首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The homogeneity of voltage clamp control in small bundles of frog atrial tissue under double sucrose-gap voltage clamp conditions was assessed by intracellular microelectrode potential measurements from cells in the test node region. The microelectrode potential measurements demonstrated that (1) good voltage control of the impaled cell existed in the absence of the excitatory inward currents (e.g., during small depolarizing clamp pulses of 10-15 mV), (2) voltage control of the impaled cell was lost during either the fast or slow excitatory inward currents, and (3) voltage control of the impaled cell was regained following the inward excitatory currents. Under nonvoltage clamp conditions the transgap recorded action potential had a magnitude and waveform similar to the intracellular microelectrode recorded action potentials from cells in the test node. Transgap impedance measured with a sine-wave voltage of 1,000 Hz was about 63% of that measured either by a sine-wave voltage of 10 Hz or by an action potential method used to determine the longitudinal resistance through the sucrose-gap region. The action potential data in conjunction with the impedance data indicate that the extracellular resistance (Rs) through the sucrose gap is very large with respect to the longitudinal intracellular resistance (Ri); the frequency dependence of the transgap impedance suggests that at least part of the intracellular resistance is paralleled by a capacitance. The severe loss of spatial voltage control during the excitatory inward current raises serious doubts concerning the use of the double sucrose-gap technique to voltage clamp frog atrial muscle.  相似文献   

2.
The double-microelectrode voltage clamp technique was applied to small spheroidal aggregates of heart cells from 7-d chick embryos. A third intracellular electrode was sometimes used to monitor spatial homogeneity. On average, aggregates were found to deviate from isopotentiality by 12% during the first 3--5 ms of large depolarizing voltage steps, when inward current was maximal, and by less than 3% thereafter. Two components of inward current were recorded: (a) a fast, transient current associated with the rapid upstroke of the action potential, which was abolished by tetrodotoxin (TTX); and (b) a slower inward current related to the plateau, which was not affected by TTX but was blocked by D600. The magnitudes, kinetics, and voltage dependence of these two inward currents and a delayed outward current were similar to those reported for adult cardiac preparations. From a holding potential of -60 mV, the peak fast component at the point of maximal activation (-20 mV) was -185 microA/cm2. This value was about seven times greater than the maximal slow component which peaked at 0 mV. The ratio of rate constants for the decay of the two currents was between 10:1 and 30:1.  相似文献   

3.
Characteristics are reported for electrical activity of adult rat cardiomyocytes in long-term primary culture. Cells in vitro for 12 to 28 days have mean membrane potential of -53 mV, are electrically excitable, and some are spontaneously contractile. The action potential of these cells has a slow rate of depolarization and is abolished by methoxyverapamil (D-600) but not by tetrodotoxin (TTX). When cells are hyperpolarized by passage of an inward current, spontaneous action potentials cease and action potentials evoked by depolarizing pulses are then TTX sensitive. Fetal bovine serum is a constituent of the culture medium. Its temporary removal causes spontaneous contractility to cease but the cells remain electrically excitable.  相似文献   

4.
Single cells were trypsin-dispersed from blood vessels (great vessels near the heart and mesenteric vessels) of 10–20 day chick embryos, and induced to reaggregate into small spheres (0.1–0.5 mm ) either by gyration or by plating on cellophane. Many reaggregates contracted spontaneously or in response to electrical stimulation during culture periods of up to 6 weeks. When the spherical reaggregates were allowed to adhere to a glass substrate, cells emigrated from the spheres to form aprons of monolayered cells which continued to contract. Thick and thin myofilaments (mean diameters of 146 and 65 Å, respectively) were observable in a large fraction of cells studied in electron micrographs. Vascular smooth muscle (VSM) cells were identified in the reaggregates by recording resting potentials of −40 to −60 mV, and by action potential generation. The action potentials were preceded by pacemaker potentials, had slow rates of rise (<20 V/sec), and were insensitive to tetrodotoxin (TTX). Although the action potentials depend on an inward slow current, D-600 did not block the action potentials of the VSM cells. Reaggregates of atrial cells, produced at the same time for comparison, had larger resting potentials (up to −80 mV), less automaticity, fast rates of rise (mean of about 85 V/sec), and complete TTX sensitivity, thus indicating dependence on fast Na+ channels. These findings indicate that identifiable VSM cells can be successfully maintained in primary culture for several weeks, and these cells retain electrical and contractile properties similar to those of smooth muscle cells in intact adult blood vessels. This preparation provides a convenient system for electrophysiological and pharmacological studies of VSM cells.  相似文献   

5.
We recorded transmembrane potential in whole cell recording mode from small clusters (2-4 cells) of spontaneously beating 7-day embryonic chick ventricular cells after 1-3 days in culture and investigated effects of the blockers D-600, diltiazem, almokalant, and Ba2+. Electrical activity in small clusters is very different from that in reaggregates of several hundred embryonic chick ventricular cells, e.g., TTX-sensitive fast upstrokes in reaggregates vs. TTX-insensitive slow upstrokes in small clusters (maximum upstroke velocity approximately 100 V/s vs. approximately 10 V/s). On the basis of our voltage- and current-clamp results and data from the literature, we formulated a Hodgkin-Huxley-type ionic model for the electrical activity in these small clusters. The model contains a Ca2+ current (ICa), three K+ currents (IKs, IKr, and IK1), a background current, and a seal-leak current. ICa generates the slow upstroke, whereas IKs, IKr, and IK1 contribute to repolarization. All the currents contribute to spontaneous diastolic depolarization, e.g., removal of the seal-leak current increases the interbeat interval from 392 to 535 ms. The model replicates the spontaneous activity in the clusters as well as the experimental results of application of blockers. Bifurcation analysis and simulations with the model predict that annihilation and single-pulse triggering should occur with partial block of ICa. Embryonic chick ventricular cells have been used as an experimental model to investigate various aspects of spontaneous beating of cardiac cells, e.g., mutual synchronization, regularity of beating, and spontaneous initiation and termination of reentrant rhythms; our model allows investigation of these topics through numerical simulation.  相似文献   

6.
Gonadotropin-releasing hormone (GnRH) neurons exhibit at least two intrinsic modes of action potential burst firing, referred to as parabolic and irregular bursting. Parabolic bursting is characterized by a slow wave in membrane potential that can underlie periodic clusters of action potentials with increased interspike interval at the beginning and at the end of each cluster. Irregular bursting is characterized by clusters of action potentials that are separated by varying durations of interburst intervals and a relatively stable baseline potential. Based on recent studies of isolated ionic currents, a stochastic Hodgkin-Huxley (HH)-like model for the GnRH neuron is developed to reproduce each mode of burst firing with an appropriate set of conductances. Model outcomes for bursting are in agreement with the experimental recordings in terms of interburst interval, interspike interval, active phase duration, and other quantitative properties specific to each mode of bursting. The model also shows similar outcomes in membrane potential to those seen experimentally when tetrodotoxin (TTX) is used to block action potentials during bursting, and when estradiol transitions cells exhibiting slow oscillations to irregular bursting mode in vitro. Based on the parameter values used to reproduce each mode of bursting, the model suggests that GnRH neurons can switch between the two through changes in the maximum conductance of certain ionic currents, notably the slow inward Ca2+ current I s, and the Ca2+ -activated K+ current I KCa. Bifurcation analysis of the model shows that both modes of bursting are similar from a dynamical systems perspective despite differences in burst characteristics.  相似文献   

7.
Intracellular recordings were obtained from rat hippocampal neurons during the microiontophoretic ejection of the stereoisomers of cis- and trans-1-amino-1,3-cyclopentane dicarboxylate into the dendritic region (stratum radiatum) of the impaled cells. L-(+)-cis-1-Amino-1,3-cyclopentane dicarboxylate, D(+)-trans-1-amino-1,3-cyclopentane dicarboxylate, and L-(-)-trans-1-amino-1,3-cyclopentane dicarboxylate all evoked patterns of excitation resembling that elicited by kainate. All of these responses were unaffected by D-(-)-2-amino-5-phosphonovalerate but were antagonized at comparable currents by kynurenate. The excitation produced by D-(-)-cis-1-amino-1,3-cyclopentane dicarboxylate was similar to that evoked by N-methyl-D-aspartate. At low ejection currents a slow depolarization triggered rhythmic burst firing, each burst consisting of a depolarizing shift in membrane potential upon which were superimposed four to five action potentials. These responses were antagonized both by D-(-)-2-amino-5-phosphonovalerate and by kynurenate. The results are discussed with respect to the conformational requirements considered to be necessary for interaction at the kainate and N-methyl-D-aspartate receptors on CA1 pyramidal neurones. It is important to note that the isopropylene side chain of kainate is absent from the 1-amino-1-3-cyclopentane dicarboxylate molecule.  相似文献   

8.
The ionic currents of smooth muscle cells isolated from the ctenophore Mnemiopsis were examined by using conventional two-electrode voltage clamp and whole-cell patch clamping methods. Several separable currents were identified. These include: (1) a transient and (2) a steady-state voltage-activated inward current; both are tetrodotoxin (TTX) and saxitoxin (STX) insensitive, partly reduced by decreasing external Ca2+ or Na+ or by addition of 5 mM Co2+, D-600 or verapamil and are totally blocked with 5 mM Cd2+; (3) an early, transient, cation-dependent, outward K+ current (IKCa/Na); (4) a transient, voltage-activated, outward K+ current provisionally identified as IA; (5) a delayed, steady-state, voltage-activated outward K+ current (IK) and (6) a late, transient, outward K+ current which is blocked by Cd2+ and evident only during long voltage pulses. Despite their phylogenic origin, most of these currents are similar to currents identified in many vertebrate smooth and cardiac muscle preparations, and other excitable cells in higher animals.  相似文献   

9.
The effects of the calcium channel blocker D-600 on the cation channels activated by acetylcholine (ACh) was studied in voltage-clamped Aplysia neurons by voltage-jump relaxation analysis. D-600 blocked the steady-state ACh current in a highly voltage-dependent manner, the degree of antagonism increasing with membrane hyperpolarization. In the presence of D-600 the current relaxations following hyperpolarizing command steps became biphasic. The time constants of ACh-induced current relaxations (tau f), which approximate the mean channel lifetime, were reduced in a voltage-dependent manner, the degree of reduction of tau f increasing with increasing membrane potential. In addition to the acceleration of tau f, a slow, inverse kinetic component (tau s) of the relaxation appeared in the presence of D-600. The rate of this inverse kinetic component was accelerated either by increasing the agonist or antagonist dose or by increasing the membrane potential. These results suggest that D-600 acts to antagonize the acetylcholine response through a blockade of the open state of the transmitter-activated cation channel. Possible kinetic schemes for this interaction are discussed.  相似文献   

10.
Plateau and pacemaker currents from tissue cultured clusters of embryonic chick heart cells were studied in the time domain, using voltage-clamp steps, and in the frequency domain, using a wide-band noise input superimposed on a steady holding voltage. In the presence of tetrodotoxin to block the sodium channel, a depolarizing voltage step into the plateau range elicited: (a) a rapid (approximately equal to 2 ms) activation of the slow inward current; (b) a subsequent slower (approximately equal to 25 ms) decline in the slow inward current; and (c) activation of a very slow (5 to 10 s) outward current. Impedance studies in this voltage range could clearly resolve two voltage-dependent processes, which appeared to correspond to points b and c above because of their voltage dependence, pharmacology, and time constants. A correlate of point a was also probably present but difficult to resolve owing to the fast time constant of activation for the slow inward channel. At voltages negative to -50 mV a new voltage-dependent process could be resolved, which, because of its voltage dependence and time constant, appeared to represent the pacemaker channel (also termed If or IK2). In the Appendix, linear models of voltage-dependent channels and ion accumulation/depletion are derived and these are compared with our data. Most of the above-mentioned processes could be attributed to voltage-dependent channels with kinetics similar to those observed in time domain, voltage-clamp studies. However, the frequency domain correlate of the decline of the slow inward current was incompatible with channel gating, rather, it appears accumulation/depletion of calcium may dominate the decline in this preparation.  相似文献   

11.
Isolated ventricular myocytes of 3 to 5 weeks old rats were studied under conditions of intracellular perfusion and voltage clamp. The existence of two inward sodium currents with different TTX-sensitivities and different properties was shown. The fast sodium current was more sensitive to TTX (Kd about 8 X 10(-8) mol/l). The block of the slow sodium current by TTX was less specific (Kd about 7 X 10(-6) mol/l). There was an about four fold difference in the inactivation time constants between these currents. The maximum on the I-V curve of the slow sodium current was shifted along the voltage axis by about 15 mV in the positive direction as compared with that of the fast sodium current. A slow current carried by calcium ions was observed in sodium-free solution. The kinetics and TTX-sensitivity of this current were similar to those of the slow sodium current. The amplitude of this current was 15 to 20 times lower as compared with the slow sodium current observed in Na-containing solution with 10(-6) mol/l TTX (a concentration which completely blocked the fast sodium current). It is suggested that the slow voltage-gated TTX-sensitive channels described are not highly selective and pass both sodium and calcium ions.  相似文献   

12.
Na+ currents were measured in myelinated frog nerve fibres in the presence of nanomolar concentrations of tetrodotoxin (TTX) or saxitoxin (STX) in the extracellular solution. The Na+ currents declined during a train of depolarizing pulses if the fibre was held at hyperpolarizing potentials between the pulses. At a pulse frequency of 0.8 Hz, the peak Na+ currents were reduced to 70 or 60% of the initial value in 9.3 nM TTX and 3.5 nM STX solutions, respectively. A decline of Na+ currents was also observed in two-pulse experiments. The peak Na+ current during a second test pulse did not depend on the duration (0.2 to 12 ms) of the first pulse. It decreased with increasing interval between the pulses, reached a minimum and increased again. The results are interpreted with a use-dependent blockage of Na+ channels by TTX or STX at negative holding potentials. The effects were described quantitatively, assuming a fast affinity increase of toxin receptors at Na+ channels triggered by Na+ activation followed by slow toxin binding to channels and relaxation of the receptor affinity.  相似文献   

13.
The heart of the ostracod crustacean Vargula hilgendorfii has a single intrinsic neuron that morphologically appears to innervate the myocardium. We, therefore, examined the heart activity electrophysiologically to determine whether the heartbeat is neurogenic. Each heartbeat is associated with a myocardial action potential composed of a spike potential followed by a plateau potential. The frequency of the action potential is not stable but changes successively over a wide range. The action potential is not preceded by a pacemaker potential and has an inflection in its rising phase. The myocardial cells couple electrically and fire almost simultaneously. The frequency of the action potential was unchanged by injection of depolarizing or hyperpolarizing current into the myocardium. However, slow oscillatory potentials appeared during the depolarization and its frequency was higher with increasing current intensity. Application of 1-microM tetrodotoxin (TTX) depolarized the myocardial membrane and completely prevented the action potential. During this depolarization, slow oscillatory potentials often appeared spontaneously. These results suggest that, although the myocardium has a property of conditional oscillator, the heartbeat is driven by the single cell cardiac ganglion that has both pacemaker and motor functions.  相似文献   

14.
Membrane properties of isolated mudpuppy taste cells   总被引:13,自引:3,他引:10       下载免费PDF全文
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inward currents in response to depolarizing voltage steps. Outward K+ currents activated at approximately 0 mV and increased almost linearly with increasing depolarization. The K+ current did not inactivate and was partially Ca++ dependent. One inward current activated at -40 mV, reached a peak at -20 mV, and rapidly inactivated. This transient inward current was blocked by tetrodotoxin (TTX), which indicates that it is an Na+ current. The other inward current activated at 0 mV, peaked at 30 mV, and slowly inactivated. This more sustained inward current had the kinetic and pharmacological properties of a slow Ca++ current. In addition, most taste cells had inwardly rectifying K+ currents. Sour taste stimuli (weak acids) decreased outward K+ currents and slightly reduced inward currents; bitter taste stimuli (quinine) reduced inward currents to a greater extent than outward currents. It is concluded that sour and bitter taste stimuli produce depolarizing receptor potentials, at least in part, by reducing the voltage-dependent K+ conductance.  相似文献   

15.
The effects of cholecystokinin-octapeptide (CCK-OP) and pentagastrin on electrical and motor activities of circular muscle of the canine colon were studied with the sucrose gap technique. Additional organ bath experiments were performed to further characterize the motor response to the peptides and to elucidate their site of action. The electrical activity consisted of slow waves having an initial potential followed by a plateau potential, at a regular frequency of 4.5 cycles/min. Both peptides prolonged the duration and increased the amplitude of the plateau phase of the slow waves. Concomitantly, the slow wave frequency was reduced. In addition, CCK-OP increased spiking activity. Both spiking activity and the prolonged plateau potential generated contractile activity, prolonged phasic contraction occurring with slow waves with a prolonged plateau. In organ bath experiments, both CCK-OP and pentagastrin increased the basal tone of the muscle strips and prolonged the duration of the phasic contractions. The prolongation of the duration of the contractions was not antagonized by tetrodotoxin (TTX) and atropine. CCK-OP but not pentagastrin increased the force of contractions, this action was not affected by atropine but was reduced in the presence of TTX, suggesting that the increase in force may be partially mediated by noncholinergic excitatory nerves. The increase in basal tension by the peptides was enhanced in the presence of TTX indicating that myenteric inhibitory neurones were tonically active under our experimental conditions. The results provide the electrophysiological basis for CCK-OP and pentagastrin induced changes in colonic motility.  相似文献   

16.
Trypsin-dispersed heart cells were obtained from 11-day-old chick embryos. After culture as unstirred suspensions in dimethylsulfoxide-containing medium, spherical aggregates of cells beating spontaneously and apparently synchronously for months were obtained. Two kinds of cell were characterized by electrophysiological recordings: (1) cells with a slow rate of depolarizing phase showing tetrodotoxin-resistant action potential and blocked by D 600 (‘slow’ cells); (2) cells with high value of rising phase which was strongly decreased by tetrodotoxin and in which D 600 provoked uncoupling of excitation-contraction (‘fast’ cells).Toxin II from Androctonus australis scorpion venom increased the duration of action potential, which was ascribed to a slowing down of Na+ current inactivation and enhance the maximum rate of depolarization, especially in slow cells. Effects were antagonized by tetrodotoxin in both fast and slow cells. Washing experiments confirmed the results of previous studies, namely that tetrodotoxin and scorpion toxin bind to different receptors. It is concluded that slow cells with tetrodotoxin-resistant action potential contain latent fast Na+ channels that are revealed (activated) by toxin binding to the membrane.  相似文献   

17.
We used the single-microelectrode voltage-clamp technique to record ionic currents from pancreatic beta-cells within intact mouse islets of Langerhans at 37 degrees C, the typical preparation for studies of glucose-induced "bursting" electrical activity. Cells were impaled with intracellular microelectrodes, and voltage pulses were applied in the presence of tetraethylammonium. Under these conditions, a voltage-dependent Ca2+ current (I(Cav)), containing L-type and non-L-type components, was observed. The current measured in situ was larger than that measured in single cells with whole-cell patch clamping, particularly at membrane potentials corresponding to the action potentials of beta-cell electrical activity. The temperature dependence of I(Cav) was not sufficient to account for the difference in size of the currents recorded with the two methods. During prolonged pulses, the voltage-dependent Ca2+ current measured in situ displayed both rapid and slow components of inactivation. The rapid component was Ca2+-dependent and was inhibited by the membrane-permeable Ca2+ chelator, BAPTA-AM. The effect of BAPTA-AM on beta-cell electrical activity then demonstrated that Ca2+-dependent inactivation of I(Cav) contributes to action potential repolarization and to control of burst frequency. Our results demonstrate the utility of voltage clamping beta-cells in situ for determining the roles of ion channels in electrical activity and insulin secretion.  相似文献   

18.
J Connor  L Barr    E Jakobsson 《Biophysical journal》1975,15(10):1047-1067
The electrical behavior of small single frog atrial trabeculae in the double sucrose gap has been investigated. The currents injected during voltage clamp experiments did not behave as predicted from the assumption of spatial uniformity of the voltage across a Hodgkin-Huxley membrane. Much of the difference is due to the geometrical complexities of this tissue. Nonetheless, two transient inward currents have been identified, the faster of which is blocked by tetrodotoxin (TTX). The magnitude of the slower transient varies markedly between preparations but always increases in a given preparation with increase of external calcium. The fast transient current traces, at small to intermediate depolarizations, are often marred by the presence of notches and secondary peaks due most probably to the loss of space clamp conditions. In many preparations these could be removed by reducing the current magnitude through application of a partially-blocking dose of TTX. Conversely, in the preparations whose fast transient was fully blocked by TTX, notches and secondary peaks in the slow transient could by induced through increasing calcium concentration and thereby the slow current magnitude. Previously used techniques for the measurement of the reversal potential of the fast inward transient have been shown to be invalid. In so far as they can be measured, the reversal potentials of the fast and slow inward transient are in the same neighborhood, i.e. around 120 mV from rest. The true values may be quite a bit apart. The total charge flow in the capacitive transient was measured for different sized nodes and preparations. From these data and estimates of plasma membrane area per unit trabecular volume, specific membrane capacitances of around 3 muF/cm2 were calculated for small bundles. The apparent ion current densities on this basis are approximately 1/10 of those measured in axons. The capacitive current occurring in small bundles decayed as the sum of at least three exponential functions of time. On the basis of these data and the anomalously large stable node widths, we suggest a coaxial core model of the preparation with the inner elements in series with an additional large extracellular resistance.  相似文献   

19.
Cells in the pacemaker region of toad (Bufo marinus) sinus venosus had spontaneous rhythmic action potentials. The rate of firing of action potentials, the rate of diastolic depolarization and the maximum rate of rise of action potentials were reduced by TTX (10 nm to 1 m). Currents were recorded with the whole cell, tight seal technique from cells enzymatically dissociated from this region. Cells studied were identified as pacemaker cells by their characteristic morphology, spontaneous rhythmic action potential activity that could be blocked by cobalt but not by TTX and lack of inward rectification. When calcium, potassium and nonselective cation currents (If) activated by hyperpolarization were blocked, depolarization was seen to generate transient and persistent inward currents. Both were sodium currents: they were abolished by tetrodotoxin (10 to 100 nm), their reversal potential was close to the sodium equilibrium potential and their amplitude and reversal potential were influenced as expected for sodium currents when extracellular sodium ions were replaced with choline ions. The transient sodium current was activated at potentials more positive than –40 mV while the persistent sodium current was obvious at more negative potentials. It was concluded that, in toad pacemaker cells, TTX-sensitive sodium currents contributing both to the upstroke of action potentials and to diastolic depolarization may play an important role in setting heart rate.We thank the Australian National Heart Foundation for their support. D.A.S. is an NHMRC Senior Research Officer.  相似文献   

20.
1. The cardiac pacemaker cells of the frog Caudiverbera caudiverbera are centrally located in the sinus venosus. These cells are rounded, smaller than contractile fibres and have large nuclei. 2. Intracellular recording confirmed the existence of primary and transitional pacemaker cells. 3. Action potentials from primary cells were resistant to blockade by tetrodotoxin (TTX), but were abolished by verapamil suggesting that their bioelectric activity is dependent on a slow inward current. 4. Transitional cells appeared to have two different inward currents contributing to the upstroke: a fast TTX-sensitive and a slow verapamil-sensitive current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号