首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Kimber A  Sze H 《Plant physiology》1984,74(4):804-809
The effects of purified Helminthosporium maydis T (HmT) toxin on active Ca2+ transport into isolated mitochondria and microsomal vesicles were compared for a susceptible (T) and a resistant (N) strain of corn (Zea mays). ATP, malate, NADH, or succinate could drive 45Ca2+ transport into mitochondria of corn roots. Ca2+ uptake was dependent on the proton electrochemical gradient generated by the redox substrates or the reversible ATP synthetase, as oligomycin inhibited ATP-driven Ca2+ uptake while KCN inhibited transport driven by the redox substrates. Purified native HmT toxin completely inhibited Ca2+ transport into T mitochondria at 5 to 10 nanograms per milliliter while transport into N mitochondria was decreased slightly by 100 nanograms per milliliter toxin. Malate-driven Ca2+ transport in T mitochondria was frequently more inhibited by 5 nanograms per milliliter toxin than succinate or ATP-driven Ca2+ uptake. However, ATP-dependent Ca2+ uptake into microsomal vesicles from either N or T corn was not inhibited by 100 nanograms per milliliter toxin. Similarly, toxin had no effect on proton gradient formation ([14C]methylamine accumulation) in microsomal vesicles. These results show that mitochondrial and not microsomal membrane is a primary site of HmT toxin action. HmT toxin may inhibit formation of or dissipate the electrochemical proton gradient generated by substrate-driven electron transport or the mitochondrial ATPase, after interacting with a component(s) of the mitochondrial membrane in susceptible corn.  相似文献   

2.
Host-selective toxin from Helminthosporium maydis race T inhibited oxidative phosphorylation (AT32P formation) and stimulated ATPase activity by mitochondria from male-sterile (T) but not from normal (N) cytoplasm maize (Zea mays L.). Toxin increased the rate of NADH oxidation, but succinate oxidation was slightly, and malate-pyruvate oxidation was strongly inhibited as the associated ATP formation was abolished. There was a 1-minute lag before toxin gave maximal stimulation of NADH oxidation; the responses to 2,4-dinitrophenol and valinomycin were immediate. There was also a delay in the effect of toxin on ATP formation. T mitochondria were more sensitive than were N mitochondria to uncoupling by nigericin plus K+; there was no evidence, however, that the action of toxin is related to that of nigericin or other ionophores. With NADH as the substrate, the degree of uncoupling increased with increases in toxin concentration up to a saturating level; kinetics of the response suggested reversibility. T mitochondria exposed to toxin for 5 minutes regained normal rates of respiration and of ATP formation when they were washed with toxin-free medium, showing that the uncoupling effect is reversible. Evidently HM-T toxin does not bind firmly to its site(s) of action, in contrast to reports for another hostselective toxin.  相似文献   

3.
Methomyl and Helminthosporium maydis race T toxin block oxidative phosphorylation in mitochondria isolated from maize plants with Texas male sterile cytoplasm (T) but not in mitochondria isolated from those with Normal cytoplasm (N) (Bednarski, Izawa, Scheffer 1977 Plant Physiol 59: 540-545). Moreover, they have been reported to cause specific swelling in T mitochondria (Miller, Koeppe 1971 Science 173: 67-69; Koeppe, Cox, Malone 1978 Science 201: 1227-1229). We could not detect, by direct volume measurements, any change induced by these compounds in the mitochondrial matrix space. We show here that the proton motive force, which in maize mitochondria is composed of a large transmembrane potential and of a low transmembrane pH difference, is absent in T mitochondria incubated in the presence of methomyl or of Helminthosporium maydis race T toxin, while it is unchanged in N mitochondria. Methomyl and Helminthosporium maydis race T toxin induce, independently of the collapse of the proton motive force, a release of the cofactors NAD and coenzyme A from the mitochondrial matrix space. In particular, we show that NAD is transported in maize mitochondria, and that this transport, which is not dependent on the proton motive force, is inhibited by methomyl or Helminthosporium maydis race T toxin.  相似文献   

4.
Mitochondria from liver, kidney, brain, and skeletal muscle metabolized acetaldehyde. Acetaldehyde oxidation by liver and kidney mitochondria was maximal at low levels of acetaldehyde and was sensitive to rotenone, suggesting the involvement of a NAD+-dependent aldehyde dehydrogenase with a high affinity for acetaldehyde. Acetaldehyde oxidation was stimulated 50% by ADP, suggesting that, in state 4, reoxidation of NADH is rate limiting for acetaldehyde oxidation. In state 4, acetaldehyde oxidation was decreased by NAD+-dependent substrates, as well as by succinate and ascorbate. The inhibition by the latter two substrates was prevented by ADP, dinitrophenol, valinomycin, and gramicidin, but not by oligomycin. Since these compounds are linked to energy transduction and utilization, the data suggest that the inhibition is mediated via energy-dependent reversed electron transport. In state 3, all of these substrates caused considerably less inhibition of acetaldehyde oxidation, suggesting that the activity of aldehyde dehydrogenase, and not of NADH reoxidation, is probably rate limiting for acetaldehyde oxidation. The ionophores valinomycin and gramicidin stimulated acetaldehyde oxidation to a greater extent than ADP. These ionophores also stimulated acetaldehyde oxidation in the presence of ADP. Stimulation by valinomycin occurred in the presence of monovalent cations transported by this ionophore, e.g., K+, Rb+, Cs+. Stimulation by gramicidin also occurred in the presence of these cations, but did not occur with Na+ or Li+. Na+ prevents the stimulation of acetaldehyde oxidation, which occurs in the presence of gramicidin and K+. The stimulation by valinomycin and gramicidin was energy dependent and required the presence of a permeant anion. In the absence of an ionophore, potassium phosphate had no effect on acetaldehyde oxidation. These data suggest that the oxidation of acetaldehyde by rat liver and kidney mitochondria is influenced by the oxidation-reduction state of the mitochondria and by the cationic environment. With brain and muscle mitochondria, the rate of acetaldehyde oxidation increased two- to threefold as the concentration of acetaldehyde was raised from 0.167 to 0.50 mm. Acetaldehyde oxidation in these mitochondria was also sensitive; to rotenone, indicating dependence on NAD+. ADP, valinomycin, gramicidin, and succinate, compounds which either increased or decreased the rate of acetaldehyde oxidation by liver and kidney mitochondria, had no effect on acetaldehyde oxidation by muscle or brain mitochondria. In state 4, mitochondria from Becker-transplantable hepatocellular carcinoma HC-252 oxidized acetaldehyde at the same rate as liver mitochondria. However, in the presence of ADP, dinitrophenol, valinomycin and gramicidin, the rate of acetaldehyde oxidation by the tumor mitochondria was two to three times greater than that of liver mitochondria, suggesting the presence of a more active; acetaldehyde-oxidizing system in tumor than in liver mitochondria.  相似文献   

5.
A toxin preparation from Helminthosporium maydis Race T containing several closely related molecules with apparently identical biological activities was highly active against mitochondria and protoplasts from Texas male-sterile (T) cytoplasm corn (T mitochondria and T protoplasts, respectively) but had no effect on their male-fertile (N) cytoplasm counterparts. The toxin preparation caused multiple changes in isolated T mitochondria, including uncoupling of oxidative phosphorylation, stimulation of succinate and NADH respiration, inhibition of malate respiration, increased swelling, loss of matrix density, and unfolding of the inner membrane. Only 6 to 7 nanograms toxin per milligram mitochondrial protein (1.8 nanogram per milliliter) were required to fully uncouple oxidative phosphorylation and to completely inhibit malate respiration in isolated T mitochondria. Similar low concentrations of toxin caused collapse of T protoplasts after several days of culture. Severe ultrastructural damage to mitochondria in T protoplasts was observed within 20 minutes; no changes in other cellular components were observed at this time. These observations on the cytoplasmic specificity, multiple effects, and high activity of the toxin at the mitochondrial and cellular levels highlight its biological significance and potential usefulness in determining the molecular basis of southern corn leaf blight disease.  相似文献   

6.
The mechanism by which Helminthosporium maydis race T toxin inhibits respiration dependent on NAD+-linked substrates in T cytoplasm corn mitochondria was investigated. The toxin did not cause leakage of the soluble matrix enzyme malate dehydrogenase from the mitochondria or inhibit malate dehydrogenase or isocitrate dehydrogenase directly. The toxin did increase the permeability of the inner membranes of T cytoplasm, but not N cytoplasm, mitochondria to NAD+. Added NAD+ partially or fully restored toxin-inhibited electron transport in T cytoplasm mitochondria. Thiamin pyrophosphate had a similar effect when malate was the substrate. It was concluded that the inhibition of respiration of NAD+-linked substrates by the toxin is due to depletion of the intramitochondrial pool of NAD+ and other coenzymes.  相似文献   

7.
The respiratory rate of rat liver mitochondria in the presence of NADH as exogenous substrate is enhanced by the addition of CaCl2 (> 50 μM) when inorganic phosphate is present in the medium. The Ca-induced oxidation of NADH is inhibited by rotenone but is not affected by uncoupling agents. EDTA, which does not reverse the swelling of mitochondria which occurs in the presence of Ca2+ and phosphate, is able to inhibit reversibly the Ca-stimulated NADH oxidation. A stimulation of the rate of oxidation of NADH by Ca2+ is also observed in mitochondria partially swollen in a hypotonic medium.  相似文献   

8.
The kinetics of NADH oxidation by the outer membrane electron transport system of intact beetroot (Beta vulgaris L.) mitochondria were investigated. Very different values for Vmax and the Km for NADH were obtained when either antimycin A-insensitive NADH-cytochrome c activity (Vmax= 31 ± 2.5 nmol cytochrome c (mg protein)?1 min?1; Km= 3.1 ± 0.8 μM) or antimycin A-insensitive NADH-ferricyanide activity (Vmax= 1.7 ± 0.7 μmol ferricyanide (mg protein)?1 min?1; Km= 83 ± 20 μM) were measured. As ferricyanide is believed to accept electrons closer to the NADH binding site than cytochrome c, it was concluded that 83 ± 20 μM NADH represented a more accurate estimate of the binding affinity of the outer membrane dehydrogenase for NADH. The low Km determined with NADH-cytochrome c activity may be due to a limitation in electron flow through the components of the outer membrane electron transport chain. The Km for NADH of the externally-facing inner membrane NADH dehydrogenase of pea leaf (Pisum sativum L. cv. Massey Gem) mitochondria was 26.7 ± 4.3 μM when oxygen was the electron acceptor. At an NADH concentration at which the inner membrane dehydrogenase should predominate, the Ca2+ chelator, ethyleneglycol-(β-aminoethylether)-N,N,-tetraacetic acid (EGTA), inhibited the oxidation of NADH through to oxygen and to the ubiquinone-10 analogues, duroquinone and ubiquinone-1, but had no effect on the antimycin A-insensitive ferricyanide reduction. It is concluded that the site of action of Ca2+ involves the interaction of the enzyme with ubiquinone and not with NADH.  相似文献   

9.
Plant (and fungal) mitochondria contain multiple NAD(P)H dehydrogenases in the inner membrane all of which are connected to the respiratory chain via ubiquinone. On the outer surface, facing the intermembrane space and the cytoplasm, NADH and NADPH are oxidized by what is probably a single low-molecular-weight, nonproton-pumping, unspecific rotenone-insensitive NAD(P)H dehydrogenase. Exogenous NADH oxidation is completely dependent on the presence of free Ca2+ with aK 0.5 of about 1 µM. On the inner surface facing the matrix there are two dehydrogenases: (1) the proton-pumping rotenone-sensitive multisubunit Complex I with properties similar to those of Complex I in mammalian and fungal mitochondria. (2) a rotenone-insensitive NAD(P)H dehydrogenase with equal activity with NADH and NADPH and no proton-pumping activity. The NADPH-oxidizing activity of this enzyme is completely dependent on Ca2+ with aK 0.5 of 3 µM. The enzyme consists of a single subunit of 26 kDa and has a native size of 76 kDa, which means that it may form a trimer.  相似文献   

10.
The addition of 2-deoxyglucose to tissue elicits an in vivo mitochondrial conformation response (contraction) that can be viewed ultrastructurally and is indicative of the phosphorylative capability of mitochondria. Utilizing this technique toxin from Bipolaris (Helminthosporium) maydis race T was found to penetrate leaf and root tissue of Texas male-sterile cytoplasm corn (Zea mays L. W64A) only slowly, but once in cells the toxin had a rapid deleterious effect on mitochondrial function. It is concluded that B. maydis (race T) toxin has effects on in vivo mitochondria similar to those reported after in vitro experimentation and that mitochondria are a primary site of toxin action. These observations are followed by the suggestion that susceptibility or resistance to B. maydis (race T) is conferred in corn by a cytoplasmically inheritable character associated with mitochondria.  相似文献   

11.
Pham HN  Gregory P 《Plant physiology》1980,65(6):1173-1175
Helminthosporium maydis Race T toxin caused the expected changes in freshly isolated mitochondria from T cytoplasm corn, namely complete uncoupling of oxidative phosphorylation, pronounced stimulation of succinate and NADH respiration, complete inhibition of malate respiration, and increased mitochondrial swelling. In contrast, identical toxin treatments of the mitochondria after 12 hours aging on ice resulted in partial uncoupling, much lower stimulation of succinate and NADH respiration, no inhibition of malate respiration, and no mitochondrial swelling. Almost all of the toxin sensitivity was lost by 6 hours aging. At this stage, the mitochondria were 208× and 66× less sensitive to toxin-induced changes in coupling of malate respiration and state 4 malate respiration rates, respectively. Loss of toxin sensitivity did not occur when the mitochondria were aged under nitrogen or in the presence of 5 millimolar dithiothreitol. This suggested that the aging effect was due to oxidation, possibly of sulfhydryl groups in one or more mitochondrial membrane proteins.  相似文献   

12.
Summary Plants resistant to Helminthosporium maydis race T were obtained following selection for H. maydis pathotoxin resistance in tissue cultures of susceptible, Texas male-sterile (T) cytoplasm maize. The selected lines transmitted H. maydis resistance to their sexual progeny as an extranuclear trait. Of 167 resistant, regenerated plants, 97 were male fertile and 70 were classified male sterile for reasons that included abnormal plant, tassel, anther or pollen development. No progeny were obtained from these male-sterile, resistant plants. Male fertility and resistance to the Phyllosticta maydis pathotoxin that specifically affects T cytoplasm maize were co-transmitted with H. maydis resistance to progeny of male-fertile, resistant plants. These three traits previously were associated only with the normal (N) male-fertile cytoplasm condition in maize. Three generations of progeny testing provided no indication that the cytoplasmic association of male sterility and toxin susceptibility had been broken by this selection and regeneration procedure. Restriction endonuclease analysis of mitochondrial DNA (mtDNA) revealed that three selected, resistant lines had distinct mtDNA organization that distinguished them from each other, from T and from N cytoplasm maize. Restriction patterns of the selected resistant lines were similar to those from T cytoplasm mtDNA; these patterns had not been observed in any previous analyses of various sources of T cytoplasm. The mtDNA analyses indicated that the male-fertile, toxin-resistant lines did not originate from selection of N mitochondrial genomes coexisting previously with T genomes in the T cytoplasm line used for selection.Scientific Journal Series Article no. 11,185 of the Minnesota Agricultural Experiment Station and no. 2295 of the Florida Agricultural Experiment Station. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee of warrantly of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   

13.
R.P. Holmes  P.R. Stewart 《BBA》1979,545(1):94-105
A method for the isolation of coupled mitochondria from the acellular slime mould Physarum polycephalum is described. The mitochondria oxidize respiratory substrates at rates comparable to those of mitochondria from other micro-organisms and show similar responses to respiratory inhibitors. ADP/O values approach similar values to those obtained with mitochondria from higher organisms: 3 with NAD-linked substrates, 2 with succinate, and 1 with ascorbate-TMPD.Mitochondria actively take up low concentrations of Ca2+ with stimulation of their respiration. With succinate or pyruvate-malate as substrates respiratory responses are depressed by Ca2+ concentrations in excess of 200 μM in the presence or absence of phosphate.Exogenous NADH is unique in supporting the uptake of large amounts of Ca2+ in the presence of phosphate and in showing an unusual ‘uncoupled’ response in the absence of phosphate.A sigmoidal relationship occurs between initial velocity of Ca2+ uptake and Ca2+ concentration with a maximum velocity of approx. 15 nmol/s per mg protein and half maximum velocity occurring at approx. 50 μM Ca2+.  相似文献   

14.
Summary

Rat liver mitochondria have a specific Ca2+ release pathway which operates when NAD+ is hydrolysed to nicotinamide and ADPribose. NAD+ hydrolysis is Ca2+-dependent and inhibited by cyclosporine A (CSA). Mitochondrial Ca2+ release can be activated by the prooxidant t-butylhydroperoxide (tbh) or by gliotoxin (GT), a fungal metabolite of the epipolythiodioxopiperazine group. Tbh oxidizes NADH to NAD+ through an enzyme cascade consisting of glutathione peroxidase, glutathione reductase, and the energy linked transhydrogenase, whereas GT oxidizes some vicinal thiols to the disulfide form, a prerequisite for NAD+ hydrolysis. We report now that rat skeletal muscle mitochondria also contain a specific Ca2+ release pathway activated by both tbh and GT. Ca2+ release increases with the mitochondrial Ca2+ load, is completely inhibited in the presence of CSA, and is paralleled by pyridine nucleotide oxidation. In the presence of tbh and GT, mitochondria do not lose their membrane potential and do not swell, provided continuous release and re-uptake of Ca2+ (‘Ca2+ cycling’) is prevented. These data support the notion that both tbh- and GT-induced Ca2+ release are not the consequence of an unspecific increase of the inner membrane permeability (‘pore’ formation). Tbh induces Ca2+ release from rat skeletal muscle less efficiently than from liver mitochondria indicating that the coupling between tbh and NADH oxidation is much weaker in skeletal muscle mitochondria. This conclusion is corroborated by a much lower glutathione peroxidase activity in skeletal muscle than in liver mitochondria. The prooxidant-dependent pathway promotes, under drastic conditions (high mitochondrial Ca2+ loads and high tbh concentrations), Ca2+ release to about the same extent and rate as the Na+/Ca2+ exchanger. This renders the prooxidant-dependent pathway relevant in the pathophysiology of mitochondrial myopathies where its activation by an increased generation of reactive oxygen species probably results in excessive Ca2+ cycling and damage to mitochondria.  相似文献   

15.
It has been suggested that mitochondria might modify transmitter release through the control of intracellular Ca2+levels. Treatments known to inhibit Ca2+retention by mitochondria lead to an increased transmitter liberation in the absence of external Ca2+, both at the frog neuromuscular junction and from isolated nerve endings. Sodium ions stimulate Ca2+efflux from mitochondria isolated from excitable tissues. In the present study, the effect of increasing internal Na+ levels on [3H]γ-aminobutyric acid ([3H]GABa) release from isolated nerve endings is reported. Results show that the efflux of [3H]GABA from prelabeled synaptosomes is stimulated by ouabain, veratrine, gramicidin D, and K+-free medium, which increase the internal sodium concentration. This effect was not observed when Na+ was omitted from the incubation medium and it was independent of external Ca2+, the experiments having been performed in a Ca2+-free, EGTA-containing medium. Since preincubation of synaptosomes with 2,4-diaminobutyric acid did not prevent the stimulatory effect of increased internal Na+ levels on [3H]GABA efflux, it appears to be unrelated to an enhanced activity of the outward carrier-mediated GABA transport. These results suggest that the augmented release of [3H]GABA may be due to an increased Ca2+efflux from mitochondria eiicited by the accumulation of Na+ at the nerve endings. Sandoval M. E. Sodium-dependent efflux of [3H]GABA from synaptosomes probably related to mitochondrial calcium mobilization. J. Neurochem. 35 , 915–921 (1980).  相似文献   

16.
The adsorption of Ca2+ to the mitochondria ofSaccharomyces cerevisiae was investigated and it was found that, in contrast with animal mitochondria, Ca2+ is not accumulated through an energydependent process but is more probably adsorbed to mitochondrial membranes. The adsorption magnitude depends both on the amount of added calcium and on the ionic composition of the medium. It was found by study of the effect of divalent cations on the respiratory activity of yeast mitochondria that (a) Ca2+ and Mg2+ inhibit their oxidation competitively with succinate or citrate, the oxidation of NADH not being affected; (b) stimulation of oxidation of NADH and inhibition of oxidation of citrate and succinate may be observed with Ca2+ in the mitochondria ofTorulopsis utilis and with Co2+ in the mitochondria ofSaccharomyces cerevisiae; (c) Zn2+ inhibits the oxidation of NADH and of citrate; (d) the rate of oxidation of NADH in the presence of Cd2+ is several-fold greater than State 3 activity—on the other hand, oxidation of suceinate and citrate is inhibited by cadmium. In comparison with animal mitochondria, the fate of Ca2+ as well as the effects of other divalent cations on the respiratory activity of yeast mitochondria are different.  相似文献   

17.
《Free radical research》2013,47(1):681-689
Ischemia and reperfusion causes severe mitochondrial damage, including swelling and deposits of hyd-roxyapatite crystals in the mitochondrial matrix. These crystals are indicative of a massive influx of Ca2+ into the mitochondrial matrix occurring during reoxygenation. We have observed that mitochondria isolated from rat hearts after 90 minutes of anoxia followed by reoxygenation, show a specific inhibition in the electron transport chain between NADH dehydrogenase and ubiquinone in addition to becoming uncoupled (unable to generate ATP). This inhibition is associated with an increased H2O2 formation at the NADH dehydrogenase level in the presence of NADH dependent substrates. Control rat mitochondria exposed for 15 minutes to high Ca2+ (200 nmol/mg protein) also become uncoupled and electron transport inhibited between NADH dehydrogenase and ubiquinone. a lesion similar to that observed in post-ischem-ic mitochondria. This Ca2+ -dependent effect is time dependent and may be partially prevented by albumin, suggesting that it may be due to phospholipase A2 activation. releasing fatty acids, leading to both inhibition of electron transport and uncoupling. Addition of arachidonic or linoleic acids to control rat heart mitochondria, inhibits electron transport between Complex I and III. These results are consistent with the following hypothesis: during ischemia, the intracellular energy content drops severely, affecting the cytoplasic concentration of ions such as Na+ and Ca2+. Upon reoxygenation, the mitochondrion is the only organelle capable of eliminating the excess cytoplasmic Ca2+ through an electrogenic process requiring oxygen (the low ATP concentration makes other ATP-dependent Ca?' lransport systems non-operational). Ca2+-overload of mitochondria activates phospholipase A2 releasing free fatty acids, leading to uncoupling and inhibition of the interactions between Complex I and III of the respiratory chain. As a consequence, the NADH-dehydrogenase becomes highly reduced, and transfers electrons directly to oxygen generating O2.  相似文献   

18.
This study aims at characterizing NAD(P)H dehydrogenases on the inside and outside of the inner membrane of mitochondria of one phosphoenolpyruvate carboxykinase??crassulacean acid metabolism plant, Hoya carnosa. In crassulacean acid metabolism plants, NADH is produced by malate decarboxylation inside and outside mitochondria. The relative importance of mitochondrial alternative NADH dehydrogenases and their association was determined in intact??and alamethicin??permeabilized mitochondria of H. carnosa to discriminate between internal and external activities. The major findings in H. carnosa mitochondria are: (i) external NADPH oxidation is totally inhibited by DPI and totally dependent on Ca2+, (ii) external NADH oxidation is partially inhibited by DPI and mainly dependent on Ca2+, (iii) total NADH oxidation measured in permeabilized mitochondria is partially inhibited by rotenone and also by DPI, (iv) total NADPH oxidation measured in permeabilized mitochondria is partially dependent on Ca2+ and totally inhibited by DPI. The results suggest that complex I, external NAD(P)H dehydrogenases, and internal NAD(P)H dehydrogenases are all linked to the electron transport chain. Also, the total measurable NAD(P)H dehydrogenases activity was less than the total measurable complex I activity, and both of these enzymes could donate their electrons not only to the cytochrome pathway but also to the alternative pathway. The finding indicated that the H. carnosa mitochondrial electron transport chain is operating in a classical way, partitioning to both Complex I and alternative Alt. NAD(P)H dehydrogenases.  相似文献   

19.
Holden MJ  Sze H 《Plant physiology》1987,84(3):670-676
We have tested directly the effect of Helminthosporium maydis T (Hmt) toxin and various analogs on the membrane potential formed in mitochondria isolated from a Texas (T) cytoplasmic male-sterile and a normal (N) corn. ATP, malate or succinate generated a membrane potential (negative inside) as monitored by the absorbance change of a cationic dye, safranine. The relative membrane potential (Δψ) could also be detected indirectly as 45Ca2+ uptake. Hmt toxin added to T mitochondria dissipated the steady state Δψ similar to addition of a protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Toxin analogs (Cpd XIII: C41H68O12 and Cpd IV: C25H44O6), reduced native toxin (RT2C: C41H84O13) and Pm toxin (band A: C33H60O8, produced by the fungus, Phyllosticta maydis) were effective in dissipating Δψ and decreasing Ca2+ uptake with the following order: Pm (100) » HmT (23-30) > Cpd XIII (11-25) » RT2C (0-4−1.8) > Cpd IV (0.2−1.0). In contrast, the toxins and analogs had no effect on Δψ formed in N mitochondria. The striking similarities of the HmT toxin (band 1: C41H68O13) and Cpd XIII on T mitochondrial activities provide strong evidence supporting the correctness of the polyketol structure assigned to the native toxin. Since the Δψ in energized mitochondria is caused mainly by the electrogenic extrusion of H+, the results support the idea that HmT toxin increases membrane permeability of T mitochondria to H+. The host specificity of the toxin suggests that an interaction with unique target site(s) on the inner mitochondrial membrane of T corn causes H+ leakage.  相似文献   

20.
Submitochondrial particles (SMP) were produced from Jerusalem artichoke (Helianthus tuberosus L.) mitochondria by sonication and differential centrifugation. The SMP were about 50% inside-out as measured by the access of reduced cytochrome c to cytochrome c oxidase. Uncoupled NADH oxidation (1 mM NADH) by the SMP was 120 nmol O2 min?1mg?1, which was reduced to 98 nmol O2 min?1 (mg mitochondrial protein)?1 in the presence of EGTA. In contrast, the oxidation of NADH by intact mitochondria was completely inhibited by EGTA (from 182 to 14 nmol O2 min?1mg?1). The EGTA-resistant NADH oxidation by the SMP is ascribed to the NADH dehydrogenase(s) on the inside of the inner membrane and exposed to the medium in the inside-out SMP. In the presence of EGTA it could be shown that two NADH dehydrogenase activities were present in the SMP. One had an apparent Km of 7 μM for NADH, a Vmax of 80 nmol NADH min?1mg?1, and was rotenone-sensitive. This dehydrogenase is equivalent to the mammalian Complex I NADH dehydrogenase. The other dehydrogenase, which was rotenone-resistant, had a Km of 80 μM and a Vmax of 131 nmol NADH min?1mg?1; it is probably responsible for the rotenone-resistant oxidation of organic acids often observed in plant mitochondria. The redox poise of the pyridine nucleotides had only a small effect on the relative rates of the two internal dehydrogenases. Electron flow through these dehydrogenases appears, therefore, to be regulated mainly by the concentration of NADH in the matrix of the mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号