首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To define the inhibitory requirements of mammalian collagenase, several N-substituted amide and peptide derivatives of the mercaptomethyl analogue of leucine, 2-[(R,S)mercaptomethyl]-4-methylpentanoic acid (H psi[SCH2]-DL-leucine), were synthesized and tested as inhibitors of pig synovial collagenase with soluble type I collagen as substrate. H psi[SCH2]-DL-leucine (IC50 = 320 microM) was about 10 times more potent than the beta-mercaptomethyl compound, N-acetylcysteine. The amide of H psi[SCH2]-DL-leucine was six times more potent than the parent thiol acid. Aliphatic N-substituted amides were less potent than the unsubstituted amide, whereas the N-benzyl amide was slightly more potent. Dipeptides, particularly those with an aromatic group at P2', were up to 20-fold more potent, while tripeptides with an aromatic L-amino acid at P2' and Ala-NH2 at P3' were up to 2200 times more potent than H psi[SCH2]-DL-leucine. The resolved diastereomers of H psi[SCH2]-DL-Leu-Phe-Ala-NH2 inhibited by 50% at 0.3 and 0.04 microM, respectively. The most potent inhibitor synthesized, an isomer of H psi[SCH2]-DL-Leu-L-3-(2'-naphthyl)alanyl-Ala-NH2, exhibited an IC50 of 0.014 microM, a value about 300 times less than similar thiol-based analogues of the P'-cleavage sequence of type I collagen, H psi[SCH2]-DL-Leu-Ala-Gly-Gln-. These structure-function studies establish within the present series of compounds that the most effective inhibitors of mammalian collagenase are not closely related to the P2'-P3' elements of the cleavage site of the natural substrate but rather have an aromatic group at the P2' position and Ala-NH2 at the P3' position.  相似文献   

2.
Porcine liver aminopeptidase B[EC 3.4.11.6] is highly specific for hydrolysis of beta-naphthylamides of basic L-amino acids; the Km values for L-arginine beta-naphthylamide and L-lysine beta-naphthylamide were 0.035 and 0.12 mM, respectively. The enzyme was inhibited by various alpha-amino acids. Among basic amino acids, L-homoarginine and L-arginine were the most potent inhibitors, L-lysine and L-norarginine (alpha-amino-gamma-guanidinobutyric acid) being less inhibitory. Hydrophobic amino acids also inhibited the enzyme competitively. This suggests that there is a hydrophobic region that binds the side chain of the substrates or inhibitors in the specificity site of the enzyme. Studies on the inhibitions by L-arginine derivatives showed that blocking of the alpha-carboxyl or the alpha-amino group reduced the inhibitory effect of L-arginine. Porcine liver aminopeptidase B was not inhibited by puromycin, whereas bestatin inhibited the enzyme competitively with a Ki value of 1.4 X 10(-8) M. This enzyme had no kinin-converting activity.  相似文献   

3.
Mechanistic analyses of nuclear pre-mRNA splicing by the spliceosome and group II intron self-splicing provide insight into both the catalytic strategies of splicing and the evolutionary relationships between the different splicing systems. We previously showed that 3'-sulfur substitution at the 3' splice site of a nuclear pre-mRNA has no effect on splicing. We now report that 3'-sulfur substitution at the 3' splice site of a nuclear pre-mRNA causes a switch in metal specificity when the second step of splicing is monitored using a bimolecular exon-ligation assay. This suggests that the spliceosome uses a catalytic metal ion to stabilize the 3'-oxyanion leaving group during the second step of splicing, as shown previously for the first step. The lack of a metal-specificity switch under cis splicing conditions indicates that a rate-limiting conformational change between the two steps of splicing may mask the subsequent chemical step and the metal-specificity switch. As the group II intron, a true ribozyme, uses identical catalytic strategies for splicing, our results strengthen the argument that the spliceosome is an RNA catalyst that shares a common molecular ancestor with group II introns.  相似文献   

4.
Pentamidine inhibits in vitro splicing of nuclear group I introns from rRNA genes of some pathogenic fungi and is known to inhibit mitochondrial function in yeast. Here we report that pentamidine inhibits the self-splicing of three group I and two group II introns of yeast mitochondria. Comparison of yeast strains with different configurations of mitochondrial introns (12, 5, 4, or 0 introns) revealed that strains with the most introns were the most sensitive to growth inhibition by pentamidine on glycerol medium. Analysis of blots of RNA from yeast strains grown in raffinose medium in the presence or absence of pentamidine revealed that the splicing of seven group I and two group II introns that have intron reading frames was inhibited by the drug to varying extents. Three introns without reading frames were unaffected by the drug in vivo, and two of these were inhibited in vitro, implying that the drug affects splicing by acting directly on RNA in vitro, but on another target in vivo. Because the most sensitive introns in vivo are the ones whose splicing depends on a maturase encoded by the intron reading frames, we tested pentamidine for effects on mitochondrial translation. We found that the drug inhibits mitochondrial but not cytoplasmic translation in cells at concentrations that inhibit mitochondrial intron splicing. Therefore, pentamidine is a potent and specific inhibitor of mitochondrial translation, and this effect explains most or all of its effects on respiratory growth and on in vivo splicing of mitochondrial introns.  相似文献   

5.
6.
Aminoglycoside antibiotics inhibit several types of ribozymes, including group I introns, by displacing critical Mg2+ ions. However, they stimulate activity of the small hairpin ribozyme. We show here that aminoglycosides promote self-splicing of the Cr.psbA2 group I intron at subthreshold Mg2+ concentrations. Neomycin is the most effective of the aminoglycosides tested; it stimulates splicing of Cr.psbA2 at micromolar concentrations, and, in this respect, is >100-fold more effective than spermidine. At optimal Mg2+ for Cr.psbA2 splicing, these drugs, especially kanamycin B and tobramycin, promote GTP attack at the 3' splice-site. Kinetic analysis suggests that this is due to an alternatively folded state of the ribozyme that is induced, or stabilized, by aminoglycosides. A similar effect is observed at high Mg2+ concentrations. Comparing the effects of structurally related aminoglycosides indicates that splicing promotion is more sensitive to drug structure than misfolding and occurs at lower drug concentrations. These data show that aminoglycosides can promote biochemical activities of a large ribozyme by acting as a Mg2+ mimic. The results also underscore the functional diversity of group I introns in nature.  相似文献   

7.
Subgenomic regions of hepatitis delta virus (HDV) RNA contains ribozyme whose activities are important to viral life cycles and depend on a unique pseudoknot structure. To explore the characters of HDV ribozyme, antibiotics of the aminoglycoside, which has been shown inhibiting self-splicing of group I intron and useful in elucidating its structure, were tested for their effect on HDV genomic ribozyme. Aminoglycosides, including tobramycin, netromycin, neomycin and gentamicin effectively inhibited HDV genomic ribozyme self-cleavage in vitro at a concentration comparable to that inhibiting group I intron self-splicing. The extent of inhibition depended upon the concentration of magnesium ion. Chemical modification mapping of HDV ribozyme RNA indicated that the susceptibility of nucleotide 703 to the modifying agent was enhanced in the presence of tobramycin, suggesting a conformational shift of HDV ribozyme, probably due to an interaction with the aminoglycoside. Finally, we examined the effect of aminoglycoside on HDV cleavage and replication in cell lines, however, none of the aminoglycoside effective in vitro exerted suppressive effects in vivo. Our results represented as an initial effort in utilizing aminoglycoside to probe the structure of HDV ribozyme and to compare its reaction mechanism with those of other related ribozymes.  相似文献   

8.
9.
10.
Z-Val-, Z-Pro-, Z-Leu-Leu-, and Z-Leu-Pro-lysinals and BZ-DL-lysinal were chemically synthesized and tested as novel inhibitors for Achromobacter protease I (API), a lysine-specific serine protease. Among the lysinal derivatives tested, Z-Val-lysinal was the most potent competitive inhibitor, its Ki being estimated as 6.5 nM in an esterolytic assay with Tos-Lys-OMe. In an amidolytic assay, Z-Leu-Leu-lysinal was the most potent inhibitor and the apparent mode of inhibition was non-competitive. The Kis of the other lysinal derivatives in both esterolytic and amidolytic assays were more than 10(3) times lower than that of leupeptin. Z-Val-lysinol, lacking the aldehyde group, was a poor competitive inhibitor. These results suggest that acyl-, acylaminoacyl-, and acylpeptidyllysinals function as a transition-state inhibitor for Achromobacter protease I.  相似文献   

11.
We have recently described an RNA-only gene regulation system for mammalian cells in which inhibition of self-cleavage of an mRNA carrying ribozyme sequences provides the basis for control of gene expression. An important proof of principle for that system was provided by demonstrating the ability of one specific small molecule inhibitor of RNA self-cleavage, toyocamycin, to control gene expression in vitro and vivo. Here, we describe the development of the high-throughput screening (HTS) assay that led to the identification of toyocamycin and other molecules capable of inhibiting RNA self-cleavage in mammalian cells. To identify small molecules that can serve as inhibitors of ribozyme self-cleavage, we established a cell-based assay in which expression of a luciferase (luc) reporter is controlled by ribozyme sequences, and screened 58,076 compounds for their ability to induce luciferase expression. Fifteen compounds able to inhibit ribozyme self-cleavage in cells were identified through this screen. The most potent of the inhibitors identified were toyocamycin and 5-fluorouridine (FUR), nucleoside analogs carrying modifications of the 7-position and 5-position of the purine or pyrimidine bases. Individually, these two compounds were able to induce gene expression of the ribozyme-controlled reporter approximately 365-fold and 110-fold, respectively. Studies of the mechanism of action of the ribozyme inhibitors indicate that the compounds must be incorporated into RNA in order to inhibit RNA self-cleavage.  相似文献   

12.
13.
Previous work on group I introns has suggested that a central base triple might be more important for the first rather than the second step of self-splicing, leading to a model in which the base triple undergoes a conformational change during self-splicing. Here, we use the well-characterized L-21 ScaI ribozyme derived from the Tetrahymena group I intron to probe the effects of base-triple disruption on individual reaction steps. Consistent with previous results, reaction of a ternary complex mimicking the first chemical step in self-splicing is slowed by mutations in this base triple, whereas reaction of a ternary complex mimicking the second step of self-splicing is not. Paradoxically, mechanistic dissection of the base-triple disruption mutants indicates that active site binding is weakened uniformly for the 5'-splice site and the 5'-exon analog, mimics for the species bound in the first and second step of self-splicing. Nevertheless, the 5'-exon analog remains bound at the active site, whereas the 5'-splice site analog does not. This differential effect arises despite the uniform destabilization, because the wild-type ribozyme binds the 5'-exon analog more strongly in the active site than in the 5'-splice site analog. Thus, binding into the active site constitutes an additional barrier to reaction of the 5'-splice site analog, but not the 5'-exon analog, resulting in a reduced reaction rate constant for the first step analog, but not the second step analog. This threshold model explains the self-splicing observations without the need to invoke a conformational change involving the base triple, and underscores the importance of quantitative dissection for the interpretation of effects from mutations.  相似文献   

14.
The malarial parasite Plasmodium falciparum encodes for an alpha-carbonic anhydrase (CA) enzyme possessing catalytic properties distinct of that of the human host, which was only recently purified. A series of aromatic sulfonamides, most of which were Schiff's bases derived from sulfanilamide/homosulfanilamide/4-aminoethylbenzenesulfonamide and substituted-aromatic aldehydes, or ureido-substituted such sulfonamides, were investigated for in vitro inhibition of the malarial parasite enzyme (pfCA) and the growth of P. falciparum. Several inhibitors with affinity in the micromolar range (K(I)'s in the range of 0.080-1.230 microM) were detected, whereas the most potent such derivatives were the clinically used sulfonamide CA inhibitor acetazolamide, and 4-(3,4-dichlorophenyl-ureidoethyl)-benzenesulfonamide, which showed an inhibition constant of 80 nM against pfCA, being four times more effective an inhibitor as compared to acetazolamide (K(I) of 315 nM). The lipophilic 4-(3,4-dichlorophenylureido-ethyl)-benzenesulfonamide was also an effective in vitro inhibitor for the growth of P. falciparum (IC50 of 2 microM), whereas acetazolamide achieved the same level of inhibition at 20 microM. This is the first study proving that antimalarials possessing a novel mechanism of action can be obtained, by inhibiting a critical enzyme for the life cycle of the parasite. Indeed, by inhibiting pfCA, the synthesis of pyrimidines mediated by carbamoylphosphate synthase is impaired in P. falciparum but not in the human host. Sulfonamide CA inhibitors have the potential for the development of novel antimalarial drugs.  相似文献   

15.
Abstract: We report the effect of papaverine, tetrahydropapaverine, laudanosine, dimethoxyphenylethylamine, dopamine, and its metabolites on mitochondrial respiration and activities of the enzymes in the electron transfer complexes, as mitochondrial toxins may be implicated in the etiology and the pathogenesis of Parkinson's disease. Papaverine was the most potent inhibitor of complex I and NADH-linked mitochondrial respiration among the compounds tested next to rotenone. Tetrahydropapaverine, dimethoxyphenylethylamine, and laudanosine also inhibited NADH-linked mitochondrial respiration and complex I activity in this order. Dopamine and its metabolites showed either no inhibition or only very weak inhibition. Compounds with dimethoxy residues in the phenyl ring were associated with more potent inhibition of complex I than those without. Our results warrant further studies on these and some related compounds as candidate neurotoxins causing Parkinson's disease.  相似文献   

16.
Dème E  Nolte A  Jacquier A 《Biochemistry》1999,38(10):3157-3167
The splicing process catalyzed by group II intron ribozymes follows the same two-step pathway as nuclear pre-mRNA splicing. In vivo, the first splicing step of wild-type introns is a transesterification reaction giving rise to a branched lariat intron-3'-exon intermediate characteristic of this splicing mode. In the wild-type introns, the ribozyme core and the substrate intron-exon junctions are carried by the same precursor molecule, making it difficult to distinguish between RNA folding and catalysis under normal splicing reactions. To characterize the catalytic step of the first transesterification reaction, we studied the reversal of this reaction, reverse branching. In this reverse reaction, the excised lariat intron and the substrate 5'-exon can be preincubated and folded separately, allowing the measure of the catalytic rate of the reaction. To measure the catalytic rate of the second splicing step, purified lariat intron-3'-exon intermediate molecules were preincubated and folded prior to the addition of 5'-exon. Conditions could be found where chemistry appeared rate limiting for both catalytic steps. Study of the metal ion requirements under these conditions resulted in the unexpected finding that, for the intron studied, substitution of magnesium ions by manganese ions enhanced the rate of the first transesterification reaction by two orders of magnitude but had virtually no effect on the second transesterification reaction or the 5' splice site cleavage by hydrolysis. Finally, the catalytic rates measured under optimal conditions for both splicing steps were faster by three orders of magnitude in the branching pathway than in the hydrolytic pathway.  相似文献   

17.
18.
Johansen S  Einvik C  Nielsen H 《Biochimie》2002,84(9):905-912
The group I-like ribozyme GIR1 is a unique example of a naturally occurring ribozyme with an evolved biological function. GIR1 generates the 5'-end of a nucleolar encoded messenger RNA involved in intron mobility. GIR1 is found as a cis-cleaving ribozyme within two very different rDNA group I introns (twin-ribozyme introns) in distantly related organisms. The Didymium GIR1 (DiGIR1) and Naegleria GIR1 (NaGIR1) share fundamental features in structural organization and reactivity, and display significant differences when compared to the related group I splicing ribozymes. GIR1 lacks the characteristic P1 segment present in all group I splicing ribozymes, it has a novel core organization, and it catalyses two site-specific hydrolytic cleavages rather than splicing. DiGIR1 and NaGIR1 appear to have originated from eubacterial group I introns in order to fulfil a common biological challenge: the expression of a protein encoding gene in a nucleolar context.  相似文献   

19.
The yeast DEAD-box protein Mss116p functions as a general RNA chaperone in splicing mitochondrial group I and group II introns. For most of its functions, Mss116p is thought to use ATP-dependent RNA unwinding to facilitate RNA structural transitions, but it has been suggested to assist in the folding of one group II intron (aI5γ) primarily by stabilizing a folding intermediate. Here we compare three aI5γ constructs: one with long exons, one with short exons, and a ribozyme construct lacking exons. The long exons result in slower splicing, suggesting that they misfold and/or stabilize nonnative intronic structures. Nevertheless, Mss116p acceleration of all three constructs depends on ATP and is inhibited by mutations that compromise RNA unwinding, suggesting similar mechanisms. Results of splicing assays and a new two-stage assay that separates ribozyme folding and catalysis indicate that maximal folding of all three constructs by Mss116p requires ATP-dependent RNA unwinding. ATP-independent activation is appreciable for only a subpopulation of the minimal ribozyme construct and not for constructs containing exons. As expected for a general RNA chaperone, Mss116p can also disrupt the native ribozyme, which can refold after Mss116p removal. Finally, using yeast strains with mitochondrial DNA containing only the single intron aI5γ,? we show that Mss116p mutants promote splicing in vivo to degrees that correlate with their residual ATP-dependent RNA-unwinding activities. Together, our results indicate that, although DEAD-box proteins play multiple roles in RNA folding, the physiological function of Mss116p in aI5γ splicing includes a requirement for ATP-dependent local unfolding, allowing the conversion of nonfunctional RNA structure into functional RNA structure.  相似文献   

20.
A number of antibiotics have been reported to disturb the decoding process in prokaryotic translation and to inhibit the function of various natural ribozymes. We investigated the effect of several antibiotics on in vitro splicing of a eukaryotic nuclear pre-mRNA (beta-globin). Of the eight antibiotics studied, erythromycin, Cl-tetracycline and streptomycin were identified as splicing inhibitors in nuclear HeLa cell extract. The K(i) values were 160, 180 and 230 microm, respectively. Cl-tetracycline-mediated and streptomycin-mediated splicing inhibition were in the molar inhibition range for hammerhead and human hepatitis delta virus ribozyme self-cleavage (tetracycline), of group-I intron self-splicing (streptomycin) and inhibition of RNase P cleavage by some aminoglycosides. Cl-tetracycline and the aminocyclitol glycoside streptomycin were found to have an indirect effect on splicing by unspecific binding to the pre-mRNA, suggesting that the inhibition is the result of disturbance of the correct folding of the pre-mRNA into the splicing-compatible tertiary structure by the charged groups of these antibiotics. The macrolide, erythromycin, the strongest inhibitor, had only a slight effect on formation of the presplicing complexes A and B, but almost completely inhibited formation of the splicing-active C complex by binding to nuclear extract component(s). This results in direct inhibition of the second step of pre-mRNA splicing. To our knowledge, this is the first report on specific inhibition of nuclear splicing by an antibiotic. The functional groups involved in the interaction of erythromycin with snRNAs and/or splicing factors require further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号