首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
P. Zhang  A. C. Spradling 《Genetics》1995,139(2):659-670
Peri-centromeric regions of Drosophila melanogaster chromosomes appear heterochromatic in mitotic cells and become greatly underrepresented in giant polytene chromosomes, where they aggregate into a central mass called the chromocenter. We used P elements inserted at sites dispersed throughout much of the mitotic heterochromatin to analyze the fate of 31 individual sites during polytenization. Analysis of DNA sequences flanking many of these elements revealed that middle repetitive or unique sequence DNAs frequently are interspersed with satellite DNAs in mitotic heterochromatin. All nine Y chromosome sites tested were underrepresented >20-fold on Southern blots of polytene DNA and were rarely or never detected by in situ hybridization to salivary gland chromosomes. In contrast, nine tested insertions in autosomal centromeric heterochromatin were represented fully in salivary gland DNA, despite the fact that at least six were located proximal to known blocks of satellite DNA. The inserted sequences formed diverse, site-specific morphologies in the chromocenter of salivary gland chromosomes, suggesting that domains dispersed at multiple sites in the centromeric heterochromatin of mitotic chromosomes contribute to polytene β-heterochromatin. We suggest that regions containing heterochromatic genes are organized into dispersed chromatin configurations that are important for their function in vivo.  相似文献   

2.
3.
D. F. Eberl  B. J. Duyf    A. J. Hilliker 《Genetics》1993,134(1):277-292
Constitutive heterochromatic regions of chromosomes are those that remain condensed through most or all of the cell cycle. In Drosophila melanogaster, the constitutive heterochromatic regions, located around the centromere, contain a number of gene loci, but at a much lower density than euchromatin. In the autosomal heterochromatin, the gene loci appear to be unique sequence genes interspersed among blocks of highly repeated sequences. Euchromatic genes do not function well when brought into the vicinity of heterochromatin (position-effect variegation). We test the possibility that the blocks of centromeric heterochromatin provide an environment essential for heterochromatic gene function. To assay directly the functional requirement of autosomal heterochromatic genes to reside in heterochromatin, the rolled (rl) gene, which is normally located deep in chromosome 2R heterochromatin, was relocated within small blocks of heterochromatin to a variety of euchromatic positions by successive series of chromosomal rearrangements. The function of the rl gene is severely affected in rearrangements in which the rl gene is isolated in a small block of heterochromatin, and these position effects can be reverted by rearrangements which bring the rl gene closer to any large block of autosomal or X chromosome heterochromatin. There is some evidence that five other 2R heterochromatic genes are also affected among these rearrangements. These findings demonstrate that the heterochromatic genes, in contrast to euchromatic genes whose function is inhibited by relocation to heterochromatin, require proximity to heterochromatin to function properly, and they argue strongly that a major function of the highly repeated satellite DNA, which comprises most of the heterochromatin, is to provide this heterochromatic environment.  相似文献   

4.
It is widely known that the bulk of the pericentromeric heterochromatin (-heterochromatin) does not replicate during polytenization in Drosophila. However, a recent DNA-Feulgen cytophotometric study (Dennhöfer 1982a) has claimed equal polytenization of all heterochromatin regions. To re-examine this issue, the amount of Hoechst 33258-bright heterochromatin in non-polytene and polytene nuclei in salivary glands and Malpighian tubules of late third instar larvae of D. nasuta has been compared by cytofluorometry. Since the amount of Hoechst 33258-bright heterochromatin is similar in non-polytene and polytene nuclei in spite of the latter having an enormously high euchromatin DNA content, it is concluded that the -heterochromatin does not replicate during polytenization. The present results further indicate that in the polytene nuclei of Malpighian tubules the -heterochromatin remains at the 2C level whereas in salivary gland polytene nuclei it varies between the 2C and 4C levels.I would like to dedicate this paper to the memory of E. Heitz to commemorate 50 years of - and -heterochromatin  相似文献   

5.
Repetitive DNA sequences in Drosophila   总被引:35,自引:5,他引:35  
The satellite DNAs of Drosophila melanogaster and D. virilis have been examined by isopycnic centrifugation, thermal denaturation, and in situ molecular hybridization. The satellites melt over a narrow temperature range, reassociate rapidly after denaturation, and separate into strands of differing buoyant density in alkaline CsCl. In D. virilis and D. melanogaster the satellites constitute respectively 41% and 8% of the DNA isolated from diploid tissue. The satellites make up only a minute fraction of the DNA isolated from polytene tissue. Complementary RNA synthesized in vitro from the largest satellite of D. virilis hybridized to the centromeric heterochromatin of mitotic chromosomes, although binding to the Y chromosome was low. The same cRNA hybridized primarily to the -heterochromatin in the chromocenter of salivary gland nuclei. The level of hybridization in diploid and polytene nuclei was similar, despite the great difference in total DNA content. The centrifugation and hybridization data imply that the -heterochromatin either does not replicate or replicates only slightly during polytenization. Similar but less extensive data are presented for D. melanogaster. — In D. melanogaster cRNA synthesized from total DNA hybridized to the entire chromocenter (- and -heterochromatin) and less intensely to many bands on the chromosome arms. The X chromosome was more heavily labeled than the autosomes. In D. virilis the X chromosome showed a similar preferential binding of cRNA copied from main peak sequences.—It is concluded that the majority of repetitive sequences in D. virilis and D. melanogaster are located in the - and -heterochromatin. Repetitive sequences constitute only a small percentage of the euchromatin, but they are widely distributed in the chromosomes. During polytenization the -heterochromatin probably does not replicate, but some or all of the repetitive sequences in the -heterochromatin and the euchromatin do replicate.  相似文献   

6.
In polytene chromosomes of Drosophila melanogaster, regions of pericentric heterochromatin coalesce to form a compact chromocenter and are highly underreplicated. Focusing on study of X chromosome heterochromatin, we demonstrate that loss of either SU(VAR)3-9 histone methyltransferase activity or HP1 protein differentially affects the compaction of different pericentric regions. Using a set of inversions breaking X chromosome heterochromatin in the background of the Su(var)3-9 mutations, we show that distal heterochromatin (blocks h26-h29) is the only one within the chromocenter to form a big "puff"-like structure. The "puffed" heterochromatin has not only unique morphology but also very special protein composition as well: (i) it does not bind proteins specific for active chromatin and should therefore be referred to as a pseudopuff and (ii) it strongly associates with heterochromatin-specific proteins SU(VAR)3-7 and SUUR, despite the fact that HP1 and HP2 are depleted particularly from this polytene structure. The pseudopuff completes replication earlier than when it is compacted as heterochromatin, and underreplication of some DNA sequences within the pseudopuff is strongly suppressed. So, we show that pericentric heterochromatin is heterogeneous in its requirement for SU(VAR)3-9 with respect to the establishment of the condensed state, time of replication, and DNA polytenization.  相似文献   

7.
Two nuclear DNA fractions from Drosophila hydei were isolated by silver ion and actinomycin D binding and centrifugation in isopycnic salt gradients. Neither fraction is composed of nor does it contain any highly repetitive simple sequence DNA, as shown by melting and reassociation studies. — One fraction has a CsCl density of 1.702 g/cm3 and hybridizes in situ with the -heterochromatin of the chromocenter in polytene cells. This DNA fraction was found to be replicated during polytenization. In diploid cells this 1.702 g/cm3 component hybridizes to the heterochromatin of all four large autosome pairs, the middle part of the long arm of the Y-chromosome, but not to the X-heterochromatin. — A second fraction has a CsCl density of 1.697 g/cm3 and hybridizes in situ with polytene cells to the chromocenter and the nucleolus, but on metaphase chromosomes only to the nucleolus organizer regions.  相似文献   

8.
To examine the genetic composition of proximal heterochromain in chromosome 2, the detachment of compound second autosomes, for generating proximal deficiencies, appeared a promising method. Compound seconds were detached by gamma radiation. A fraction of the detachment products were recessive lethals owing to proximal deficiencies. Analysis by inter se complementation, pseudo-dominance tests with proximal mutations and allelism tests with known deficiencies provided evidence for at least two loci between the centromere and the light locus in 2L and one locus in 2R between the rolled locus and the centromere. The data further demonstrate that rolled, and probably light, are located within the proximal heterochromatin. Thus, functional genetic loci are found in heterochromatin, albeit at low density.  相似文献   

9.
Pericentromeric heterochromatin (PCH), the constitutive heterochromatin of pericentromeric regions, plays crucial roles in various cellular events, such as cell division and DNA replication. PCH forms chromocenters in the interphase nucleus, and chromocenters cluster at the prophase of meiosis. Chromocenter clustering has been reported to be critical for the appropriate progression of meiosis. However, the molecular mechanisms underlying chromocenter clustering remain elusive. In this study, we found that global DNA hypomethylation, 5hmC enrichment in PCH, and chromocenter clustering of Dnmt1-KO ESCs were similar to those of the female meiotic germ cells. Tet1 is essential for the deposition of 5hmC and facultative histone marks of H3K27me3 and H2AK119ub at PCH, as well as chromocenter clustering. RING1B, one of the core components of PRC1, is recruited to PCH by TET1, and PRC1 plays a critical role in chromocenter clustering. In addition, the rearrangement of the chromocenter under DNA hypomethylated condition was mediated by liquid-liquid phase separation. Thus, we demonstrated a novel role of Tet1 in chromocenter rearrangement in DNA hypomethylated cells.  相似文献   

10.
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)- type glutamate receptors are essential players in fast synaptic transmission in the vertebrate central nervous system. Their synaptic delivery and localization as well as their electrophysiological properties are regulated by transmembrane AMPA receptor regulatory proteins (TARPs). However, the exact mechanisms of how the four originally designated TARPs (γ2, γ3, γ4, and γ8) modulate AMPA receptor function remain largely unknown. Previous studies suggested the C-terminal domain (CTD) of γ2 to mediate increased trafficking and reduced desensitization of AMPA receptors. As it remained unclear whether these findings extend to other TARPs, we set out to investigate and compare the role of the CTDs of the four original TARPs in AMPA receptor modulation. To address this issue, we replaced the TARP CTDs with the CTD of the homologous subunit γ1, a voltage-dependent calcium channel subunit expressed in skeletal muscle that lacks TARP properties. We analyzed the impact of the resulting chimeras on GluR1 functional properties in Xenopus oocytes and HEK293 cells. Interestingly, the CTDs of all TARPs not only modulate the extent and kinetics of desensitization but also modulate agonist potencies of AMPA receptors. Furthermore, the CTDs are required for TARP-induced modulation of AMPA receptor gating, including conversion of antagonists to partial agonists and constitutive channel openings. Strikingly, we found a special role of the cytoplasmic tail of γ4, suggesting that the underlying mechanisms of modulation of AMPA receptor function are different among the TARPs. We propose that the intracellularly located CTD is the origin of TARP-specific functional modulation and not merely a facilitator of trafficking.  相似文献   

11.
刘静茹  孟莎莎  周卫辉 《遗传》2015,37(8):801-810
Neurexins是神经特异性突触蛋白,Neurexin1β结构的异常与孤独症密切相关。为分析孤独症相关基因NRXN1β最小启动子和调节基因转录的功能元件,本文构建了含NRXN1β基因上游调控区不同区域的荧光素酶报告基因质粒,转染HEK293细胞后,利用检测双荧光素酶报告基因的转录活性以确定NRXN1β基因最小启动子区,进而筛选出相应的显著增强或抑制报告基因活性的功能区;同时,为鉴定顺式作用元件,利用基因定点突变技术对基因功能区内和临近DNA序列进行连续的碱基突变;最后,采用转录因子预测工具对启动子功能区内的转录调控元件进行分析。结果首次发现NRXN1β最小启动子区位于-88~+156 bp,-88~-73 bp和+156~+149 bp可增强启动子活性,+229~+419 bp可抑制启动子活性,且-84~-63 bp为能够显著性增强启动子活性的顺式作用元件,该区域可能存在DBP(Albumin D-site-binding protein,DBP)和ABF1(Autonomously replicating sequence-binding factor 1,ABF1)两个转录因子结合位点。  相似文献   

12.
13.
Until recently, little was known of the genetic constitution of the heterochromatic segments of the major autosomes of Drosophila melanogaster . Our previous report described the genetic dissection of the proximal, heterochromatic region of chromosome 2 of Drosophila melanogaster by means of a series of overlapping deficiencies generated by the detachment of compound second autosomes (Hilliker and Holm 1975). Analysis of these deficiencies by inter se complementation, pseudo-dominance tests with proximal mutations and allelism tests with known deficiencies provided evidence for the existence of at least two loci between the centromere and the light locus in 2L and one locus in 2R between the rolled locus and the centromere. These data in conjunction with cytological observations demonstrated that light and rolled and three loci lying between them are located within the proximal heterochromatin of the second chromosome.——The present report describes the further analysis of this region through the induction with ethyl methanesulphonate (EMS) of recessive lethals allelic to the 2L and 2R proximal deficiencies associated with the detachment products. Analysis of the 118 EMS-induced recessive lethals and visible mutations recovered provided evidence for seven loci in the 2L heterochromatin and six loci in the 2R heterochromatin, with multiple alleles being obtained for most sites. Of these loci, one in 2L and two in 2R fall near the heterochromatic-euchromatic junctions of 2L and 2R respectively. None of the 113 EMS lethals behaved as a deficiency, implying that the heterochromatic loci uncovered in this study represent nonrepetitive cistrons. Thus functional genetic loci are found in heterochromatin, albeit at a very low density relative to euchromatin.  相似文献   

14.
β-Arrestins, originally discovered to desensitize activated G protein-coupled receptors, (aka seven-transmembrane receptors, 7TMRs) also mediate 7TMR internalization and G protein-independent signaling via these receptors. More recently, several regulatory roles of β-arrestins for atypical 7TMRs and non-7TM receptors have emerged. Here, we uncover an entirely novel regulatory role of β-arrestins in cross-talk between the angiotensin receptor (AT1aR) and a member of the transient receptor potential (TRP) ion channel family, TRPV4. AT1aR and TRPV4 form a constitutive complex in the plasma membrane, and angiotensin stimulation leads to recruitment of β-arrestin 1 to this complex. Surprisingly, angiotensin stimulation results in ubiquitination of TRPV4, a process that requires β-arrestin 1, and subsequently to internalization and functional down-regulation of TRPV4. β-Arrestin 1 interacts with, and acts as an adaptor for AIP4, an E3 ubiquitin ligase responsible for TRPV4 ubiquitination. Thus, our data provide the first evidence of a functional link between β-arrestins and TRPV4 and uncovers an entirely novel mechanism to maintain appropriate intracellular Ca2+ concentration to avoid excessive Ca2+ signaling.  相似文献   

15.
Liu Z  Fan F  Xiao X  Sun Y 《PloS one》2011,6(1):e16335

Background

Autosomal dominant non-autoimmune hyperthyroidism (ADNAH) is a rare genetic disorder of the endocrine system. Molecular genetic studies in ADNAH have revealed heterozygous germline mutations in the TSHR. To data, mutations leading to an increase in the constitutive activation of the TSHR have been described in the transmembrane segments, exoloops and cytoplasmic loop of TSHR. These mutations result in constitutive activation of the Gαs/cAMP or Gαq/11/inositol phosphate (IP) pathways, which stimulate thyroid hormone production and thyroid proliferation.

Methodology/Principal Findings

In a previous study, we reported a new TSHR mutation located in the C-terminal domain of TSHR, which results in a substitution of the conserved Ile691 for Phe. In this study, to address the question of whether the I691F mutated receptor could be responsible for Gαs/cAMP or Gαq/11/IP constitutive activity, wild-type and TSHR mutants were expressed in COS-7 cells to determine cAMP constitutive activity and IP formation. Compared to the cell surface with expression of the A623V mutated receptor as positive control, the I691F mutated receptor showed a slight increase of cAMP accumulation. Furthermore, I691F resulted in constitutive activation of the Gαq/11/IP signaling pathway.

Conclusions/Significance

Our results indicate that Ile691 not only contributes to keeping TSHR inactive in the Gαs/cAMP pathways but also in the Gαq/11/IP cascade.  相似文献   

16.

Satellite DNAs (satDNAs) and transposable elements (TEs) are among the main components of constitutive heterochromatin (c-heterochromatin) and are related to their functionality, dynamics, and evolution. A peculiar case regarding the quantity and distribution of c-heterochromatin is observed in the genus of bees, Melipona, with species having a low amount of heterochromatin and species with high amount occupying almost all chromosomes. By combining low-pass genome sequencing and chromosomal analysis, we characterized the satDNAs and TEs of Melipona quadrifasciata (low c-heterochromatin) and Melipona scutellaris (high low c-heterochromatin) to understand c-heterochromatin composition and evolution. We identified 15 satDNA families and 20 TEs for both species. Significant variations in the repeat landscapes were observed between the species. In M. quadrifasciata, the repetitive fraction corresponded to only 3.78% of the genome library studied, whereas in M. scutellaris, it represented 54.95%. Massive quantitative and qualitative changes contributed to the differential amplification of c-heterochromatin, mainly due to the amplification of exclusive repetitions in M. scutellaris, as the satDNA MscuSat01-195 and the TE LTR/Gypsy_1 that represent 38.20 and 14.4% of its genome, respectively. The amplification of these two repeats is evident at the chromosomal level, with observation of their occurrence on most c-heterochromatin. Moreover, we detected repeats shared between species, revealing that they experienced mainly quantitative variations and varied in the organization on chromosomes and evolutionary patterns. Together, our data allow the discussion of patterns of evolution of repetitive DNAs and c-heterochromatin that occurred in a short period of time, after separation of the Michmelia and Melipona subgenera.

  相似文献   

17.
Phosphorylation-dependent ubiquitination and ensuing down-regulation and lysosomal degradation of the interferon α/β receptor chain 1 (IFNAR1) of the receptor for Type I interferons play important roles in limiting the cellular responses to these cytokines. These events could be stimulated either by the ligands (in a Janus kinase-dependent manner) or by unfolded protein response (UPR) inducers including viral infection (in a manner dependent on the activity of pancreatic endoplasmic reticulum kinase). Both ligand-dependent and -independent pathways converge on phosphorylation of Ser535 within the IFNAR1 degron leading to recruitment of β-Trcp E3 ubiquitin ligase and concomitant ubiquitination and degradation. Casein kinase 1α (CK1α) was shown to directly phosphorylate Ser535 within the ligand-independent pathway. Yet given the constitutive activity of CK1α, it remained unclear how this pathway is stimulated by UPR. Here we report that induction of UPR promotes the phosphorylation of a proximal residue, Ser532, in a pancreatic endoplasmic reticulum kinase-dependent manner. This serine serves as a priming site that promotes subsequent phosphorylation of IFNAR1 within its degron by CK1α. These events play an important role in regulating ubiquitination and degradation of IFNAR1 as well as the extent of Type I interferon signaling.  相似文献   

18.
Heterochromatin protein 1 (HP1) interacts with various proteins, including lamins, to play versatile functions within nuclei, such as chromatin remodeling and DNA repair. Accumulation of prelamin A leads to misshapen nuclei, heterochromatin disorganization, genomic instability, and premature aging in Zmpste24-null mice. Here, we investigated the effects of prelamin A on HP1α homeostasis, subcellular distribution, phosphorylation, and their contribution to accelerated senescence in mouse embryonic fibroblasts (MEFs) derived from Zmpste24−/− mice. The results showed that the level of HP1α was significantly increased in Zmpste24−/− cells. Although prelamin A interacted with HP1α in a manner similar to lamin A, HP1α associated with the nuclease-resistant nuclear matrix fraction was remarkably increased in Zmpste24−/− MEFs compared with that in wild-type littermate controls. In wild-type cells, HP1α was phosphorylated at Thr50, and the phosphorylation was maximized around 30 min, gradually dispersed 2 h after DNA damage induced by camptothecin. However, the peak of HP1α phosphorylation was significantly compromised and appeared until 2 h, which is correlated with the delayed maximal formation of γ-H2AX foci in Zmpste24−/− MEFs. Furthermore, knocking down HP1α by siRNA alleviated the delayed DNA damage response and accelerated senescence in Zmpste24−/− MEFs, evidenced by the rescue of the delayed γ-H2AX foci formation, downregulation of p16, and reduction of senescence-associated β-galactosidase activity. Taken together, these findings establish a functional link between prelamin A, HP1α, chromatin remodeling, DNA repair, and early senescence in Zmpste24-deficient mice, suggesting a potential therapeutic strategy for laminopathy-based premature aging via the intervention of HP1α.  相似文献   

19.
Plasmid R6K, which contains 3 replication origins called α, γ, and β, is a favorable system to investigate the molecular mechanism(s) of action at a distance, i.e. replication initiation at a considerable distance from the primary initiator protein binding sites (iterons). The centrally located γ origin contains 7 iterons that bind to the plasmid-encoded initiator protein, π. Ori α, located at a distance of ∼4 kb from γ, contains a single iteron that does not directly bind to π but is believed to access the protein by π-mediated α-γ iteron-iteron interaction that loops out the intervening ∼3.7 kb of DNA. Although the cis-acting components and the trans-acting proteins required for ori γ function have been analyzed in detail, such information was lacking for ori α. Here, we have identified both the sequence elements located at α and those at γ, that together promoted α activity. The data support the conclusion that besides the single iteron, a neighboring DNA primase recognition element called G site is essential for α-directed plasmid maintenance. Sequences preceding the iteron and immediately following the G site, although not absolutely necessary, appear to play a role in efficient plasmid maintenance. In addition, while both dnaA1 and dnaA2 boxes that bind to DnaA protein and are located at γ were essential for α activity, only dnaA2 was required for initiation at γ. Mutations in the AT-rich region of γ also abolished α function. These results are consistent with the interpretation that a protein-DNA complex consisting of π and DnaA forms at γ and activates α at a distance by DNA looping.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号