首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
KB cells and L cells were treated with methylmethanesulfonate (MMS) or 4-nitroquinoline-1-oxide (4 NQO) and the resulting damage to DNA and its repair were examined by sedimentation in an alkaline sucrose gradient. The sedimentation profiles obtained were found to be the resultant of a complex interrelationship between drug dosage, duration of the lysis period and the repair capacity of the cells. A systematic study of these variables was made which led to a plausible and useful interpretation of the sedimentation profiles. Both drugs produce two kinds of DNA modifications which show up as a single-strand breaks but affect the sedimentation profile in characteristic ways. One of these modifications which is quite alkali-labile can be studied using a 30-min lysis period. The other modification is less alkali-labile and can be studied using a long lysis period. Both KB cells and L cells can repair the former type of damage but only KB cells can repair the latter type of damage.  相似文献   

2.
Cultured mouse L5178Y cells were exposed to several carcinogenic and antitumor agents. After exposure to one of the agents, the cells were label with [3H]-thymidine for 20 min, and the DNA was subjected to alkaline sucrose gradient centrifugation immediately or after a chase period. This led us to classify the agents into 3 groups: (1) UV, 4-nitroquinoline-1-oxide (4NQO), N-methyl-N′-nitrosoguanidine (MNNG), nitrogen mustard and Mitomycin C. These were characterized by 20-min DNA labeling patterns showing the formation of small DNA and by the slowing down of their subsequent elongation. Replicated DNA strands would have gaps where “damage” was present on the parental strands. Subsequently, gap-filling replication would occur with or without repairing damage. (2) γ-rays. The 20-min DNA labeling profile displayed a larger size of DNA pieces and the subsequent elongation of this DNA was slightly affected. This probably due to a preferential depression of initiation DNA replication. (3) Methyl methanesulfonate (MMS) and low temperature (28°). The 20-min DNA labeling patterns were qualitatively similar to, but quantitatively different from those of non-irradiated control. The rate of DNA elongation was slightly retarded.  相似文献   

3.
Haploid and diploid strains of yeast containing genes conferring radiation-sensitivity were studied under growing and nongrowing experimental conditions for their relative sensitivities to growth-inhibitory effects of bleomycin (BM). The rad1, rad2, rad3, rad4, rad5 (and allelic rev2), rad7, rad10, rad11, rad 12, rad14, rad15, rad16 and rev3 strains exhibited responses similar to normal (Rad+) yeast strains. It is concluded from these findings that the excision-repair function deficient in several of these mutant strains is not important for repair of bleomycin-induced damages in yeast. The sensitive strains contained rad6, rad9, rad18, rad22, rad50, rad51, rad52, rad53, rad54, rad55, rad56, rad57 and rs1. Strains bearing rad8 or rad19 could not be classified unambiguously. With one exception, all rad mutants found very sensitive to BM were sensitive to X-rays, suggesting that some aspect of the repair of BM- and X-ray-induced damages in yeast may be similar. Sensitivities to BM and radiation co-segregated in pedigrees following meiosis, and several BM-resistant revertants isolated from two rad6 mutant strains sensitive to BM, X-rays and UV were cross-resistant to all three agents. These results confirm that the rad mutants were responsible for the cross-sensitivities in the original strains.  相似文献   

4.
3 ataxia telangiectasia (AT) fibroblast cell strains, AT4BI, AT5BI and AT2BE (CRL1343) were studied for their colony-forming ability after treatment with various concentrations of 4 different DNA alkylating agents. The results were compared to the response of fibroblast strains from 3 normal individuals. None of the AT strains were abnormally sensitive to N-methyl-N'-nitro-N-nitrosoguanidine. 1 strain (AT5BI) was significantly more sensitive to treatment with methyl methanesulfonate (MMS) based on a survival curve D0 value of 0.29 mM vs. the normal average D0 of 0.38 mM (P less than 0.02) and a D10 value of 0.85 mM vs. the normal average D10 of 1.2 mM (P less than 0.025). Strain AT4BI was also significantly more sensitive to MMS treatment when D10 values were compared (0.73 mM, P less than 0.01). All 3 AT cell strains were significantly more sensitive to treatment with ethyl methanesulfonate when D10 values were the criterion of sensitivity, AT4BI 16 mM, AT5BI 13 mM and AT2BE 15 mM vs. the normal human fibroblast average D10 value of 28 mM (P less than 0.01 for all 3 AT strains). 2 of the 3 AT cell strains (AT4BI and AT2BE) were abnormally sensitive to treatment with 4-nitroquinoline-1-oxide; the D0 values were 0.045 microM and 0.05 microM, respectively, vs. the normal average D0 value of 0.11 microM (P less than 0.01 for both AT strains). The corresponding D10 values were 0.08 microM and 0.11 microM, respectively, vs. the normal average D10 value of 0.27 microM (P less than 0.01 for AT4BI and P less than 0.025 for AT2BE). These results indicate that there is a heterogeneity in the response of AT fibroblast cell strains to treatment with DNA alkylating agents, except possibly in the case of ethylating compounds.  相似文献   

5.
The clone-forming capacity and level of DNA repair was examined on normal human cells and repair-deficient Xeroderma pigmentosum (XP) fibroblasts exposed to various chemical carcinogens and mutagens.The cultured fibroblasts were treated for 90 min with the carcinogenic and mutagenic 4-nitroquinoline 1-oxide (4NQO), 4-hydroxyaminoquinoline 1-oxide (4HAQO), 2-methyl-4-nitroquinoline 1-oxide (2-Me-4NQO), 3-methyl-4-nitropyridine 1-oxide 3-Me-4NPO) and the non-carcinogenic 6-nitroquinoline 1-oxide (6NQO). The response of the cells to the N-oxides was compared to that induced by the mutagen and carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and UV-irradiation.The XP cells showed (1) a reduced level of DNA repair synthesis when exposed to various carcinogenic N-oxides, (2) no unscheduled DNA synthesis following 6NQO and (3) a normal degree of DNA repair synthesis after treatment with MNNG.When the clone-forming capacity was examined the XP cells exhibited (1) a higher increased sensitivity to the various carcinogenic N-oxides, (2) no reduction in the clone formation following 6NQO and (3) a sensitivity virtually comparable to that of normal cells after treatment with MNNG.The results suggest a link between extent of DNA damage, level of DNA repair and degree of sensitivity in human cells exposed to various chemical carcinogens and which induce DNA alterations that cannot be repaired by DNA repair synthesis.  相似文献   

6.
Closed circular mitochondrial DNA in mammalian cells was degradated to the open circular form by exposure of the cells to the carcinogens N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and 4-nitroquinoline 1-oxide (4NQO). MNNG caused more strand scission of mitochondrial DNA than 4NQO at the same concentration. The action of the carcinogens on mitochondrial DNA did not parallel that with nuclear DNA which was damaged by 4NQO more markedly than by MNNG. Mitochondrial DNA damaged by carcinogens was not repaired during 4-20 h of post-treatment incubation of the cells. Incorporation of labeled thymidine into the closed circular mitochondrial DNA, decreased by the treatment of cells with carcinogens, recovered during post-treatment incubation.  相似文献   

7.
Benzo[a]pyrene (BP)-, 2-aminoanthracene (2AA)- and 4-nitroquinoline-1-oxide (4NQO)-mediated DNA modification were investigated in rat lungs by using alkaline sucrose gradient sedimentation. The exposure-route, the physicochemical nature of the administered compound and the number of treatments were all important in determining the extent of DNA modification. 4NQO produced qualitatively similar modification whether instilled intratracheally (i.t.) as a suspension or injected subcutaneously (s.c.) in a soluble form. BP and 2AA produced no DNA alteration when injected s.c; they did, however, modify DNA sedimentation when instilled as a suspension, but not until 24 h after treatment. Furthermore, BP caused no DNA modification at any sampling time when instilled in a lipid solvent. In contrast to the DNA modification observed at 24 h after a single i.t. treatment with a BP suspension, no such alteration was detected 12 or 24 h after the last of 5 similar daily treatments. These results are discussed with respect to mechanisms of differential transport, clearance and metabolism of administered carcinogens.  相似文献   

8.
A biological reducing agent, sodium ascorbate, was used to modify both the damage induced by N-methyl-N′-nitro-N-nitrosoguanidine to mouse gastric mucosal cell DNA and the repair of that damage in vivo. Freshly-mixed carcinogen and sodium ascorbate enhanced DNA fragmentation as measured by shifts in alkaline sucrose gradient sedimentation profiles whereas incubation of the two compounds for a short period resulted in reduced DNA fragmentation. Furthermore, periodic administration of sodium ascorbate following stomach cell DNA damage with carcinogen inhibited DNA repair.  相似文献   

9.
Treatment of Syrian hamster embryo cells with diverse classes of chemical carcinogens enhanced transformation by a carcinogenic simian adenovirus, SA7. Optimal enhancement was a function of time of chemical addition in relation to time of virus addition and cell transfer. Aflatoxin B1 (AFB1) and the polycyclic hydrocarbons, benzo(a)pyrene (B(a)P), 3-methylcholanthrene (MCA), and 7,12-dimethylbenz(a)anthracene (DMBA) enhanced SA7 transformation when added prior to virus, but inhibited transformation when added after virus adsorption and cell transfer. The enhancement of SA7 transformation was maximal when cytosine arabinoside, caffeine and 6-acetoxy-benzo(a)pyrene (6-ac-B(a)P) were added after virus, but minimal when added before virus. A third class of chemicals, including β-propiolactone (β-PL), methyl methanesulfonate (MMS), N-acetoxy-2-acetylaminofluorene (Ac-AAF), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and methylazoxymethanol acetate (MAM-ac), enhanced SA7 transformation added before, or after, virus inoculation and cell transfer. All chemicals, which induced changes in DNA sedimentation in alkaline sucrose gradients and unscheduled DNA (repair) synthesis in hamster cells, increased the frequency of SA7 transformation. However, several chemicals such as dibenz(a,h)anthracene (DB(a,h)A), benzo(e)pyrene (B(e)P), cytosine arabinoside, and caffeine enhanced SA7 transformation but did not induce DNA sedimentation changes or repair. Chemicals that cause DNA damage, which can be repaired by hamster cells, may enhance viral transformation by providing additional sites for integration of viral DNA during the repair process. Chemicals that apparently do not induce DNA repair synthesis may enhance viral transformation by incorporation of viral DNA into gaps in cell DNA at sites of unrepaired damage during scheduled DNA synthesis.  相似文献   

10.
The influence of caffeine post-treatment on sister-chromatid exchanges (SCE) and chromosomal aberration frequencies on Chinese hamster cells exposed to a variety of chemical and physical agents followed by bromodeoxyuridine (BrdUrd) was determined. After 2 h treatment, N-methyl-N′-nitrosoguanidine (MNNG) and cis-platinum(II)diamine dichloride (cis-Pt(II)) induced a 7- and 6-fold increase in SCE, respectively, while 4-nitroquinoline-1-oxide (4NQO), methyl methanesulfonate (MMS), proflavine, and N-hydroxyfluorenylacetamide (OH-AAF) caused a 2–3-fold increase in SCE compared to controls treated with BrdUrd alone. Ultraviolet light doubled the number of SCE. The lowest increase of SCE was obtained with bleomycin and X-irradiation. Caffeine post-treatment caused a statistically significant increase in the frequency of SCE induced by UV- and X-irradiation as well as by 4NQO and MMS but did not alter the number of SCE induced by MNNG, cis-Pt(II), proflavine, OH-AAF, and bleomycin.

Caffeine post-treatment increased the number of cells with chromosomal aberrations induced by MNNG, cis-Pt(II), UV, 4NQO, MMS, and proflavine. With the exception of proflavine, these agents are dependent on DNA and chromosome replication for the expression of the chromosomal aberrations. Caffeine enhancement of cis-Pt(II) chromosomal aberrations occurred independently of the time interval between treatment and chromosome preparations. Chromosomal damage produced by bleomycin and X-irradiation, agents known to induce chromosomal aberrations independent of “S” phase of the cell cycle, as well as the damage induced with OH-AAF was not influenced by caffeine post-treatment.

The enhancement by caffeine, an inhibitor of the gap-filling process in post-replication repair, of chromosomal aberrations induced by “S” dependent agents, is consistent with the involvement of this type of repair in chromosomal aberration formation. The lack of inhibition of SCE frequency by caffeine indicates that post-replication repair is probably not important in SCE formation.  相似文献   


11.
Environmental mutagen testing in Escherichia coli and phage lambda   总被引:2,自引:0,他引:2  
S Kondo 《Mutation research》1974,26(4):235-241
  相似文献   

12.
By addition of two volumes of a 1M aqueous KOH/dimethylsulfoxide (1585; v/v) mixture to the enzymatic incubation medium, it is possible to selectively extract the unmetabolized benzo(a)pyrene in hexane. Therefore, the radio-activity remaining in the water phase corresponds to all the in vitro synthesized metabolites. This isotopic method is very sensitive (2 × 10?11 moles) and is almost insensitive to the room lighting. The aryl hydrocarbon hydroxylase activities found with this method are 2,3 and 10 times higher in the liver, lung and kidney respectively compared to those obtained with the fluorimetric method.  相似文献   

13.
D Wild 《Mutation research》1978,56(3):319-327
2 dialkylnitrosamines, 4 oxazaphosphorines, 6 aryldialkyltriazenes, urethane, N-hydroxyurethane, 4-nitroquinoline-1-oxide, procarbazine (natulan) and the inorganic carcinogen potassium chromate were studied for cytogenetic activity in the micronucleus test on mouse bone marrow. Except diethylnitrosamine, all chemicals were active. The results are compared with those known from studies in other mammalian and sub-mammalian test systems. The results of the micro nucleus test correlate well with results from other mutagenicity tests and with the carcinogenicity of the chemicals. The lack of an effect on N-nitrosodiethylamine (DENA) is discussed with regard to the short life-time of the ultimate mutagen.  相似文献   

14.
3-Aminoharman (3AH, 3-amino-1-methyl-9H-pyrido[3,4-b]indole), which has been reported as a novel substance with an antagonistic effect on induction of sister-chromatid exchange (SCE) by polycyclic mutagens in the presence of the metabolic activation system, was examined with a cultured human lymphoblastoid cell line, NL3, for its effect on SCE induction by direct-acting mutagens such as mitomycin C (MMC), nitrogen mustard N-oxide (NMO), methyl methanesulfonate (MMS), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 4-nitroquinoline 1-oxide (4NQO) and 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (OH-Trp-P-2), and also by ultraviolet light (UV) irradiation. The results obtained on simultaneous treatment with 3AH and mutagens were as follows: (1) 3AH suppressed more than 50% of SCEs induced by MMC, NMO and OH-Trp-P-2; (2) 4NQO- and MNNG-induced SCEs were also suppressed by 3AH but to a lesser degree; (3) MMS-induced SCEs were not, however, altered by 3AH; and (4) the suppression of SCE by 3AH was dose-dependent. Treatment of cells with 3AH for 2 h immediately before MMC exposure suppressed SCE induction to a significant degree similar to the simultaneous treatment, but post-treatment with 3AH was much less effective. 3AH inhibited SCE induction by NMO when 3AH treatment was carried out either before or after NMO treatment, to an extent similar to the simultaneous treatment. Treatments with 3AH either before or after UV exposure did not change the UV-induced SCEs. Results with these direct-acting mutagens ruled out the relevance of metabolic activation as a necessary step for the antagonizing effect of 3AH.  相似文献   

15.
In mammalian cells it has previously been observed that low DNA-repair activity is correlated wtih high chromosome-aberration frequency. Since fish cells typically express comparatively low amounts of DNA repair, the chromosome aberration test holds potential as a sensitive fish genotoxicity assay. A comparison of in vitro DNA-repairm activity showed HF > CHO > Ul-H = Ul-F following exposure to MNNG and 4NQO. Although peak chromosome-aberration frequency varied CHO > Ul-H > HF, at comparable mutagen concentrations the relationship was Ul-H > HF > CHO following 4NQO exposure and Ul-H > HF = CHO after MNNG exposure. Analyzing for chromosome aberrations at high mutagen concentrations was not possible due t mitotic inhibition/toxicity which varied according to the mutagen and cell line. Micronuclei frequency varied CHO > Ul-H > HF = Ul-F. In CHO and Ul-H, a 10–15 fold increase over the controls compares with only a 2–3 fold increase for HF and Ul-F. These differences are likely related, in part, to the cell-division rate of each line and the coincident repair of the damaged DNA. Reasons for the lack of negative correlation between DNA repair and chromosomal damage in fish cells are discussed.  相似文献   

16.
The complete results of the analysis of over 5300 independently derived nonsense mutations in the lacI gene are presented. These have been mapped and divided into specific sites. A total of 105 nonsense mutations derived from 90 different codons can be distinguished, of which several are the result of tandem double base changes induced by ultraviolet light. With the aid of results determined in a preceding paper (Miller et al., 1977), the majority of these mutations have been assigned to points in the gene coding for specific residues in the lac repressor. This allows a detailed correlation of the physical and genetic map.Recombination studies have been carried out using mutations at known sites. For crosses involving mutations separated by less than 30 nucleotides (the main object of this study), a significant lack of agreement between distance and recombination frequency has been found.  相似文献   

17.
Xeroderma pigmentosum (XP) cells are dificient in the repair of damage induced by ultraviolet irradiation. Excision-repair-deficient XP cell strains have been classified into 7 distinct complementation groups, according to results of studies on cell fusion and UV irradiation. XP cells are not only abnormally sensitive to UV, but also to a variety of chemical carcinogens, including 4-nitroquinoline-1-oxide (4NQO). Complementation analysis with XP strains from 4 different complementation groups with respect to the repair of 4NQO-induced DNA damage revealed that the classification of the strains into complementation groups with respect to 4NQO-induced repair coincides with the classification based on the repair of UV damage.  相似文献   

18.
The carcinogen 4-nitroquinoline 1-oxide (4NQO) and its metabolites undergo intercalative or covalent binding with DNA. Recent evidence indicates that the latter binding pattern is probably facilitated by an initial weaker intercalative interaction that can align potentially reactive sites on a 4NQO-metabolite and adjacent stacked bases. In the present study, we have proposed numerous possible covalent reaction products between 4NQO and its metabolites with DNA mini-helices based on chemical properties and key 'short-contacts' after energy-minimization in 21 different intercalative-like complexes. It is known from numerous experimental studies that 90% of the quinoline-bound DNAs in vivo involve guanine with the remaining 10% apparently involving adenine residues. The results of the present study suggest that this trend is not due to the greater affinity of the quinolines for guanine, but instead results from secondary processes involving the preferential formation of apurinic sites at aralkyl-adenine residues over that of aralkyl-guanine residues. In addition, observed mutational patterns can be rationalized in terms of the proposed reaction-products. The role of DNA repair mechanisms in the removal and correction of the different proposed reaction products are discussed. The binding pattern of several other aromatic carcinogens are similar to those depicted in the present work for the 4NQO-metabolites; hence the present study may be of some general significance.  相似文献   

19.
180 ad-3 mutants of Neurospora crassa induced by 1-phenyl-3-monomethyl-triazene (PMMT) and 56 ad-3 mutants induced by 1-phenyl-3,3-dimethyltriazene (PDMT) were characterized by dikaryon, trikaryon and complementation tests. Results show that the spectrum of genetic alterations induced by PMMT is different from that of PDMT. This suggests that enzymatic dealkylation of PDMT to PMMT does not occur within Neuropsora crassa conidia, and that the mechanism of mutation induction of PDMT in N. crassa is different from that of PMMT. Hydrolytic breakdown products or its intact molecule or some other converted forms might be responsible for the mutagenic activity of PDMT.Mutation induction of PMMT in N. crassa appears to be via alkylation of DNA by carbonium ions produced by this compound, the same mechanism proposed for its carcinogenic activity. The frequencies of leakiness, allelic complementation and nonpolarized complementation patterns among PMMT-induced ad-3 mutants are similar to those of ad-3 mutants induced by other potent chemical carcinogens, such as MNNG and the aflatoxins.  相似文献   

20.
Carcinogenic trans-4-dimethylaminostilbene (trans-DAS) and trans-4-acetylaminostilbene (trans-AAS) as well as inactive cis-DAS and DABB were highly and specifically labeled with tritium and administered orally to female Wistar rats. Covalent binding to liver rRNA and DNA was measured and found to be higher for the carcinogenic compounds. Digests from these nucleic acids were chromatographed on Sephadex LH-20 and 16 different nucleoside adducts were characterised by their retention volumes. Labeled trans-DAS was administered in doses ranging from 0.025--250 mumol/kg. Binding to nucleic acids was directly proportional to the dose at low doses (0.025--2.5 mumol/kg) and less than proportional at higher doses (25--250 mumol/kg). The pattern of nucleoside adducts remained practically constant over the wide range of doses. A pharmacokinetically determined threshold of metabolic activation thus could not be demonstrated for this compound. A modified procedure is described to simultaneously isolate pure liver rRNA and DNA from nonfasted rats in high yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号