首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A genetic assay to detect the clastogenic potential of environmental agents is described. This assay is based on the cloning efficiency of cells in a medium that permits the growth of cells following loss of a specific chromosome segment resulting from a chromosome break. For this purpose a mouse/human hybrid cell line R12-2 containing a dominantly marked chromosome 5 as the only human component has been constructed. This chromosome 5 carries two dominant selectable markers, Ecogpt and the gene for sensitivity to diphtheria toxin (DTs). Ecogpt codes for the enzyme xanthine-guanine phosphoribosyltransferase which allows selection for cells containing chromosome 5 or the segment carrying Ecogpt as judged by growth in medium supplemented with mycophenolic acid and xanthine (MX medium). Human cells are sensitive to 10(-13) M DT, whereas mouse cells are resistant to 10(-7) M DT and DTs is expressed as a dominant phenotype. Cultivation of R12-2 cells in the medium containing 10(-13) M DT permit the selection of cells that have lost chromosome 5 or the segment carrying DTs. The presence of two selectable markers on the same chromosome permits the identification and quantitation of cells for the selective loss of a specific chromosome segment. Growth of R12-2 cells in MX medium containing 10(-13) M DT therefore, provides a convenient method to determine the frequency of clastogen induced breaks in chromosome 5. The utility of the proposed genetic assay is assessed using X-irradiation as a model clastogen. Our results clearly show a dose related response that is consistent with cytogenetic observations.  相似文献   

2.
A short-term assay utilizing a human/mouse monochromosomal hybrid cell line R3-5, to detect chemically induced aneuploidy in mammalian cells is described. A single human chromosome transferred into mouse cells was used as a cytogenetic marker to quantitate abnormal chromosome segregation following chemical treatment. The human chromosome present in the mouse cells can be readily identified by differential staining procedures. The frequency of cells containing 0 or 2 human chromosomes in the progeny of chemically treated monochromosomal hybrid cells provided a direct measure of aneuploidy. We tested the sensitivity of the proposed system with 3 model chemicals (colcemid, cyclophosphamide and benomyl) known to induce numerical or structural changes in chromosomes. The frequency of an abnormal segregation of the human chromosome was found to be dose dependent and consistently higher than controls. This system has the capability to detect gain as well as loss of a chromosome resulting from nondisjunction or other mechanisms leading to aneuploidy.  相似文献   

3.
The development and utilization of a monochromosomal hybrid cell assay for detecting aneuploidy and chromosomal aberrations are described. The monochromosomal hybrid cell lines were produced by a two-step process involving transfer of a marker bacterial gene to a human chromosome and then by integration of that human chromosome into a mouse complement of chromosomes through microcell fusion. For chemically induced aneuploidy, the segregation of a single human chromosome among mouse chromosomes is used as a cytogenetic marker. The genetic assay for aneuploidy is based on the ability of the cells to grow in a medium that selects for the loss of the human chromosome. The assay for clastogenicity is based on survival of the cells after treatment with the chemicals in medium that selects for retention of the human chromosome but loss of its segment containing diphtheria toxin locus. The assays greatly simplify the detection of chromosomal aberrations induced by environmental factors at low-dose levels.  相似文献   

4.
G Chu  P Berg 《Nucleic acids research》1985,13(8):2921-2930
Cultured mammalian cells transduced with the Escherichia coli gene, Ecogpt, synthesize the bacterial enzyme xanthine-guanine phosphoribosyl transferase (XGPT) (1). This paper describes a method for measuring XGPT activity in crude cell extracts by following the conversion of 14C-xanthine (X) to 14C-xanthine monophosphate (XMP) and 14C-xanthosine (XR) by thin layer chromatography. The method is rapid, easy to use, sensitive and linear over a wide range of XGPT activity and has been useful for detecting XGPT in cells that were transiently transfected or stably transformed with Ecogpt. During our studies, we have found that a human cell line (XP20S) converts xanthine to XMP. This activity is probably catalyzed by a variant hypoxanthine-guanine phosphoribosyltransferase (HGPT) since the low activity is readily inhibited by hypoxanthine. A low level of conversion of X to XMP may explain why some cell lines are not killed in a medium containing mycophenolic acid and X.  相似文献   

5.
Both tumorigenic segregant HeLa X human fibroblast hybrids and tumorigenic HeLa (D98/AH-2) cells can be converted to a non-tumorigenic state following introduction of a single copy of a fibroblast t(X;11) chromosome. The translocated chromosome contains approximately 95% of the 11 chromosome and the q26-qter portion of the X chromosome which contains the hypoxanthine guanine phosphoribosyl transferase (HPRT) gene. Introduction of a human X chromosome has no effect on tumorigenic expression. Suppression of tumorigenicity is relieved by selecting cells which have lost the t(X;11) chromosome by growth in medium containing 6-thioguanine (6-TG). Further, reintroduction of the t(X;11) chromosome into tumorigenic 6TGR cells again suppresses tumorigenicity. Thus, the introduction of a single copy of a human chromosome 11 is sufficient to completely suppress the tumorigenic phenotype of HeLa cells and is suggestive of the presence of tumor-suppressor gene(s) on this chromosome.  相似文献   

6.
Summary We produced somatic cell hybrids between HT 1080-6TG human fibrosarcoma cells and either rat white blood cells (WBC) or cells directly derived from rat spleen. Karyologic and isozyme analyses of hybrid cells indicated that they preferentially lose rat chromosomes. Hypoxanthine-aminopterine thymidine-selected hybrid clones expressing rat hypoxanthine phosphoribosyltransferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), and phosphoglycerate kinase (PGK) and containing the rat X chromosome were counterselected in a medium containing 30 g/ml of 6-thioguanine. Concordant loss of the rat X chromosome and of the expression of rat HPRT and G6PD was observed in the hybrid clones.  相似文献   

7.
The enzyme xanthine-guanine phosphoribosyltransferase from Escherichia coli cells harboring the plasmid pSV2gpt has been purified 30-fold to near homogeneity by single-step GMP-agarose affinity chromatography. It has a Km value of 2.5, 42 and 182 microM for the substrates guanine, xanthine and hypoxanthine, respectively, with guanine being the most preferred substrate. The enzyme exhibits a Km value of 38.5 microM for PRib-PP with guanine as second substrate and of 100 microM when xanthine is used as the second substrate. It is markedly inhibited by 6-thioguanine, GMP and to a lesser extent by some other purine analogues. Thioguanine has been found to be the most potent inhibitor. The subunit molecular weight of xanthine-guanine phosphoribosyltransferase was determined to be 19 000. The in situ activity assay on a nondenaturing polyacrylamide gel electrophoresis gel has indicated that a second E. coli phosphoribosyltransferase preferentially uses hypoxanthine as opposed to guanine as a substrate, and it does not use xanthine.  相似文献   

8.
The dominant selectable gene, Ecogpt, has been introduced, by the calcium phosphate precipitation technique, into normal human fibroblasts, along with the SV40 early region genes. In one transfectant clone, integration of these sequences into human chromosome 17 was demonstrated by the construction of human-mouse somatic cell hybrids, selected for by growth in medium containing mycophenolic acid and xanthine. A whole cell hybrid, made between the human transfectant and a mouse L cell, was used as donor of the Ecogpt-carrying human chromosome 17 to 'tribrids' growing in suspension, made by whole cell fusion between a mouse thymoma cell line, and to microcell hybrids made with a mouse teratocarcinoma cell line. Two tribrids contained karyotypically normal human chromosomes 17 and a small number of other human chromosomes, while a third tribrid had a portion of the long arm of chromosome 17 translocated to mouse as its only human genetic material. Two independent microcell hybrids contained a normal chromosome 17 and no other human chromosome on a mouse teratocarcinoma background. These experiments demonstrate the ability to construct human-mouse somatic cell hybrids using a dominant selection system. By applying this approach it should be possible to select for a wide range of different human chromosomes in whole cell and microcell hybrids. In particular, transfer of single human chromosomes to mouse teratocarcinoma cells will allow examination of developmentally regulated human gene sequences after differentiation of such hybrids.  相似文献   

9.
The enzyme xanthine-guanine phosphoribosyltransferase from scherichia coli cells harboring the plasmid pSV2gpt has been purified 30-fold to near homogeneity by single-step GMP-agarose affinity chromatography. It has a Km value of 2.5, 42 and 182 μM for the substrates guanine, xanthine and hypoxanthine, respectively, with guanine being the most preferred substrate. The enzyme exhibits a Km value of 38.5 μM for PRib-PP with guanine as second substrate and of 100 μM when xanthine is used as the second substrate. It is markedly inhibited by 6-thioguanine, GMP and to a lesser extent by some other purine analogues. Thioguanine has been found to be the most potent inhibitor. The subunit molecular weight of xanthine-guanine phosphoribosyltransferase was determined to be 19 000. The in situ activity assay on a nondenaturing polyacrylamide gel electrophoresis gel has indicated that a second E. coli phosphoribosyltransferase preferentially uses hypoxanthine as opposed to guanine as a substrate, and it does not use xanthine.  相似文献   

10.
In contrast to the cytocidal effect of 6-thiopurines on mammalian cells, the action of 6-thioxanthine on Toxoplasma gondii was only parasitostatic. 6-Thioxanthine was a substrate of the parasite's hypoxanthine-guanine phosphoribosyltransferase. That enzyme converted 6-thioxanthine to 6-thioxanthosine 5'-phosphate which accumulated to near millimolar concentrations within parasites incubated intracellularly in medium containing the drug. 6-Thioxanthosine 5'-phosphate was the only detectable metabolite of 6-thioxanthine. The absence of 6-thioguanine nucleotides explains the lack of a parasitocidal effect because the incorporation of 6-thiodeoxyguanosine triphosphate into DNA is the mechanism of the lethal effect of 6-thiopurines on mammalian cells. Extracellular parasites that had accumulated a high concentration of 6-thioxanthosine 5'-phosphate incorporated more labeled hypoxanthine or xanthine into their nucleotide pools than did control parasites. The basis for this increased nucleobase salvage remains unexplained. It was not due to up-regulation of hypoxanthine-guanine phosphoribosyltransferase and could not be explained by reduced use of labeled nucleotides for nucleic acid synthesis. Extracellular parasites that had accumulated a high concentration of 6-thioxanthosine 5'-phosphate used labeled hypoxanthine almost entirely to make adenine nucleotides while control parasites made both adenine and guanine nucleotides. Both extracellular parasites that had accumulated a high concentration of 6-thioxanthosine 5'-phosphate and control parasites efficiently used labeled xanthine to make guanine nucleotides. These observations suggested that inosine 5'-phosphate-dehydrogenase was inhibited while guanosine 5'-phosphate synthase was not. Assay of inosine 5'-phosphate dehydrogenase in soluble extracts of T. gondii confirmed that 6-thioxanthosine 5'-phosphate was an inhibitor. We conclude that 6-thioxanthine blocks the growth of T. gondii by a depletion a guanine nucleotides.  相似文献   

11.
Leishmania possess distinct xanthine phosphoribosyltransferase and hypoxanthine-guanine phosphoribosyltransferase enzymes that mediate purine salvage, an obligatory nutritional function for these pathogenic parasites. The xanthine phosphoribosyltransferase preferentially uses xanthine as a substrate, while the hypoxanthine-guanine phosphoribosyltransferase phosphoribosylates only hypoxanthine and guanine. These related phosphoribosyltransferases were used as model system to investigate the molecular determinants regulating the 6-oxopurine specificity of these enzymes. Analysis of the purine binding domains showed two conserved acidic amino acids; glutamate residues in the xanthine phosphoribosyltransferase (E198 and E215) and aspartate residues in the hypoxanthine-guanine phosphoribosyltransferase (D168 and D185). Genetic and biochemical analysis established that the single E198D and E215D mutations increased the turnover rates of the xanthine phosphoribosyltransferase without altering purine nucleobase specificity. However, the E215Q and E198,215D mutations converted the Leishmania xanthine phosphoribosyltransferase into a broad-specificity enzyme capable of utilizing guanine, hypoxanthine, and xanthine as substrates. Similarly, the D168,185E double mutation transformed the Leishmania hypoxanthine-guanine phosphoribosyltransferase into a mutant enzyme capable phosphoribosylating only xanthine, albeit with a much lower catalytic efficiency. These studies established that these conserved acidic residues play an important role in governing the nucleobase selectivity of the Leishmania 6-oxopurine phosphoribosyltransferases.  相似文献   

12.
The gene for Escherichia coli guanine-xanthine phosphoribosyltransferase was placed after the high efficiency lambda phage leftward promoter in plasmid pHEGPT also containing the lambda CI857 temperature-sensitive repressor. Guanine-xanthine phosphoribosyltransferase increases 780-fold when cells containing pHEGPT are shifted from 30 to 42 degrees C. Guanine-xanthine phosphoribosyltransferase represents approximately 5% of the protein in a crude extract of induced cells. Guanine-xanthine phosphoribosyltransferase may be purified to apparent homogeneity by ammonium sulfate fractionation, Sephadex G-100, and DEAE-cellulose column chromatography. The enzyme has a subunit molecular weight of 18,600 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and behaves as a trimer during Sephadex G-100 column chromatography. Guanine-xanthine phosphoribosyltransferase is active from pH 7.5 to 10.5 with maximum activity at pH 9.5. The enzyme is protected from heat inactivation by phosphoribosylpyrophosphate (PRPP). At 65 degrees C, the enzyme has a half-life of 2 min in the absence of PRPP and 90 min in the presence of PRPP. The enzyme displays Michaelis-Menten kinetics with apparent Michaelis constants for guanine, xanthine, hypoxanthine, and PRPP of 2.6, 39, 167, and 95 microM, respectively. The activity of the enzyme with guanine is 2-fold greater than that with xanthine and 3-fold greater than that with hypoxanthine.  相似文献   

13.
Human tuberculosis (TB) is a major cause of morbidity and mortality worldwide, especially in poor and developing countries. Moreover, the emergence of Mycobacterium tuberculosis strains resistant to first- and second-line anti-TB drugs raises the prospect of virtually incurable TB. Enzymes of the purine phosphoribosyltransferase (PRTase) family are components of purine salvage pathway and have been proposed as drug targets for the development of chemotherapeutic agents against infective and parasitic diseases. The PRTase-catalyzed chemical reaction involves the ribophosphorylation in one step of purine bases (adenine, guanine, hypoxanthine, or xanthine) and their analogues to the respective nucleoside 5′-monophosphate and pyrophosphate. Hypoxanthine–guanine phosphoribosyltransferase (HGPRT; EC 2.4.2.8) is a purine salvage pathway enzyme that specifically recycles hypoxanthine and guanine from the medium, which are in turn converted to, respectively, IMP and GMP. Here we report cloning, DNA sequencing, expression in Escherichia coli BL21 (DE3) cells, purification to homogeneity, N-terminal amino acid sequencing, mass spectrometry analysis, and determination of apparent steady-state kinetic parameters for an in silico predicted M. tuberculosis HGPRT enzyme. These data represent an initial step towards future functional and structural studies, and provide a solid foundation on which to base M. tuberculosis HGPRT-encoding gene manipulation experiments to demonstrate its role in the biology of the bacillus.  相似文献   

14.
An expression vector for high-level protein synthesis in Vero cells   总被引:2,自引:0,他引:2  
We have constructed two new multi-purpose cloning vectors, pNI1 and pNI2, that carry the Escherichia coli gene Ecogpt encoding the enzyme xanthine-guanine phosphoribosyl transferase as a dominant selective marker. The Ecogpt gene is under the control of either the long-terminal-repeat promoter of mouse mammary tumor virus, pNI1, or the simian virus 40 early promoter, pNI2. Another feature of the vectors is a polylinker preceded by the human metallothionein IIA promoter. We have used pNI2 for the synthesis of the hepatitis B surface antigen (HBsAg) at a high level in monkey Vero cells. We show that gene amplification and a concomitant stable increase of HBsAg synthesis can be achieved in these cells using modified selective medium containing hypoxanthine, aminopterin and thymidine, i.e., increasing the aminopterin and decreasing the hypoxanthine concentrations.  相似文献   

15.
Giardia lamblia, a flagellated parasitic protozoan and the causative agent of giardiasis, lacks de novo purine biosynthesis and exists on salvage of adenine and guanine by adenine phosphoribosyltransferase and guanine phosphoribosyltransferase. Guanine phosphoribosyltransferase from G. lamblia crude extracts has been purified to apparent homogeneity by Sephacryl S-200 gel filtration followed by C-8-GMP-agarose and 2',3'-GMP-agarose affinity chromatography, resulting in an overall recovery of 77% and a purification of 83,000-fold. The molecular weight of the native enzyme as estimated by gel filtration and isokinetic sucrose gradients was found to be 58,000-63,000, with a subunit molecular weight of approximately 29,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mono P chromatofocusing chromatography gives rise to a major activity peak eluting from the column at a pH of 6.75 and two minor activity peaks at pH of 5.3 and 5.2. Hypoxanthine and xanthine can be recognized by the enzyme as substrates but at Km values 20 times higher than that observed with guanine. G. lamblia guanine phosphoribosyltransferase is immunologically distinct from human hypoxanthine-guanine phosphoribosyltransferase and Escherichia coli xanthine-guanine phosphoribosyltransferase, and G. lamblia DNA fragments are incapable of hybridizing with mouse neuroblastoma hypoxanthine-guanine phosphoribosyltransferase DNA or E. coli xanthine phosphoribosyltransferase DNA under relatively relaxed conditions. All evidence presented suggests that G. lamblia guanine phosphoribosyltransferase may be qualified as a potential target for antigiardiasis chemotherapy.  相似文献   

16.
Using a human-mouse monochromosomal hybrid, BG15-6, that contains an intact human chromosome 5, we isolated four monoclonal antibodies, 2A10, 3H9, 5G9, and 6G12, as chromosome marker antibodies recognizing cell surface antigens specific for human chromosome 5. The binding patterns of these antibodies to BG15 subclones containing fragments of human chromosome 5 indicated that 2A10, 3H9, and 6G12 recognized the antigens produced by genes located on 5pterq22, and that 5G9 recognized the antigen produced by a gene located on 5q23. Cells containing human chromosome 5 were very effectively sorted in a fluorescence-activated cell sorter (FACS) using monoclonal antibody 6G12. This method for sorting cells containing human chromosome 5 or an appropriate fragment of this chromosome from among human-rodent hybrid cells should be very useful in studies on gene expression, gene cloning and gene mapping.by M. Trendelenburg  相似文献   

17.
Human-mouse somatic cell hybrids were made between adenine phosphoribosyltransferase-deficient mouse L cells and a strain of human primary fibroblasts and selected in medium containing alanosine and adenine (J. A. Tischfield and F. H. Ruddle, Proc. Natl. Acad. Sci. U.S.A. 71:45-49, 1974). These hybrids were tested for the generation of defective interfering (DI) particles of vesicular stomatitis virus to determine whether or not a host gene controls the induction of DI particles. None of the seven independently arising hybrid clones tested generated detectable DI particles during 13 successive undiluted passages. In addition, the parental human cells also failed to generate DI particles. In contrast, the parental mouse cells generated a detectable level of DI particles during continuous passage. Thus, failure to generate DI particles appears to act in a dominant fashion in these hybrids. Human chromosome 16 and adenine phosphoribosyltransferase were present, as a direct consequence of the selection system, in all of the hybrid clones that failed to generate DI particles. It was the only human chromosome observed in the cells of every hybrid clone. This was verified by both isozyme and karyotype analyses. After hybrids were back-selected (with 2,6-diaminopurine) for loss of human adenine phosphoribosyltransferase and chromosome 16, they gained the ability to generate DI particles. Replication of DI particles already present in virus stocks, however, was normal in all of the hybrid clones and the parental human cells. This suggests that the induction, but not the replication, of DI particles is affected by the human genome and that a factor on human chromosome 16 seems to selectively suppress the mouse cell's ability to generate DI particles in the hybrids. These results support the idea that the induction of DI particles is controlled in part by host cell function(s), as suggested previously (C. Y. Kang and R. Allen, J. Virol. 25:202-206, 1978).  相似文献   

18.
Skin fibroblasts (LNSV) derived from a hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient patient with the Lesch-Nyhan syndrome, who has glucose-6-phosphate dehydrogenase (G6PD) type A, were transformed with SV40 and hybridized with WI38 human diploid fibroblasts derived from a female embryo which have normal HGPRT and G6PD type B activities. The hybrid clones selected in hypoxanthine, aminopterin and thymidine (HAT) medium, were essentially tetraploid and contained three X and one Y chromosomes. These hybrids contained HGPRT, types A and B and the AB heteropolymeric form of G6PD enzymes which were indicative that in these cells X linked genes of both parental cells were fully active. Hybrids back-selected in medium containing 8-azaguanine (8-AG) contained only two X chromosomes. They had no HGPRT activity and they contained only G6PD type A enzyme. It is concluded that the hybrid cells which grew in the presence of 8-AG retained the X chromosome of the LNSV parental cell and apparently the inactive X of the WI 38 cell.  相似文献   

19.
The DNA of patients taking immunosuppressive and anti-inflammatory thiopurines contains 6-thioguanine (6-TG) and their skin is hypersensitive to ultraviolet A (UVA) radiation. DNA 6-TG absorbs UVA and generates reactive oxygen species that damage DNA and proteins. Here, we show that the DNA damage includes covalent DNA-protein crosslinks. An oligonucleotide containing a single 6-TG is photochemically crosslinked to cysteine-containing oligopeptides by low doses of UVA. Crosslinking is significantly more efficient if guanine sulphonate (G(SO3))--an oxidized 6-TG and a previously identified UVA photoproduct--replaces 6-TG, suggesting that G(SO3) is an important reaction intermediate. Crosslinking occurs via oligopeptide sulphydryl and free amino groups. The oligonucleotide-oligopeptide adducts are heat stable but are partially reversed by reducing treatments. UVA irradiation of human cells containing DNA 6-TG induces extensive heat- and reducing agent-resistant covalent DNA-protein crosslinks and diminishes the recovery of some DNA repair and replication proteins from nuclear extracts. DNA-protein crosslinked material has an altered buoyant density and can be purified by banding in cesium chloride (CsCl) gradients. PCNA, the MSH2 mismatch repair protein and the XPA nucleotide excision repair (NER) factor are among the proteins detectable in the DNA-crosslinked material. These findings suggest that the 6-TG/UVA combination might compromise DNA repair by sequestering essential proteins.  相似文献   

20.
The purpose of this study was to use DNA transfection and microcell chromosome transfer techniques to engineer a human chromosome containing multiple biochemical markers for which selectable growth conditions exist. The starting chromosome was a t(X;3)(3pter----3p12::Xq26----Xpter) chromosome from a reciprocal translocation in the normal human fibroblast cell line GM0439. This chromosome was transferred to a HPRT (hypoxanthine phosphoribosyltransferase)-deficient mouse A9 cell line by microcell fusion and selected under growth conditions (HAT medium) for the HPRT gene on the human t(X;3) chromosome. A resultant HAT-resistant cell line (A9(GM0439)-1) contained a single human t(X;3) chromosome. In order to introduce a second selectable genetic marker to the t(X;3) chromosome, A9(GM0439)-1 cells were transfected with pcDneo plasmid DNA. Colonies resistant to both G418 and HAT medium (G418r/HATr) were selected. To obtain A9 cells that contained a t(X;3) chromosome with an integrated neo gene, the microcell transfer step was repeated and doubly resistant cells were selected. G418r/HATr colonies arose at a frequently of 0.09 to 0.23 x 10(-6) per recipient cell. Of seven primary microcell hybrid clones, four yielded G418r/HATr clones at a detectable frequency (0.09 to 3.4 x 10(-6)) after a second round of microcell transfer. Doubly resistant cells were not observed after microcell chromosome transfers from three clones, presumably because the markers were on different chromosomes. The secondary G418r/HATr microcell hybrids contained at least one copy of the human t(X;3) chromosome and in situ hybridization with one of these clones confirmed the presence of a neo-tagged t(X;3) human chromosome. These results demonstrate that microcell chromosome transfer can be used to select chromosomes containing multiple markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号