory factor 7 (IRF7) genes and enhanced influenza-induced phosphorylation and DNA binding of IRF3. Influenza A virus also enhanced the binding of NF-kappaB to the respective NF-kappaB elements of the promoters of IFN-beta and IL-29 genes. In mDC IL-29 induced MxA protein expression and possessed antiviral activity against influenza A virus, although this activity was lower than that of IFN-alpha or IFN-beta. Our results show that in human mDCs viruses can readily induce the expression of IL-28 and IL-29 genes whose gene products are likely to contribute to the host antiviral response.  相似文献   

6.
Higher animals establish host defense by orchestrating innate and adaptive immunity. This is mediated by professional antigen presenting cells, i.e. dendritic cells (DCs). DCs can incorporate pathogens, produce a variety of cytokines, maturate, and present pathogen-derived peptides to T cells, thereby inducing T cell activation and differentiation. These responses are triggered by microbial recognition through type I transmembrane proteins, Toll-like receptors (TLRs) on DCs. TLRs consist of ten members and each TLR is involved in recognizing a variety of microorganism-derived molecular structures. TLR ligands include cell wall components, proteins, nucleic acids, and synthetic chemical compounds, all of which can activate DCs as immune adjuvants. Each TLR can activate DCs in a similar, but distinct manner. For example, TLRs can be divided into subgroups according to their type I interferon (IFN) inducing ability. TLR2 cannot induce IFN-alpha or IFN-beta, but TLR4 can lead to IFN-beta production. Meanwhile, TLR3, TLR7, and TLR9 can induce both IFN-alpha and IFN-beta. Recent evidences suggest that cytoplamic adapters for TLRs are especially crucial for this functional heterogeneity. Clarifying how DC function is regulated by TLRs should provide us with critical information for manipulating the host defense against a variety of diseases.  相似文献   

7.
Dendritic cell (DC) activation by nucleic acid-containing IgG complexes is implicated in systemic lupus erythematosus (SLE) pathogenesis. However, it has been difficult to definitively examine the receptors and signaling pathways by which this activation is mediated. Because mouse FcgammaRs recognize human IgG, we hypothesized that IgG from lupus patients might stimulate mouse DCs, thereby facilitating this analysis. In this study, we show that sera and purified IgG from lupus patients activate mouse DCs to produce IFN-alpha, IFN-beta, and IL-6 and up-regulate costimulatory molecules in a FcgammaR-dependent manner. This activation is only seen in sera with reactivity against ribonucleoproteins and is completely dependent on TLR7 and the presence of RNA. As anticipated, IFN regulatory factor (IRF)7 is required for IFN-alpha and IFN-beta production. Unexpectedly, however, IRF5 plays a critical role in IFN-alpha and IFN-beta production induced not only by RNA-containing immune complexes but also by conventional TLR7 and TLR9 ligands. Moreover, DC production of IL-6 induced by these stimuli is dependent on a functional type I IFNR, indicating the need for a type I IFN-dependent feedback loop in the production of inflammatory cytokines. This system may also prove useful for the study of receptors and signaling pathways used by immune complexes in other human diseases.  相似文献   

8.
Upon encounter with bacterial products, immature dendritic cells (iDCs) release proinflammatory cytokines and develop into highly stimulatory mature DCs. In the present study, we show that human monocyte-derived DCs functionally express the CD47 Ag, a thrombospondin receptor. Intact or F(ab')2 of CD47 mAb suppress bacteria-induced production of IL-12, TNF-alpha, GM-CSF, and IL-6 by iDCs. 4N1K, a peptide derived from the CD47-binding site of thrombospondin, also inhibits cytokine release. The inhibition of IL-12 and TNF-alpha is IL-10-independent inasmuch as IL-10 production is down-modulated by CD47 mAb and blocking IL-10 mAb fails to restore cytokine levels. CD47 ligation counteracts the phenotypic and functional maturation of iDCs in that it prevents the up-regulation of costimulatory molecules, the loss of endocytic activity, and the acquisition of an increased capacity to stimulate T cell proliferation and IFN-gamma production. Interestingly, regardless of CD47 mAb treatment during DC maturation, mature DC restimulated by soluble CD40 ligand and IFN-gamma, to mimic DC/T interaction, produce less IL-12 and more IL-18 than iDCs. Finally, CD47 ligation on iDCs does not impair their capacity to phagocytose apoptotic cells. We conclude that following exposure to microorganisms, CD47 ligation may limit the intensity and duration of the inflammatory response by preventing inflammatory cytokine production by iDCs and favoring their maintenance in an immature state.  相似文献   

9.
10.
Epithelial cells of the lung are the primary targets for respiratory viruses. Virus-carried single-stranded RNA (ssRNA) can activate Toll-like receptors (TLRs) 7 and 8, whereas dsRNA is bound by TLR3 and a cytoplasmic RNA helicase, retinoic acid-inducible protein I (RIG-I). This recognition leads to the activation of host cell cytokine gene expression. Here we have studied the regulation of influenza A and Sendai virus-induced alpha interferon (IFN-alpha), IFN-beta, interleukin-28 (IL-28), and IL-29 gene expression in human lung A549 epithelial cells. Sendai virus infection readily activated the expression of the IFN-alpha, IFN-beta, IL-28, and IL-29 genes, whereas influenza A virus-induced activation of these genes was mainly dependent on pretreatment of A549 cells with IFN-alpha or tumor necrosis factor alpha (TNF-alpha). IFN-alpha and TNF-alpha induced the expression of the RIG-I, TLR3, MyD88, TRIF, and IRF7 genes, whereas no detectable TLR7 and TLR8 was seen in A549 cells. TNF-alpha also strongly enhanced IKK epsilon mRNA and protein expression. Ectopic expression of a constitutively active form of RIG-I (deltaRIG-I) or IKK epsilon, but not that of TLR3, enhanced the expression of the IFN-beta, IL-28, and IL-29 genes. Furthermore, a dominant-negative form of RIG-I inhibited influenza A virus-induced IFN-beta promoter activity in TNF-alpha-pretreated cells. In conclusion, IFN-alpha and TNF-alpha enhanced the expression of the components of TLR and RIG-I signaling pathways, but RIG-I was identified as the central regulator of influenza A virus-induced expression of antiviral cytokines in human lung epithelial cells.  相似文献   

11.
The evidence that dendritic cell (DC) subsets produce differential cytokines in response to specific TLR stimulation is robust. However, the role of TLR stimulation in Ag presentation and phenotypic maturation among DC subsets is not clear. Through the adjuvanticity of a novel mannosylated Ag, mannosylated dendrimer OVA (MDO), as a pathogen-associated molecular pattern Ag, we characterized the functionality of GM-CSF/IL-4-cultured bone marrow DC and Flt3 ligand (Flt3-L) DC subsets by Ag presentation and maturation assays. It was demonstrated that both bone marrow DCs and Flt3-L DCs bound, processed, and presented MDO effectively. However, while Flt3-L CD24(high) (conventional CD8(+) equivalent) and CD11b(high) (CD8(-) equivalent) DCs were adept at MDO processing by MHC class I and II pathways, respectively, CD45RA(+) plasmacytoid DCs presented MDO poorly to T cells. Successful MDO presentation was largely dependent on competent TLR4 for Ag localization and morphological/phenotypic maturation of DC subsets, despite the indirect interaction of MDO with TLR4. Furthermore, Toll/IL-1 receptor-domain-containing adaptor-inducing IFN-beta, but not MyD88, as a TLR4 signaling modulator was indispensable for MDO-induced DC maturation and Ag presentation. Taken together, our findings suggest that DC subsets differentially respond to a pathogen-associated molecular pattern-associated Ag depending on the intrinsic programming and TLRs expressed. Optimal functionality of DC subsets in Ag presentation necessitates concomitant TLR signaling critical for efficient Ag localization and processing.  相似文献   

12.
Viral infections and local production of cytokines probably contribute to the pathogenesis of Type 1 diabetes. The viral replicative intermediate double-stranded RNA (dsRNA, tested in the form of polyinosinic-polycytidylic acid, PIC), in combination with the cytokine interferon-gamma (IFN-gamma), triggers beta-cell apoptosis. We have previously observed by microarray analysis that PIC induces expression of several mRNAs encoding for genes downstream of Toll-like receptor 3 (TLR3) signaling pathway. In this report, we show that exposure of beta-cells to dsRNA in combination with IFN-alpha, -beta, or -gamma significantly increases apoptosis. Moreover, dsRNA induces TLR3 mRNA expression and activates NF-kappaB and the IFN-beta promoter in a TRIF-dependent manner. dsRNA also induces an early (1 h) and sustained increase in IFN-beta mRNA expression, and blocking IFN-beta with a specific antibody partially prevents PIC plus IFN-gamma-induced beta-cell death. On the other hand, dsRNA plus IFN-gamma does not induce apoptosis in INS-1E cells, and expression of TLR3 and type I IFNs mRNAs is not detected in these cells. Of note, disruption of the STAT-1 signaling pathway protects beta-cells against dsRNA plus IFN-gamma-induced beta-cell apoptosis. This study suggests that dsRNA plus IFN-gamma triggers beta-cell apoptosis by two complementary pathways, namely TLR3-TRIF-NF-kappaB and STAT-1.  相似文献   

13.
The main function of dendritic cells (DCs) is to induce adaptive immune response through Ag presentation and specific T lymphocyte activation. However, IFN-alpha- or IFN-gamma-stimulated CD11c+ blood DCs and IFN-beta-stimulated monocyte-derived DCs were recently reported to express functional TNF-related apoptosis-inducing ligand (TRAIL), suggesting that DCs may become cytotoxic effector cells of innate immunity upon appropriate stimulation. In this study, we investigate whether dsRNA and CD40 ligand (CD40L), that were characterized as potent inducers of DC maturation, could also stimulate or modulate DC cytotoxicity toward tumoral cells. We observed that dsRNA, but not CD40L, is a potent inducer of TRAIL expression in human monocyte-derived DCs. As revealed by cytotoxicity assays, DCs acquire the ability to kill tumoral cells via the TRAIL pathway when treated with dsRNA. More precisely, dsRNA is shown to induce IFN-beta synthesis that consecutively mediates TRAIL expression by the DCs. In contrast, we demonstrate that TRAIL expression in dsRNA- or IFN-alpha-treated DCs is potently inhibited after CD40L stimulation. Unexpectedly, CD40L-activated DCs still developed cytotoxicity toward tumoral cells. This latter appeared to be partly mediated by TNF-alpha induction and a yet unidentified pathway. Altogether, these results demonstrate that dsRNA and CD40L, that were originally characterized as maturation signals for DCs, also stimulate their cytotoxicity that is mediated through TRAIL-dependent or -independent mechanisms.  相似文献   

14.
15.
PolyI:C, a synthetic double-stranded (ds)RNA, and viruses act on cells to induce IFN-beta which is a key molecule for anti-viral response. Although dsRNA is a virus-specific signature and a ligand for human Toll-like receptor 3 (TLR3), largely uncharacterized multiple pathways associate virus-mediated IFN-beta induction. Here, we demonstrated that laboratory-adapted but not wild-type strains of measles virus (MV) up-regulated TLR3 expression both in dendritic cells and epithelial cell line A549. The kinetics experiments with the laboratory MV strain revealed that TLR3 was induced late compared to IFN-beta and required new protein synthesis. Furthermore, neutralizing antibodies against IFN-beta or IFNAR (Interferon-alpha/beta receptor) suppressed MV-induced TLR3 induction, indicating that type I IFN, IFN-alpha/beta, is critical for MV-mediated TLR3 induction. Yet, a recently identified virus-inducible IFN, the IFN-lambda, did not contribute to TLR3 expression. A virus-responsive element that up-regulates TLR3 was identified in the TLR3-promoter region by reporter gene experiments. The ISRE, a recently reported site for IFN-beta induction, but not STAT binding site, located around -30bp of TLR3 promoter responded to MV to induce TLR3 expression. This further indicates the importance of type I IFN for TLR3 up-regulation in the case of viral infection. In HeLa and MRC5 cells, augmented production of IFN-beta was observed in response to dsRNA when TLR3 had been induced beforehand. Thus, the MV-induced expression of TLR3 may reflect amplified IFN production that plays a part in host defense to viral infection.  相似文献   

16.
17.
Toll-like receptors are a family of pattern-recognition receptors that contribute to the innate immune response. Toll-like receptor 3 (TLR3) signals in response to foreign, endogenous and synthetic ligands including viral dsRNA, bacterial RNA, mitochondrial RNA, endogenous necrotic cell mRNA and the synthetic dsRNA analog, poly(I:C). We have generated a monoclonal antibody (mAb CNTO2424) that recognizes the extracellular domain (ECD) of human TLR3 in a conformation-dependent manner. CNTO2424 down-regulates poly(I:C)-induced production of IL-6, IL-8, MCP-1, RANTES, and IP-10 in human lung epithelial cells. In addition, mAb CNTO2424 was able to interfere with the known TLR3-dependent signaling pathways, namely NF-κB, IRF-3/ISRE, and p38 MAPK. The generation of this neutralizing anti-TLR3 mAb provides a unique tool to better understand TLR3 signaling and potential cross-talk between TLR3 and other molecules.  相似文献   

18.
19.
Mammalian Toll-like receptors (TLRs) are required for cell activation by bacterial lipoproteins (bLP) and LPS. Stimulation of monocytes with bLP and LPS results in a TLR-dependent induction of immunomodulatory genes leading to the production of pro-inflammatory cytokines. In this paper, we compared the expression and response of TLRs on monocytes and dendritic cells (DC). TLR2, but not TLR4, was detected on peripheral blood monocytes and DC, in lymphoid tissue CD1alpha+ DC as well as on in vitro monocyte-derived DC. Upon stimulation with bLP or LPS, monocytes produced IL-12 and IL-10 at similar levels, whereas monocyte-derived DC produced comparable levels of IL-12, but little IL-10. Greater than 90% of the bLP-induced production of IL-12 was blocked by anti-TLR2 mAb. Thus, DC express TLR2 and activation of this receptor by bLP provides an innate mechanism by which microbial pathogens preferentially activate cell-mediated immunity.  相似文献   

20.
Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs). Immature DCs (iDCs) are situated in the periphery where they capture pathogen. Subsequently, they migrate as mature DCs (mDCs) to draining lymph nodes to activate T cells. CCR7 and CCL21 contribute to the migratory capacity of the DC, but it is not completely understood what molecular requirements are involved. Here we demonstrate that monocyte-derived DCs dramatically change ST8Sia IV expression during maturation, leading to the generation of polysialic acid (polySia). PolySia expression is highly upregulated after 2 days Toll-like receptor-4 (TLR4) triggering. Surprisingly, only immunogenic and not tolerogenic mDCs upregulated polySia expression. Furthermore, we show that polySia expression on DCs is required for CCL21-directed migration, whereby polySia directly captures CCL21. Corresponding to polySia, the expression level of CCR7 is maximal two days after TLR4 triggering. In contrast, although TLR agonists other than LPS induce upregulation of CCR7, they achieve only a moderate polySia expression. In situ we could detect polySia-expressing APCs in the T cell zone of the lymph node and in the deep dermis. Together our results indicate that prolonged TLR4 engagement is required for the generation of polySia-expressing DCs that facilitate CCL21 capture and subsequent CCL21-directed migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号