首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Confocal fluorescence spectroscopy is a versatile method for studying dynamics and interactions of biomolecules in their native environment with minimal interference with the observed system. Analyzing coincident fluctuations induced by single molecule movement in spectrally distinct detection channels, dual-color fluorescence cross-correlation, and coincidence analysis have proven most powerful for probing the formation or cleavage of molecular bonds in real time. The similarity of the optical setup with those used for laser scanning microscopy, as well as the non-invasiveness of the methods, make them easily adaptive for intracellular measurements, to observe the association and dissociation of biomolecules in situ. However, in contrast to standard fluorescence microscopy, where multiple fluorophores can be spectrally resolved, single molecule detection has so far been limited to dual-color detection systems due to the harsh requirements on detection sensitivity. In this study, we show that under certain experimental conditions, employing simultaneous two-photon excitation of three distinct dye species, their successful discrimination indeed becomes possible even on a single molecule level. This enables the direct observation of higher order molecular complex formation in the confocal volume. The theoretical concept of triple-color coincidence analysis is outlined in detail, along with an experimental demonstration of its principles utilizing a simple nucleic acid reaction system.  相似文献   

2.
Picosecond multiphoton scanning near-field optical microscopy.   总被引:2,自引:0,他引:2       下载免费PDF全文
We have implemented simultaneous picosecond pulsed two- and three-photon excitation of near-UV and visible absorbing fluorophores in a scanning near-field optical microscope (SNOM). The 1064-nm emission from a pulsed Nd:YVO4 laser was used to excite the visible mitochondrial specific dye MitoTracker Orange CM-H2TMRos or a Cy3-labeled antibody by two-photon excitation, and the UV absorbing DNA dyes DAPI and the bisbenzimidazole BBI-342 by three-photon excitation, in a shared aperture SNOM using uncoated fiber tips. Both organelles in human breast adenocarcinoma cells (MCF 7) and specific protein bands on polytene chromosomes of Drosophila melanogaster doubly labeled with a UV and visible dye were readily imaged without photodamage to the specimens. The fluorescence intensities showed the expected nonlinear dependence on the excitation power over the range of 5-40 mW. An analysis of the dependence of fluorescence intensity on the tip-sample displacement normal to the sample surface revealed a higher-order function for the two-photon excitation compared to the one-photon mode. In addition, the sample photobleaching patterns corresponding to one- and two-photon modes revealed a greater lateral confinement of the excitation in the two-photon case. Thus, as in optical microscopy, two-photon excitation in SNOM is confined to a smaller volume.  相似文献   

3.
To understand the mechanism of GroEL-assisted protein folding, we observed the interaction of fluorescence-labeled GroEL with fluorescence-labeled substrate proteins at the single molecule level by total internal reflection fluorescence microscopy. GroEL with a A133C mutation in the equatorial domain was labeled with a fluorescent dye, tetramethylrhodamine. As substrate proteins, we used the largely denatured and partly denatured forms of bovine beta-lactoglobulin, both labeled with another fluorescent dye, Cy5. The complexes formed by GroEL with these substrates were characterized by size-exclusion gel chromatography. The recovered complexes were then observed by fluorescence microscopy. For both substrates, agreement of the fluorescent spots for tetramethylrhodamine and Cy5 indicated formation of the complex at the single molecule level. Similar observation of macroscopic binding by size-exclusion chromatography and microscopic binding by the fluorescence microscopy was done for the folding intermediate of Cy5-labeled bovine rhodanese. The fluorescence microscopy opens a new avenue for studying the interaction of GroEL with substrate proteins.  相似文献   

4.
Summary A dual laser beam excitation device for flow analysis of biological particles has been developed. The aid of this arrangement is to increase the range of fluorescent agents employed so far in quantitative and qualitative cytochemistry. Combining an argon ion and a helium-cadmium laser two color fluorescence measurements were performed employing propidium iodide as a DNA stain and fluorescamine which stains total protein in fixed cells. Energy transfer processes between the antibiotic and DNA specific dye mithramycin and propidium iodide both being bound to nuclear chromatin were analyzed. Utilization of energy transfer processes is generally discussed as a mean to extract information about the structure and conformation of nuclear chromatin in situ. The application of a crypton ion laser with three lines near 400 nm and a single line at 350 nm having a light output in each range of nearly one Watt gives the opportunity of utilizing DNA fluorochromes which have an excitation maximum in the deep blue region. DNA spectra are shown employing mithramycin, the benzimidazol derivative 33258 (Hoechst) and the indol compound DAPI which has a high DNA specifity combined with a great stability under UV illumination. By separating two focussed laser beams at their intereecting points with the liquid sample stream the trajectory of each flowing cell crosses the beams sequentially, which causes a solitary dual excitation of each cell. The advantages of a solitary excitation device compared with a simultaneous one is discussed.This work has been supported by the ministry of research and technology (FRG), contract No. 01VH015-B13MT 225a  相似文献   

5.
We report the results of microfluorometric measurements of physiological changes in optically trapped immotile Chinese hamster ovary cells (CHOs) and motile human sperm cells under continuous-wave (CW) and pulsed-mode trapping conditions at 1064 nm. The fluorescence spectra derived from the exogenous fluorescent probes laurdan, acridine orange, propidium iodide, and Snarf are used to assess the effects of optical confinement with respect to temperature, DNA structure, cell viability, and intracellular pH, respectively. In the latter three cases, fluorescence is excited via a two-photon process, using a CW laser trap as the fluorescence excitation source. An average temperature increase of < 0.1 +/- 0.30 degrees C/100 mW is measured for cells when held stationary with CW optical tweezers at powers of up to 400 mW. The same trapping conditions do not appear to alter DNA structure or cellular pH. In contrast, a pulsed 1064-nm laser trap (100-ns pulses at 40 microJ/pulse and average power of 40 mW) produced significant fluorescence spectral alterations in acridine orange, perhaps because of thermally induced DNA structural changes or laser-induced multiphoton processes. The techniques and results presented herein demonstrate the ability to perform in situ monitoring of cellular physiology during CW and pulsed laser trapping, and should prove useful in studying mechanisms by which optical tweezers and microbeams perturb metabolic function and cellular viability.  相似文献   

6.
The application of optical traps has come to the fore in the last three decades. They provide a powerful, sterile and noninvasive tool for the manipulation of cells, single biological macromolecules, colloidal microparticles and nanoparticles. An optically trapped microsphere may act as a force transducer that is used to measure forces in the piconewton regime. By setting up a well-calibrated single-beam optical trap within a fluorescence microscope system, one can measure forces and collect fluorescence signals upon biological systems simultaneously. In this protocol, we aim to provide a clear exposition of the methodology of assembling and operating a single-beam gradient force trap (optical tweezers) on an inverted fluorescence microscope. A step-by-step guide is given for alignment and operation, with discussion of common pitfalls.  相似文献   

7.
Photo-bleaching and photon saturation in flow cytometry.   总被引:2,自引:0,他引:2  
G van den Engh  C Farmer 《Cytometry》1992,13(7):669-677
In flow cytometry, small particles travel at a high speed through a bright light spot. The high light intensity at the point of measurement causes measurable photon saturation. This observation indicates that the rate at which individual dye molecules emit photons is close to the maximum emission rate. Despite the short exposure time, individual molecules may go through a few hundred excitation cycles while they are in the light beam. The absorbed light dose causes significant dye destruction. This article presents experimental procedures to determine the extent of photon saturation and photo-bleaching of dyes bound to cell nuclei in a flow cytometer. Measurements of Hoechst and propidium iodide bound to chromatin show that the amount of dye bleached per emitted photon is the same at low and high illumination intensities. This finding indicates that photon emission and dye destruction are both the result of the absorption of single excitation photons. The experimental observations allow rough estimates of the lifetime of the excited state and the lifetime of the molecule. The lifetime of the Hoechst 33258 bound to DNA is estimated to be 100 excitation-relaxation cycles. The average propidium iodide molecule lasts approximately 200 excitation-relaxation cycles. The theoretical considerations show that the optimal illumination conditions are different for bleaching and nonbleaching dyes. An optical arrangement for high precision measurements of bleaching dyes is presented.  相似文献   

8.
We have integrated single molecule fluorescence microscopy imaging into an optical tweezers set-up and studied the force extension behavior of individual DNA molecules in the presence of various YOYO-1 and YO-PRO-1 concentrations. The fluorescence modality was used to record fluorescent images during the stretching and relaxation cycle. Force extension curves recorded in the presence of either dye did not show the overstretching transition that is characteristic for bare DNA. Using the modified wormlike chain model to curve-fit the force extension data revealed a contour length increase of 6% and 30%, respectively, in the presence of YO-PRO-1 and YOYO-1 at 100 nM. The fluorescence images recorded simultaneously showed that the number of bound dye molecules increased as the DNA molecule was stretched and decreased again as the force on the complex was lowered. The binding constants and binding site sizes for YO-PRO-1 and YOYO-1 were determined as a function of the force. The rate of YO-PRO-1 binding and unbinding was found to be 2 orders of magnitude larger than that for YOYO-1. A kinetic model is proposed to explain this observation.  相似文献   

9.
Here we describe a two‐photon microscope and laser ablation setup combined with optical tweezers. We tested the setup on the fission yeast Schizosaccharomyces pombe, a commonly used model organism. We show that long‐term imaging can be achieved without significant photo‐bleaching or damage of the sample. The setup can precisely ablate sub‐micrometer structures, such as microtubules and mitotic spindles, inside living cells, which remain viable after the manipulation. Longer exposure times lead to ablation, while shorter exposures lead to photo‐bleaching of the target structure. We used optical tweezers to trap intracellular particles and to displace the cell nucleus. Two‐photon fluorescence imaging of the manipulated cell can be performed simultaneously with trapping. The combination of techniques described here may help to solve a variety of problems in cell biology, such as positioning of organelles and the forces exerted by the cytoskeleton. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
We achieve simultaneous two-photon excitation of three chromophores with distinct absorption spectra using synchronized pulses from a femtosecond laser and an optical parametric oscillator. The two beams generate separate multiphoton processes, and their spatiotemporal overlap provides an additional two-photon excitation route, with submicrometer overlay of the color channels. We report volume and live multicolor imaging of 'Brainbow'-labeled tissues as well as simultaneous three-color fluorescence and third-harmonic imaging of fly embryos.  相似文献   

11.
By using optical tweezers and a specially designed flow cell with an integrated glass micropipette, we constructed a setup similar to that of Smith et al. (Science 271:795-799, 1996) in which an individual double-stranded DNA (dsDNA) molecule can be captured between two polystyrene beads. The first bead is immobilized by the optical tweezers and the second by the micropipette. Movement of the micropipette allows manipulation and stretching of the DNA molecule, and the force exerted on it can be monitored simultaneously with the optical tweezers. We used this setup to study elongation of dsDNA by RecA protein and YOYO-1 dye molecules. We found that the stability of the different DNA-ligand complexes and their binding kinetics were quite different. The length of the DNA molecule was extended by 45% when RecA protein was added. Interestingly, the speed of elongation was dependent on the external force applied to the DNA molecule. In experiments in which YOYO-1 was added, a 10-20% extension of the DNA molecule length was observed. Moreover, these experiments showed that a change in the applied external force results in a time-dependent structural change of the DNA-YOYO-1 complex, with a time constant of approximately 35 s (1/e2). Because the setup provides an oriented DNA molecule, we determined the orientation of the transition dipole moment of YOYO-1 within DNA by using fluorescence polarization. The angle of the transition dipole moment with respect to the helical axis of the DNA molecule was 69 degrees +/- 3.  相似文献   

12.
We used scanning confocal fluorescence microscopy to observe and analyze individual DNA– protein complexes formed between human nucleotide excision repair (NER) proteins and model DNA substrates. For this purpose human XPA protein was fused to EGFP, purified and shown to be functional. Binding of EGFP-labeled XPA protein to a Cy3.5-labeled DNA substrate, in the presence and absence of RPA, was assessed quantitatively by simultaneous excitation and emission detection of both fluorophores. Co-localization of Cy3.5 and EGFP signals within one diffraction limited spot indicated complexes of XPA with DNA. Measure ments were performed on samples in a 1% agarose matrix in conditions that are compatible with protein activity and where reactions can be studied under equilibrium conditions. In these samples DNA alone was freely diffusing and protein-bound DNA was immobile, whereby they could be discriminated resulting in quantitative data on DNA binding. On the single molecule level ~10% of XPA co-localized with DNA; this increased to 32% in the presence of RPA. These results, especially the enhanced binding of XPA in the presence of RPA, are similar to those obtained in bulk experiments, validating the utility of scanning confocal fluorescence microscopy for investigating functional interactions at the single molecule level.  相似文献   

13.
The purpose of this study is to develop an apparatus for simultaneous measurement of electrical and spectroscopic parameters of single ion channels. We have combined the single channel recording apparatus with an artificial lipid bilayer and a fluorescence microscope designed to detect single fluorescent molecules. The artificial membranes were formed on an agarose-coated glass and observed with an objective-type total internal reflection fluorescence microscope (TIRFM). The lateral motion of a single lipid molecule (beta-BODIPY 530/550 HPC) was recorded. The lateral diffusion constant of the lipid molecule was calculated from the trajectories of single molecules as D = 8.5 +/- 4.9 x 10(-8) cm(2)/s. Ionic channels were incorporated into the membrane and current fluctuations were recorded at the single-channel level. After incorporation of Cy3-labeled alametithin molecules into the membrane, bright spots were observed moving rather slowly (D = 4.0 +/- 1.6 x 10(-8) cm(2)/s) in the membrane, simultaneously with the alametithin-channel current. These data show the possibility of the present technique for simultaneous measurement of electrical and spectroscopic parameters of single-channel activities.  相似文献   

14.
We studied the fluorescence resonance energy transfer (FRET) efficiency of different donor-acceptor labeled model DNA systems in aqueous solution from ensemble measurements and at the single molecule level. The donor dyes: tetramethylrhodamine (TMR); rhodamine 6G (R6G); and a carbocyanine dye (Cy3) were covalently attached to the 5'-end of a 40-mer model oligonucleotide. The acceptor dyes, a carbocyanine dye (Cy5), and a rhodamine derivative (JA133) were attached at modified thymidine bases in the complementary DNA strand with donor-acceptor distances of 5, 15, 25 and 35 DNA-bases, respectively. Anisotropy measurements demonstrate that none of the dyes can be observed as a free rotor; especially in the 5-bp constructs the dyes exhibit relatively high anisotropy values. Nevertheless, the dyes change their conformation with respect to the oligonucleotide on a slower time scale in the millisecond range. This results in a dynamic inhomogeneous distribution of donor/acceptor (D/A) distances and orientations. FRET efficiencies have been calculated from donor and acceptor fluorescence intensity as well as from time-resolved fluorescence measurements of the donor fluorescence decay. Dependent on the D/A pair and distance, additional strong fluorescence quenching of the donor is observed, which simulates lower FRET efficiencies at short distances and higher efficiencies at longer distances. On the other hand, spFRET measurements revealed subpopulations that exhibit the expected FRET efficiency, even at short D/A distances. In addition, the measured acceptor fluorescence intensities and lifetimes also partly show fluorescence quenching effects independent of the excitation wavelength, i.e. either directly excited or via FRET. These effects strongly depend on the D/A distance and the dyes used, respectively. The obtained data demonstrate that besides dimerization at short D/A distances, an electron transfer process between the acceptor Cy5 and rhodamine donors has to be taken into account. To explain deviations from FRET theory even at larger D/A distances, we suggest that the pi-stack of the DNA double helix mediates electron transfer from the donor to the acceptor, even over distances as long as 35 base pairs. Our data show that FRET experiments at the single molecule level are rather suited to resolve fluorescent subpopulations in heterogeneous mixture, information about strongly quenched subpopulations gets lost.  相似文献   

15.
We present a single-molecule instrument that combines a time-shared ultrahigh-resolution dual optical trap interlaced with a confocal fluorescence microscope. In a demonstration experiment, we observed individual single fluorophore-labeled DNA oligonucleotides to bind and unbind complementary DNA suspended between two trapped beads. Simultaneous with the single-fluorophore detection, we clearly observed coincident angstrom-scale changes in tether extension. Fluorescence readout allowed us to determine the duplex melting rate as a function of force. The new instrument will enable the simultaneous measurement of angstrom-scale mechanical motion of individual DNA-binding proteins (for example, single-base-pair stepping of DNA translocases) along with the detection of properties of fluorescently labeled protein (for example, internal configuration).  相似文献   

16.
Fluorescence microscopy provides a powerful method to directly observe single enzymes moving along a DNA held in an extended conformation. In this work, we present results from single EcoRV enzymes labeled with quantum dots which interact with DNA manipulated by double optical tweezers. The application of quantum dots facilitated accurate enzyme tracking without photobleaching whereas the tweezers allowed us to precisely control the DNA extension. The labeling did not affect the biochemical activity of EcoRV checked by directly observing DNA digestion on the single molecule level. We used this system to demonstrate that during sliding, the enzyme stays in close contact with the DNA. Additionally, slight overstretching of the DNA resulted in a significant decrease of the 1D diffusion constant, which suggests that the deformation changes the energy landscape of the sliding interaction. Together with the simplicity of the setup, these results demonstrate that the combination of optical tweezers with fluorescence tracking is a powerful tool for the study of enzyme translocation along DNA.  相似文献   

17.
We report here an approach for simultaneous fluorescence imaging and electrical recording of single ion channels in planar bilayer membranes. As a test case, fluorescently labeled (Cy3 and Cy5) gramicidin derivatives were imaged at the single-molecule level using far-field illumination and cooled CCD camera detection. Gramicidin monomers were observed to diffuse in the plane of the membrane with a diffusion coefficient of 3.3 x 10(-8) cm(2)s(-1). Simultaneous electrical recording detected gramicidin homodimer (Cy3/Cy3, Cy5/Cy5) and heterodimer (Cy3/Cy5) channels. Heterodimer formation was observed optically by the appearance of a fluorescence resonance energy transfer (FRET) signal (irradiation of Cy3, detection of Cy5). The number of FRET signals was significantly smaller than the number of Cy3 signals (Cy3 monomers plus Cy3 homodimers) as expected. The number of FRET signals increased with increasing channel activity. In numerous cases the appearance of a FRET signal was observed to correlate with a channel opening event detected electrically. The heterodimers also diffused in the plane of the membrane with a diffusion coefficient of 3.0 x 10(-8) cm(2)s(-1). These experiments demonstrate the feasibility of simultaneous optical and electrical detection of structural changes in single ion channels as well as suggesting strategies for improving the reliability of such measurements.  相似文献   

18.
Highly efficient fluorescence resonance energy transfer between cyan(CFP) and yellow fluorescent proteins (YFP), the cyan- and yellow-emitting variants of the Aequorea green fluorescent protein, respectively, was achieved by tightly concatenating the two proteins. After the C-terminus of CFP and the N-terminus of YFP were truncated by 11 and 5 amino acids, respectively, the proteins were fused through a leucine-glutamate dipeptide. The resulting chimeric protein, which we called Cy11.5, exhibited a simple emission spectrum that peaked at 527 nm when the protein was excited at 436 nm. The time-resolved emission of Cy11.5 was measured using a streak camera. After excitation of Cy11.5 with a 400 nm ultrashort pulse, a fast decay of the CFP emission and a concomitant rise of the YFP emission were observed with a lifetime of 66 ps. By contrast, the emission from CFP alone showed a decay component with a lifetime of 2.9 ns. We concluded that in fully folded Cy11.5 molecules, intramolecular FRET occurred with an efficiency of 98%. Importantly, most Cy11.5 molecules were properly folded, and the protein was highly resistant to all of the tested proteases. In living cells, therefore, Cy11.5 behaved as a single fluorescent protein with a broad excitation spectrum. Moreover, Cy11.5 was used as an optical highlighter after photobleaching of YFP. When HeLa cells expressing Cy11.5 were irradiated at 514.5 nm, a 10-fold increase in the 475 nm fluorescence intensity was observed. These features make Cy11.5 useful as an optical highlighter and a new-colored fluorescent protein for multicolor imaging.  相似文献   

19.
光镊是由美国科学家Arthur Ashkin于1986年发明的,是一种利用高度汇聚的激光束产生的三维梯度势阱来俘获、操纵微小粒子的技术。因其可俘获、操纵单个细胞,并在细胞和亚细胞层次上为生物医学研究提供方便,近年来,已越来越多地被应用于生物医学研究中。本文在介绍光镊的原理和特点的基础上,阐述了光镊(尤其是拉曼光镊)技术在生物医学领域中的研究进展、现状和展望。  相似文献   

20.
Optical tweezers have revolutionized our understanding of the microscopic world. Axial optical tweezers, which apply force to a surface-tethered molecule by directly moving either the trap or the stage along the laser beam axis, offer several potential benefits when studying a range of novel biophysical phenomena. This geometry, although it is conceptually straightforward, suffers from aberrations that result in variation of the trap stiffness when the distance between the microscope coverslip and the trap focus is being changed. Many standard techniques, such as back-focal-plane interferometry, are difficult to employ in this geometry due to back-scattered light between the bead and the coverslip, whereas the noise inherent in a surface-tethered assay can severely limit the resolution of an experiment. Because of these complications, precision force spectroscopy measurements have adapted alternative geometries such as the highly successful dumbbell traps. In recent years, however, most of the difficulties inherent in constructing a precision axial optical tweezers have been solved. This review article aims to inform the reader about recent progress in axial optical trapping, as well as the potential for these devices to perform innovative biophysical measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号