首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biogenesis, functions and fate of plant microRNAs   总被引:1,自引:0,他引:1  
  相似文献   

2.
MicroRNA与肿瘤相关的信号转导通路   总被引:1,自引:0,他引:1  
吴易阳  李岭 《遗传》2007,29(12):1419-1428
信号转导通路在细胞代谢、生长、增殖、应激、发育和凋亡等生命活动中具有极为重要的作用。干扰这些通路将可能影响细胞的正常发育, 甚至导致肿瘤。MicroRNA(miRNA)是近年来在真核生物中发现的、在转录后水平负调节基因表达的一类长度约22个核苷酸的非编码小RNA, 其靶基因数目众多, 生物学功能广泛。在多种肿瘤中发现了miRNA的异常表达, 提示后者与肿瘤发生有关, 可能机制为调控癌基因或肿瘤抑制基因的表达。此外亦发现miRNA的靶基因有许多作用于肿瘤相关的信号转导通路。miRNA在肿瘤发生过程中的重要调控功能预示其将成为人类癌症诊断和治疗方面的新星。  相似文献   

3.
4.
5.
MicroRNAs as oncogenes   总被引:16,自引:0,他引:16  
MicroRNAs (miRNAs) are a class of non-coding RNAs that function as endogenous triggers of the RNA interference pathway. Originally discovered in Caenorhabditis elegans, this group of tiny RNAs has moved to the forefront of biology. With over 300 miRNA genes identified in the human genome, and a plethora of predicted mRNA targets, it is believed that these small RNAs have a central role in diverse cellular and developmental processes. Concordant with this, aberrant expression of miRNA genes could lead to human disease, including cancer. Although the connection of miRNAs with cancer has been suspected for several years, four recent studies have confirmed the suspicion that miRNAs regulate cell proliferation and apoptosis, and play a role in cancer.  相似文献   

6.
7.
MicroRNAs (miRNAs) regulate various developmental programs of plants. This review focuses on miRNA involvement in early events of plant development, such as seed germination, seedling development and the juvenile to adult phase transition. miR159 and miR160 are involved in the regulation of seed germination through their effects on the sensitivity of seeds to ABA. miR156 and miR172 play critical roles in the emergence of vegetative leaves at post-germinative stages, which is important for the transition to autotrophic growth. The phase transition from the juvenile to adult stage in both monocots and dicots is also regulated by miR156 and miR172. In these early developmental processes, there are miRNA gene regulation cascades where the miR156 pathway acts upstream of the miR172 pathway. Moreover, targets of miR156 and miR172 exert positive feedback on the expression of MIR genes that suppress themselves. The early events of plant development appear to be controlled by complex mechanisms involving sequential expression of different miRNA pathways and feedback loops among miRNAs and their target genes.  相似文献   

8.
9.
MicroRNAs (miRNAs) are a class of endogenous non-protein-coding small RNAs that are evolutionarily conserved and widely distributed among species. Their major function is to negatively regulate target gene expression. A single miRNA can regulate multiple target genes, indicating that miRNAs may regulate multiple signaling pathways and participate in a variety of physiological and pathological processes. Currently, approximately 50% of identified human miRNA-coding genes are located at tumor-related fragile chromosome regions. Abnormal miRNA expression and/or mutations have been found in almost all types of malignancies. These abnormally expressed miRNAs play roles similar to tumor suppressor genes or oncogenes by regulating the expression and/or function of tumor-related genes. Therefore, miRNAs, miRNA target genes, and the genes regulating miRNAs form a regulatory network with miRNAs in the hub. This network plays a pivotal role in tumorigenesis and tumor development.  相似文献   

10.
微小RNA(microRNA, miRNA)是一类长度在22 nt左右的内源非编码小RNA,广泛存在于动物、植物、病毒等多种有机体中,是机体正常衰老与疾病的重要调控因子。本文对果蝇不同生长时期miRNA的表达模式、主要衰老相关信号通路以及与衰老相关的miRNA进行了综述。在果蝇的不同发育时期均有特定的miRNA发挥重要作用,其表达模式与功能相关;miRNA参与了主要衰老分子信号通路的调控,如胰岛素/胰岛素样生长因子(IIS)通路和雷帕霉素靶蛋白(TOR)通路。研究表明,miRNA通过调控衰老相关信号通路中的靶基因,进而促进或延缓果蝇衰老,如miR-34, miR-8, miR-14, miR let7和miR-277等。因此,研究参与衰老调控的miRNA,为阐明衰老机制及抗衰老药物的设计奠定了基础。  相似文献   

11.
Polycomb group (PcG) proteins play essential roles in animal and plant life cycles by controlling the expression of important developmental regulators. These structurally heterogeneous proteins form multimeric protein complexes that control higher order chromatin structure and, thereby, the expression state of their target genes. Once established, PcG proteins maintain silent gene expression states over many cell divisions providing a molecular basis for a cellular 'memory.' PcG proteins are best known for their role in the control of homeotic genes in Drosophila and mammals. In addition, they play important roles in the control of cell proliferation in vertebrate and invertebrate systems. Recent studies in plants have shown that PcG proteins regulate diverse developmental processes and, as in animals, they affect both homeotic gene expression and cell proliferation. Thus, the function of PcG proteins has been widely conserved between the plant and animal kingdoms.  相似文献   

12.
Endogenous small RNAs (miRNAs and siRNAs) regulate gene expression in diverse biological processes.Research with the Arabidopsis-Pseudomonas syringae system has shown that small RNAs contribute to plan...  相似文献   

13.
Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA(miRNA) expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia(AML) cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia(CML) cell line, K562, via massively parallel signature sequencing. mRNA expression profiles of these cell lines that were established previously in our lab facilitated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppressors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expression patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phagocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress differentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias.  相似文献   

14.
microRNAs (miRNAs) encode a novel class of small, non-coding RNAs that regulate gene expression post-trancriptionally. miRNAs comprise one of the major non-coding RNA families, whose diverse biological functions and unusual capacity for gene regulation have attracted enormous interests in the RNA world. Over the past 16 years, genetic, biochemical and computational approaches have greatly shaped the growth of the field, leading to the identification of thousands of miRNA genes in nearly all metazoans. The key molecular machinery for miRNA biogenesis and silencing has been identified, yet the precise biochemical and regulatory mechanisms still remain elusive. However, recent findings have shed new light on how miRNAs are generated and how they function to repress gene expression. miRNAs provide a paradigm for endogenous small RNAs that mediate gene silencing at a genome-wide level. The gene silencing mediated by these small RNAs constitutes a major component of gene regulation during various developmental and physiological processes. The accumulating knowledge about their biogenesis and gene silencing mechanism will add a new dimension to our understanding about the complex gene regulatory networks.  相似文献   

15.
siRNA and miRNA processing: new functions for Cajal bodies   总被引:3,自引:0,他引:3  
In diverse eukaryotes, micro-RNAs (miRNAs) and small interfering RNAs (siRNAs) regulate important processes that include mRNA inactivation, viral defense, chromatin modification, and transposon silencing. Recently, nucleolus-associated Cajal bodies in plants have been implicated as sites of siRNA and miRNA biogenesis, whereas in animals siRNA and miRNA dicing occurs in the cytoplasm. The plant nucleolus also contains proteins of the nonsense-mediated mRNA decay pathway that in animals are found associated with cytoplasmic processing bodies (P-bodies). P-bodies also function in the degradation of mRNAs subjected to miRNA and siRNA targeting. Collectively, these observations suggest interesting variations in the way siRNAs and miRNAs can accomplish their similar functions in plants and animals.  相似文献   

16.
17.
18.
19.
MicroRNA or NMD: Why Have Two RNA Silencing Systems?   总被引:1,自引:0,他引:1  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号