首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
AOT reverse micellar system was modified with DMSO for improved esterification activity of Chromobacterium viscosum lipase (glycerol-ester hydrolase, EC 3.1.1.3). The enzymatic activity was strongly affected by the concentration of DMSO, and maximum activity was obtained at 30-40 mM. The various relevant physical parameters such as w0 (molar ratio of water to AOT), pH and reaction temperature that influence the activity of lipase were studied in order to obtain the best value and compared with those in simple AOT reverse micelles. The apparent activation energy decreased in the presence of DMSO. The stability of lipase entrapped in modified AOT systems was excellent, and the half-life was about 3.25 times than that observed in simple AOT systems at 25°C. A simple first-order deactivation model was considered to determine the deactivation rate constant. The thermodynamic stability of lipase in reverse micelles was measured by the Gibbs free energy. A fluorescence study was performed to provide information on structural changes in AOT reverse micelles which was accompanied by the addition of DMSO.  相似文献   

2.
AOT reverse micellar system was modified with DMSO for improved esterification activity of Chromobacteriumviscosum lipase (glycerol–ester hydrolase, EC 3.1.1.3). The enzymatic activity was strongly affected by the concentration of DMSO, and maximum activity was obtained at 30–40 mM. The various relevant physical parameters such as w0 (molar ratio of water to AOT), pH and reaction temperature that influence the activity of lipase were studied in order to obtain the best value and compared with those in simple AOT reverse micelles. The apparent activation energy decreased in the presence of DMSO. The stability of lipase entrapped in modified AOT systems was excellent, and the half-life was about 3.25 times than that observed in simple AOT systems at 25°C. A simple first-order deactivation model was considered to determine the deactivation rate constant. The thermodynamic stability of lipase in reverse micelles was measured by the Gibbs free energy. A fluorescence study was performed to provide information on structural changes in AOT reverse micelles which was accompanied by the addition of DMSO.  相似文献   

3.
Transesterification between triolein and stearic acid catalyzed by lipase in pressurized CO2 at 50 °C was classified into three regions according to the pressure. Below 5 MPa which was the non-solvent region, the reaction was limited in the liquid triolein phase and the reaction rate was very slow. In the near critical region, from 5 to 10 MPa, the reaction rate was maximal at 5.9 MPa because of the stabilization of the enzyme-substrate complex. In the supercritical region, above 10 MPa, the reaction rate increased with an increase in pressure reflecting the increase in solubility of substrate in supercritical CO2 © Rapid Science Ltd. 1998  相似文献   

4.
Esterification reactions of lipase in reverse micelles   总被引:2,自引:0,他引:2  
The activities of lipase from Candida cylindracea and Rhizopus delemar have been investigated in water/AOT/iso-octane reverse micellar media through the use of two esterification reactions: fatty acid-alcohol esterification and glyceride synthesis. Such media promotes the occurrence of these two lipase-catalyzed reactions due to its low water content. The effect of various parameters on the activity of lipase from C. cylindracea in reverse micelles was determined and compared to results where alternate media were employed. It was observed that the structure of the media, as dictated by the type and concentration of the substrates and products and by the water/AOT ratio, w(0), had a strong impact on enzyme activity. Strong deactivation of both typase types occurred in reverse micelles, especially in the absence of substrates and for w(0) values greater than 3.0. Glyceride synthesis was realized with lipase from R. delemar, but not with that from C. cylindracea; the temperature and concentration of substrates and water strongly dictated the reaction rate and the percent conversion.  相似文献   

5.
The continuous acidolysis of triolein and stearic acid was carried out by an immobilized lipase to elucidate the characteristics of supercritical carbon dioxide (SC-CO2) as a reaction medium. At first, an effect of temperature and pressure on the water adsorption to the immobilized lipase in the SC-CO2 was examined. Then, the continuous interesterification of triolein and stearic acid by the moist immobilized lipase was examined. The amount of water adsorption to the immobilized lipase in the supercritical carbon dioxide measured under the condition of a different temperature and pressure has been expressed by a correlation equation of Freundlich type by using relative water standardized with the solubility of water in each condition. Optimum operating conditions of the interesterification by immobilized lipase in the SC-CO2 was 323 K, 16.9 MPa and adsorbed-water concentration of 2 wt%. The production rate obtained by enzymatic acidolysis in the SC-CO2 was found to be about 0.03 mmol/h2g-immobilized enzyme, leaving 74% residual triglyceride at the optimum operating conditions.  相似文献   

6.
Reverse micelles formed by soybean lecithin in isooctane were used as a reaction medium for both the lipase-catalyzed hydrolysis as well as the synthesis of lipids. Neither reaction appears to follow Michaelis-Menten kinetics and it is suggested that the rates are diffusion controlled. The hydrolysis of para-nitrophenylpalmitate (PNPP) and, in particular, the pH-dependency of the lipase-catalyzed hydrolysis was then examined. The highest rate of reaction occurred at pHopt = 5–5.5, which was the same in water and lecithin reverse micelles, as well as in reverse micelles formed by bis(2-ethylhexyl)-sulfosuccinate (AOT) in isooctane. The dependence of the reaction rate on the water content of the micellar system was investigated for the same reaction. The maximal rate was found at an extremely low water content, i.e. at Wo = 2.2 (Wo = [H2O]/[Lecithin]). The temperature stability of the lipase in lecithin reverse micelles was also studied and found to be greater than in aqueous solutions. Studies of the dependence of the relative initial velocity on temperature have shown that the highest rate in reverse micelles is obtained at 60d`C.  相似文献   

7.
Reverse micelles are formed in apolar solvents by spontaneous aggregation of surfactants. Surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) is most often used for the reverse micellar extraction of enzymes. However, the inactivation of enzyme due to strong interaction with AOT molecules is a severe problem. To overcome this problem, the AOT/water/isooctane reverse micellar system was modified by adding short chain polyethylene glycol 400 (PEG 400). The modified AOT reverse micellar system was used to extract Mucor javanicus lipase from the aqueous phase to the reverse micellar phase. The extraction efficiency (E) increased with the increase in PEG 400 addition and the maximum E in PEG 400 modified system was twofold higher than that in the PEG 400-free system. Upon addition of PEG 400, the water activity (a(w)) of aqueous phase decreased, whereas a(w) of reverse micellar phase increased. The circular dichroism spectroscopy analysis revealed that PEG 400 changes the secondary and tertiary structure of lipase. The maximum specific activity of lipase extracted in PEG 400-modified reverse micellar system was threefold higher than that in the PEG-free system.  相似文献   

8.
The Folch-Pi proteolipid is the most abundant structural protein from the central nervous system myelin. This protein-lipid complex, normally insoluble in water, requires only a small amount of water for solubilization in reverse micelles of sodium bis (2-ethylhexyl) sulfosuccinate (AOT) in isooctane. The characterization of the proteolipid-free and proteolipid-containing micelles was undertaken by light scattering and fluorescence recovery after fringe pattern photobleaching (FRAPP) experiments. Quasi elastic light scattering (QELS) was carried out at a high (200 mM) AOT concentration, at low water-to-surfactant mole ratio (Wo = 7) and at increasing protein occupancy. Two apparent hydrodynamic radii, differing tenfold in size, were obtained from correlation functions. The smaller one (RaH = 5.2 nm) remains constant and corresponds to that measured for protein-free micelles. The larger one increases linearly with protein concentration. In contrast, FRAPP measurements of self-diffusion coefficients were found unaffected by the proteolipid concentration. Accordingly, they have been performed at constant protein/surfactant mole ratios. The equivalent RH, extrapolated to zero AOT concentration for protein-free reverse micelles (2.9 nm) and in the presence of the proteolipid (4.6 nm), do not reveal the mode of organization previously suggested by QELS measurements. The complex picture emerging from this work represents a first step in the characterization of an integral membrane protein in reverse micelles.  相似文献   

9.
Hydrolysis of triolein in AOT/isooctane reversed micelles by an sn-1,3-regioselective and a non-selective lipase were studied. Kinetics of the multistep reaction: decomposition of tri-, di- and monoacylglycerols and production of fatty acid were investigated separately. All the reactions was found to obey the Michaelis-Menten model and the apparent parameters (Michaelis-constants (Km) and maximal reaction rates (Vmax)) were determined both for non-selective and regioselective preparations.  相似文献   

10.
The enantioselective esterification of racemic ibuprofen with n-propanol by immobilized Mucor miehel lipase in supercritical carbon dioxide was studied. The enantiomeric excess of the product (eep) was 70 % at 15...20 % conversion. The enantioselectivity was faintly affected by temperature and the concentration of ibuprofen and lipase. The optimum temperature was 45 °C. The initial reaction rate increased with pressure, but enantioselectivity was not affected by pressure changes. The reaction rates in supercritical carbon dioxide at optimized conditions and in n-hexane were similar.  相似文献   

11.
The enzymatic hydrolysis of olive oil using Chromobacterium viscosum lipase B encapsulated in reversed micelles of dioctyl sodium sulfosuccinate (AOT) in isooctane was investigated in an ultrafiltration ceramic membrane reactor of tubular type, operating in a batch mode. Water concentration was found to be a critical parameter in the enzyme kinetics and hydrolysis yield of the reaction. The size of micelles, recirculation rate, and substrate concentration were found to be the major factors affecting the separation process. A correlation that enables the prediction of final conversion degrees in this bioreactor from the initial reaction conditions was established. (c) 1993 Wiley & Sons, Inc.  相似文献   

12.
The modification of reverse micellar systems composed of AOT, isooctane, water by the addition of aprotic solvents has been performed. The impact of this change on the activity, stability and kinetics of solubilized Chromobacterium viscosum lipase (glycerol-ester hydrolase, EC 3.1.1.3) was investigated. Of seven aprotic solvents tested, dimethyl sulfoxide (DMSO) was found to be most effective. It was found that lipase activity was enhanced by optimizing some relevant parameters, such as water–AOT molar ratio (W0), buffer pH and surfactant concentration. A kinetic model that considers the free substrate in equilibrium with the substrate adsorbed on the micellar surface was successfully used to deduce some kinetic parameters (Vmax, Km and Kad), and the values of Km and Kad were significantly reduced by the presence of DMSO. Higher lipase stability was found in AOT reverse micelles with DMSO compared with that in simple AOT systems with half-life of 125 and 33 days, respectively. Fluorescence spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were used to elucidate the effects of DMSO on the properties of AOT reverse micelles.  相似文献   

13.
The hydrolysis of olive oil catalyzed by Candida rugosa lipase in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane and the synthetic sodium bis(2-ethylhexyl polyoxyethylene)sulfosuccinate (MAOT)/isooctane reverse micellar systems was investigated in a polysulfone hollow fiber membrane reactor with recycle of the reaction mixture. Lipase was completely retained by the membrane while olive oil and oleic acid freely passed through. The retention of reverse micelles depended on W 0 (molar ratio of water to surfactant). At an olive oil concentration of 0.23 mol l–1 the final substrate conversion in the MAOT micellar system was about 1.4 times of that in the AOT micellar system.  相似文献   

14.
An enzymatic system for the regeneration of redox cofactors NADH and NADPH was investigated in nanostructural reverse micelles using bacterial glycerol dehydrogenase (GLD) and soluble transhydrogenase (STH). Catalytic conversion of NAD+ to NADH was realized in the sodium dioctylsulfosuccinate (AOT)/isooctane reverse micellar system harboring GLD and a sacrificial substrate, glycerol. The initial rate of NADH regeneration was enhanced by exogenous addition of ammonium sulfate into the reverse micelles, suggesting that NH4+ acts as a monovalent cationic activator. STH was successfully entrapped in the AOT/isooctane reverse micelles as well as GLD and was revealed to be capable of catalyzing the stoichiometric hydrogen transfer reaction between NADP+ and NADPH in reverse micelles. These results indicate that GLD and STH have potential for use in redox cofactor recycling in reverse micelles, which allows the use of catalytic quantities of NAD(P)H in organic media.  相似文献   

15.
The oxidation of ibuprofen with H2O2 catalysed by Horseradish peroxidase (HRP), Cl8TPPS4Fe(III)(OH2)2 and Cl8TPPS4Mn(III)(OH2)2 in AOT reverse micelles gives 2-(4'-isobutyl-phenyl)ethanol (5) and p-isobutyl acetophenone (6) in moderate yields. The reaction of ibuprofen (2) with H2O2 catalysed by HRP form carbon radicals by the oxidative decarboxylation, which on reaction with molecular oxygen to form hydroperoxy intermediate, responsible for the formation of the products 5 and 6. The yields of different oxidation products depend on the pH, the water to surfactant ratio (Wo), concentration of Cl8TPPS4Fe(III)(OH2)2 and Cl8TPPS4Mn(III)(OH2)2 and amount of molecular oxygen present in AOT reverse micelles. The formation of 2-(4'-isobutyl phenyl)ethanol (5) may be explained by the hydrogen abstraction from ibuprofen by high valent oxo-manganese(IV) radical cation, followed by decarboxylation and subsequent recombination of either free hydroxy radical or hydroxy iron(III)/manganese(III) porphyrins. The over-oxidation of 5 with high valent oxo-manganese, Mn(IV)radical cation intermediate form 6 in AOT reverse micelles by abstraction and recombination mechanism.  相似文献   

16.
The stability of a relatively hydrophobic lipase from Pseudomonas sp., solubilized in reverse micellar media or suspended in dry solvents, was studied and compared. Factors such as the enzyme-solvent interaction, enzyme environment, hydration degree of the system, interphase quality, droplet size, and water activity were studied. A mixed micellar system which stabilized the lipase is reported. In the case of simple AOT micelles, lipase destabilization with respect to water in small droplet sizes and stabilization in the biggest micelles was observed. These effects resulted from lipase penetration into the interphase of the smaller nanodroplets, and the restriction of its conformational mobility in the region of structured water of the largest micelles, respectively. Mixed micelles increased lipase stability, which was mainly related to increased droplet size. Modification with polyethylene glycol decreased lipase stability in reverse micelles, due to the greater interaction with the micellar interphase. The preparation of nanodroplets, in which native and modified lipases were 5.4 and 9.4 times, respectively, more stable than in water, is reported. In contrast to the micellar media, low water contents (low Aw values) stabilized the solid lipase suspended in organic solvent systems. Under the hydration conditions studied here, lipase stability increased when more polar solvents were used. Two alternatives were necessary to obtain similar stabilities in n-heptane as compared with polar solvents: reduction of the water content or use of a low aquaphilic support.  相似文献   

17.
Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles   总被引:2,自引:0,他引:2  
The activities of cellulases from Trichoderma reesei entrapped in three types of reverse micelles have been investigated using microcrystalline cellulose as the substrate. The reverse micellar systems are formed by nonionic surfactant Triton X-100, anionic surfactant Aerosol OT (AOT), and cationic surfactant cetyltrimethyl ammonium bromide (CTAB) in organic solvent media, respectively. The influences of the molar ratio of water to surfactant omega0, one of characteristic parameters of reverse micelles, and other environmental conditions including pH and temperature, on the enzymatic activity have been studied in these reverse micellar systems. The results obtained indicate that these three reverse micelles are more effective than aqueous systems for microcrystalline cellulose hydrolysis, and cellulases show "superactivity" in these reverse micelles compared with that in aqueous systems under the same pH and temperature conditions. The enzymatic activity decreases with the increase of omega0 in both AOT and Triton X-100 reverse micellar systems, but reaches a maximum at omega0 of 16.7 for CTAB reverse micelles. Temperature and pH also influence the cellulose hydrolysis process. The structural changes of cellulases in AOT reverse micelles have been measured by intrinsic fluorescence method and a possible explanation for the activity changes of cellulases has been proposed.  相似文献   

18.
Chromobacterium viscosum lipase, solubilized in microemulsion droplets of glycerol containing small amounts of water and stabilized by a surfactant, could catalyze the glycerolysis of triolein. Kinetic analysis of the lipase-catalyzed reaction was possible in the reversed micellar system. Among surfactants and organic solvents tested, bis(2-ethylhexyl)sodiumsulfosuccinate (AOT) and isooctane were respectively most effective, for the glycerolysis of triolein in reversed micelles. Temperature effects, pH profile, Km,app, and Vmax,app were determined. Among various chemical compounds, Fe3+, Cu2+, and Hg2+ inhibited the lipase-catalyzed glycerolysis severely. However, the glycerolysis activity was partially restorable by adding histidine or glycine to the system containing these metal ions. The glycerolysis activity was dependent on water content and maximum activity was obtained at an R value of 1.21. Higher stability of the lipase was obtained in the reversed micellar system.  相似文献   

19.
Chromobacterium viscosum lipase, solubilized in microemulsion droplets of glycerol containing small amounts of water and stabilized by a surfactant, could catalyze the glycerolysis of triolein. Kinetic analysis of the lipase-catalyzed reaction was possible in the reversed micellar system. Among surfactants and organic solvents tested, bis(2-ethylhexyl)sodiumsulfosuccinate (AOT) and isooctane were respectively most effective, for the glycerolysis of triolein in reversed micelles. Temperature effects, pH profile, Km,app, and Vmax,app were determined. Among various chemical compounds, Fe3+, Cu2+, and Hg2+ inhibited the lipase-catalyzed glycerolysis severely. However, the glycerolysis activity was partially restorable by adding histidine or glycine to the system containing these metal ions. The glycerolysis activity was dependent on water content and maximum activity was obtained at an R value of 1.21. Higher stability of the lipase was obtained in the reversed micellar system.  相似文献   

20.
The kinetics of the esterification of lauric acid by (-)menthol, catalyzed by Penicillium simplicissimum lipase, was studied in water/bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT)/isooctane microemulsions. Due to their low water content, microemulsions assist in reversing the direction of lipase activity, favoring synthetic reactions. The kinetics of this synthesis follows a Ping-Pong Bi--Bi mechanism. The values of all apparent kinetic parameters were determined. The theoretical model for the expression of enzymic activity in reverse micelles, proposed by Verhaert et al. (Verhaert, R., Hilhorst, R., Vermüe, M., Schaafsma, T. J., Veeger, C. 1990. Eur. J. Biochem. 187: 59-72) was extended to express the lipase activity in an esterification reaction involving two hydrophobic substrates in microemulsion systems. The model takes into account the partitioning of the substrates between the various phases and allows the calculation of the intrinsic kinetic constants. The experimental results showing the dependence of the initial velocity on the hydration ratio, W(o) = [H(2)O]/[AOT], of the reverse micelles, were in accordance with the theoretically predicted pattern. (c) 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号