首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A particulate fraction from calf thyroid catalyzes the transfer of mannose from GDP-mannose to exogenous glycopeptides and methyl or aryl glycosides to form alpha-D-mannopyranosyl-D-mannose sequences. The transfer to the simple glycosides required a single nonreducing mannose residue linked to a lipophilic aglycone. Thus p-nitrophenyl-, 4-methylumbelliferyl-, phenyl- and methyl-alpha-D-mannopyranosides were effective acceptors while free mannose and glycosides of several other sugars were totally inactive. The Km value for methyl-alpha-D-mannopyranoside was 2.6 mM. Specificity for the anomeric configuration of the acceptor was glycosylated to the extent of 50% of the alpha anomer and mutual inhibition between these two acceptors was observed. Acetolysis or mild acid hydrolysis of the 14C-labeled products from the glycoside acceptors yielded the disaccharide, 2-O-alpha-D-mannopyranosyl-D-mannose, which represents the predominant linkage between mannose residues in the carbohydrate unit A of thyroglobulin. Glycopeptides with mannose sequences served as acceptors for the transfer reaction but only after dinitrophenylation of their peptide portion. The unit A glycopeptides of thyroglobulin with 10 mannose residues (Km equals 0.89 mM) were much better acceptors than glycopeptides containing the core portion of unit B which contains only three mannose components. Reduction in size of unit A glycopeptide acceptors by timed alpha-mannosidase treatment resulted in a progressive decrease in activity. Peptide-free unit A was inactive even after it was modified to carry dinitrophenyl groups on its glucosamine residues. GDP-mannose was the most effective glycosyl donor, with a Km value of 1.4 muM for methyl-alpha-D-mannopyranoside and 0.30 muM for dinitrophenyl unit A glycopeptides, although ADP- and UDP-mannose could substitute to the extent of 40 to 45%. The mannose transfer to the glycopeptides had a optimum of 6.3 while that to the simple glycopeptides was best at pH 7.0. Both types of transfer reactions required a divalent cation with manganese serving most effectively in that capacity. Mannoslytransferase activity for both groups of acceptors was found predominantly in particulate subcellular fractions. A number of aromatic compounds and reagents which are disruptive of membrane integrity caused loss of enzyme activity presumably by interfering with the function of the lipophilic substituents on the various acceptors.  相似文献   

2.
Semliki Forest virus was grown in BHK cells and labeled in vivo with radioactive monosaccharides. Pronase digests of the virus chromatographed on Bio-Gel P6 revealed glycopeptides of A-type and B-type. (For the nomenclature see Johnson, J. and Clamp, J.R. (1971) Biochem. J. 123, 739-745.) The former was labeled with [3H]fucose, [3H]galactose, [3H]mannose and [14C]glucosamine, the latter only with [3H]mannose and [14C]glucosamine. The three envelope glycoproteins E1, E2 and E3 were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to pronase digestion. The glycoproteins E1 and E3 revealed glycopeptides of A-type. E2 revealed glycopeptides of B-type. E2 yielded additionally a glycopeptide (Mr3100) which was heavily labeled from [3H]galactose, but only marginally from [14C]glucosamine, [3H]fucose and [3H]mannose. Whether this glycopeptide belongs to the A-type or not remains uncertain. The apparent molecular weights of the A-type units measured by gel filtration were 3400 in E1 and 4000 in E3; the B-type unit of E2 had an apparent molecular weight of 2000. Combined with the findings of our earlier chemical analysis these data suggest that E1 and E3 contain on the average one A-type unit; E2 probably contains one 3100 dalton unit plus one or two B-type units.  相似文献   

3.
The radioactive products derived from transfer of [14C]mannose residues from GDP-[14C]mannose to endogenous acceptors of a Hansenula holstii particulate enzyme preparation have been solubilized by Pronase digestion. From this soluble mixture, glycopeptides containing [14C]mannose have been purified and have been shown by β-elimination-reduction experiments to contain radioactive mannose and oligosaccharides of mannose linked to serine and threonine residues. Radioactive macromolecular complexes of mannan-protein were extracted from the particulate enzyme fraction with hot, neutral citrate buffer. These components contained variable quantities of protein, mannose, and phosphate. The more neutral components were reduced in size by Pronase digestion and yielded glycopeptides similar to those obtained by direct Pronase digestion of the particulate fraction.  相似文献   

4.
A beta-N-acetylgalactosaminyltransferase that preferentially transferred N-acetylgalactosamine to Sd(a-) Tamm-Horsfall glycoprotein was found in guinea-pig kidney microsomal preparations. This enzyme was kidney-specific and was able to transfer the sugar to other glycoproteins, such as fetuin and alpha 1-acidic glycoprotein. The presence of sialic acid in the acceptors was essential for the transferase activity when either glycoproteins or their Pronase glycopeptides were used as acceptors. Two glycopeptides (Tamm-Horsfall glycopeptides I and II) with a different carbohydrate composition were separated by DEAE-Sephacel chromatography from Pronase-digested Tamm-Horsfall glycoprotein. The amount of N-acetylgalactosamine transferred to glycopeptides by the enzyme correlated with their degree of sialylation. Enzymic digestion of N-[14C]acetylgalactosamine-labelled Tamm-Horsfall glycopeptide II showed that the transferred sugar was susceptible to beta-N-hexosaminidase. The amount of sugar cleaved by beta-hexosaminidase was strongly increased when the labelled Tamm-Horsfall glycopeptide II was pretreated with mild acid hydrolysis, a procedure that removed the sialic acid residues. Alkaline borohydride treatment of the labelled Tamm-Horsfall glycopeptide II did not release radioactivity, thus indicating that enzymic glycosylation took place at the N-asparagine-linked oligosaccharide units of Tamm-Horsfall glycoprotein.  相似文献   

5.
1. The incorporation of d-[1-(14)C]mannose, d-[2-(3)H]mannose and N-acetyl-d-[1-(14)C]-glucosamine into glycoproteins and lipid-linked intermediates of mammary explants obtained from lactating rabbits was studied. The amount of radioactivity incorporated into lipid-linked intermediates was very low compared with the incorporation into protein. Most of the radioactivity incorporated into the chloroform/methanol-soluble fraction was present as neutral lipid. Radioactivity from d-[2-(3)H]mannose was incorporated mainly into the fatty acid moiety, whereas radioactivity from d-[1-(14)C]mannose and N-acetyl-d-[1-(14)C]glucosamine was present in the glycerol moiety of triacylglycerol. 2. The labelled lipid-linked intermediate that was soluble in chloroform/methanol/water (10:10:3, by vol.) was partially characterized and was found to exhibit properties characteristic of an oligosaccharide linked to lipid via a pyrophosphate bridge. It migrated largely as a single zone of radioactivity on t.l.c. and was eluted from a column of DEAE-cellulose acetate as a single peak by 50mm-ammonium acetate. 3. The oligosaccharide moiety was released from the lipid by mild acid hydrolysis. The size of the oligosaccharide was estimated by paper chromatography to be 10 or 11 monosaccharide units. 4. d-[1-(14)C]Mannose was incorporated largely into glycopeptides with molecular weights in the range 40000-80000, as determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. Label from N-acetyl-d-[1-(14)C]glucosamine was incorporated into a glycopeptide with an electrophoretic mobility identical with that of rabbit casein (mol.wt. 32000) as well as into glycopeptides of higher molecular weight. 5. Approx. 50% of the total radioactivity in the protein labelled from N-acetyl-d-[1-(14)C]glucosamine was present as galactosamine, a component of the carbohydrate portion of rabbit casein. No labelled galactosamine was present in the lipid-linked oligosaccharide labelled from N-acetyl-d-[1-(14)C]glucosamine. It thus appears that the lipid-linked oligosaccharide is not involved in the glycosylation of casein.  相似文献   

6.
Developing pea cotyledons incorporate radioactivity in vivo from [14C]glucosamine and [14C]mannose into glycolipids and glycoproteins. Several different lipid components are labeled including neutral, ionicnonacidic, and acidic lipids. The acidic lipids labeled in vivo appear similar to the polyisoprenoid lipid intermediates formed in vitro in pea cotyledons. Radioactivity from [14C]glucosamine and [14C]mannose is also incorporated into glycopeptides. Considerable redistribution of [14C]mannose into other glycosyl components found in endogenous glycoproteins is observed. An N-acetylglucosamine to asparagine glycopeptide linkage has been isolated from [14C]glucosamine-labeled glycoproteins.  相似文献   

7.
The transfer of mannose from GDP-mannonse to exogenous glycopeptides and simple glycosides has been shown to be carried out by calf thyroid particles (Adamany, A. M., and Spiro, R. G. (1975) J. Biol. Chem. 250, 2830-2841). The present investigation indicates that this mannosylation process is accomplished through two sequential enzymatic reactions. The first involves the transfer of mannose from the sugar nucleotide to an endogenous acceptor to form a compound which has the properties of dolichyl mannosyl phosphate, while in the properties of dolichyl mannosyl phosphate, while in the second reaction this mannolipid serves as the glycosyl donor to exogenous acceptors. The particle-bound enzyme which catalyzed the first reaction utilized GDP-mannose (Km = 0.29 microM) as the most effective mannosyl donor, required a divalent cation, preferably manganese or calcium, and acted optimally at pH 6.3. Mannolipid synthesis was reversed by addition of GDP and a ready exchange of the mannose moiety was observed between [14C]mannolipid and unlabeled GDP-mannose. Exogenously supplied dolichyl phosphate, and to a lesser extent ficaprenyl phosphate, served as acceptors for the transfer reaction. The 14C-labeled endogenous lipid had the same chromatographic behavior as synthetic dolichyl mannosyl phosphate and enzymatically mannosylated dolichyl phosphate. The mannose component in the endogenous lipid was not susceptible to reduction with sodium borohydride and was released by mild acid hydrolysis. Alkaline treatment of the mannolipid released a phosphorylated mannose with properties consistent with that of mannose 2-phosphate. The formation of this compound which can arise from a cyclic 1,2-phosphate indicated, on the basis of steric considerations, that the mannose is present in beta linkage to the phosphate of the lipid. An intermediate role of the mannolipid in the glycosylation of exogenous acceptors was suggested by the observation that addition of dolichyl phosphate to thyroid particles resulted in a marked enhancement of mannose transfer from GDP-mannose to methyl-alpha-D-mannopyranoside acceptor while the presence of the glycoside caused a decrease in the mannolipid level. The glycosyl donor function of the polyisoprenyl mannosyl phosphate in the second reaction of the mannosylation sequence could be directly demonstrated by the transfer of [14C]mannose from purified endogenous mannolipid to either methyl-alpha-D-mannoside or dinitrophenyl unit A glycopeptides by thyroid enzyme in the presence of Triton X-100. The mannosylation of the glycoside was not inhibited by EDTA whereas the transfer of mannose to glycopeptide was cation-dependent. While dolichyl [14C]mannosyl phosphate, prepared from exogenous dolichyl phosphate, served as a donor of mannose to exogenous acceptor, this function could not be fulfilled by ficaprenyl [14C]mannosyl phosphate. The two-step reaction sequence carried out by thyroid enzymes which leads to the formation of an alpha-D-manno-pyranosyl-D-mannose linkage in exogenous acceptors by transfer of mannose from GDP-mannose through a beta-linked intermediate appears to involve a double inversion of anomeric configuration of this sugar.  相似文献   

8.
Membrane preparations from Acer pseudoplatanus suspension cultures were demonstrated to incorporate radioactivity from GDP-[U-14C]mannose and UDP-N-acetyl-[6-(3)H]glucosamine into high-molecular-weight polymers characterized as glycoprotein. From 20 to 25% of the 14C was incorporated as fucose with the remainder as mannose, whereas 90% of the 3H was incorporated as N-acetylglucosamine with the remainder as N-acetylgalactosamine. Pronase digestion yielded radioactive glycopeptides that were separated into four fractions by gel-permeation chromatography and paper electrophoresis. The isolated glycopeptides differed in molecular weight and isotopes incorporated, as well as in amino-acid and monosaccharide composition. The membrane preparation also incorporated radioactivity from the added nucleotides into chloroform/methanol (2:1, v/v)- and chloroform/methanol/water (10:10:3, by vol.)-soluble lipids, and into an insoluble pellet.  相似文献   

9.
1. Human chorionic tissues were incubated with [14C]leucine and/or [3H]glucosamine, and fibronectin synthesis was examined. 2. Radio-labeled fibronectin was detected in the tissue fraction of the incubation mixture, but not in the medium fraction, indicating that fibronectin is synthesized and retained in the tissue. 3. The glycopeptides derived from 3H-labeled fibronectin showed the lectin-binding characteristics similar to those from unlabeled placenta fibronectin, but different from those of plasma fibronectin.  相似文献   

10.
Abstract Sulphate incorporation into glycopeptides appears to be a key event in the development of a number of organisms. An inhibitor of sulphation, sodium selenate, has been used in this study to examine the possibility that sulphation has a comparable role in the development of Dictyostelium discoideum . At concentrations of 0.1 mM and 1.0 mM, exogenously supplied selenate reversibly arrested the growth of bacterially grown amoebae of D. discoideum . In contrast, the effect of selenate on development was minimal. In the presence of 1.0 mM selenate, aggregation and tip formation were delayed 2–3 h and aggregates were slightly smaller; exogenous 0.1 mM selenate had no visible effect on development. However, the possibility that starved amoebae are impermeable to selenate was not excluded. The vegetative growth and development of an axenic strain in the presence of selenate closely resembled that of the bacterially grown strain. Since an inhibitory effect of 1.0 mM selenate on [35S]sulphate incorporation into acetone precipitable protein was also demonstrated, these results suggest that sulphation is necessary for the growth of D. discoideum .  相似文献   

11.
Regulation of Glc transfer from UDP-Glc via Glc-P-Dolichol to form Glc3-Man9-oligosaccharide-lipid has been studied during estrogen-induced chick oviduct differentiation. The process was studied as two distinct reactions: transfer of Glc from UDP-Glc to Dol-P, forming Glc-P-Dol; and transfer of Glc from Glc-P-Dol to Man9-OL (oligosaccharide-lipid), forming a series of glucosylated oligosaccharide-lipids. Kinetic analysis of [14C]Glc transfer from UDP-[14C]Glc to endogenous Dol-P shows that Dol-P is limiting in membrane preparations and that, concomitant with estrogen-induced differentiation, there is an increase in Dol-P available for Glc transfers. There is also greater glucosyl transferase activity present in membranes from mature hens and estrogenized chicks than in membranes from immature chicks. In order to study the second phase of glucosylation, transfer to the oligosaccharide, it was necessary to develop an assay in which membranes could be reacted with exogenously added substrates, [14C]Glc-P-Dol and [3H]Man9-OL. This reaction is dependent on detergent (0.02% NP-40 was used) and is stimulated by EDTA. The apparent Km for Glc-P-Dol was about 1.5 microM. A series of double-labeled oligosaccharides having sizes consistent with Glc1-, Glc2-, and Glc3-Man9-OL were formed. Chemical and enzymatic analysis of [14C]Glc oligosaccharides formed by incubation with the exogenous substrates, or by incubation with UDP-[14C]Glc and endogenous acceptors, indicated that the glucosylated oligosaccharides were similar. Assays of membranes from estrogenized chicks, mature hens, and hormone-withdrawn chicks showed increased glucosyl transferase activity upon hormone treatment. Similar assays in the absence of exogenous Man9-OL indicated that hormone treatment was also accompanied by increased levels of endogenous oligosaccharide-lipid acceptors.  相似文献   

12.
1. Labeled glycoconjugates released by trypsin from cell surfaces of control and cystic fibrosis (CF) skin fibroblasts were purified and fractionated by column chromatography on Sephadex G-50 and Concanavalin A Sepharose. Based on chemical analysis and specific enzymatic digestions: (1) Glycoconjugates were characterized as O-linked glycopeptides consisting predominantly of glycosaminoglycan type and N-linked glycopeptides with glycans of complex type. Their relative proportions were similar between the two groups. (2) The N-linked glycopeptides exhibited an increased molar ratio of fucose to galactose in CF fibroblasts. (3) When pericellular glycoconjugates were metabolically labeled with [14C]glucosamine and [3H]fucose, incorporation and degradation kinetics were similar between the two groups.  相似文献   

13.
A perfusion technique was developed to deliver [14C]adenosine 3',5'-cyclic monophosphate (cAMP) stimuli of well-defined magnitude and duration to tritium-labeled Dictyostelium discoideum amoebae and simultaneously monitor the elicited secretion of [3H]cAMP (i.e., the relay response). The tritiated compounds secreted in response to [14C]cAMP stimuli were highly enriched in [3H]cAMP and reflected an increase in intracellular cAMP accompanying stimulation rather than the release of a preexisting store or bulk cellular contents. The secretory response (per 10(6) cells) to 2-min stimuli increased during differentiation from about 0.2 pmol at 0.5 h to approximately 5 pmol of cAMP at 7 h. Without adequate perfusion, amoebae altered the level of cAMP in their environment in two ways: phosphodiesterases destroyed cAMP stimuli under some conditions so as to attenuate the relay response; under other circumstances, secreted cAMP magnified minimal exogenous stimuli into maximal responses. Amoebae, furthermore, would respond to their basal secretion of cAMP autocatalytically if its removal or destruction were interrupted. The perfusion system minimized these cell-induced modifications, allowing control of the level of the stimulus and response in quantitative studies.  相似文献   

14.
Semliki Forest virus was grown in BHK cells and labeled in vivo with radio-active monosaccharides. promnase digenst of the virus chromatographer on Bio-Gel P 6 revealed glycopeptides of A-type and B-type. (For the nomenclature see Johnson J. and Clamp J.R. (1971) Biochem. J. 123, 739–745) The former was labeled with [3H]fucose, [3H]galactose, [3H]mannose and [14C]glucosamine, the latter only with [3H]mannose and [14C]glucosamine. The three envelope glycoproteins E1, E2 and E3 were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to pronase digestion. The glycoproteins E1 and E3 revealed glycopeptides of A-type. E2 revealed glycopeptides of B-type. E2 yielded additionally a glycopeptide (Mr3100) which was heavily labeled from [3H]galactose, but only marginally from [14C]glucosamine, [3H]fucose and [3H]mannose. Wether this glycopeptide belongs to the A-type or not remains uncertain. The apparent molecular weights of the A-type units measured by gel filtration were 3400 in E1 and 4000 in E3; the B-type unit of E2 had an apparent molecular weight of 2000. Combined with the findings of our earlier chemical analysis these data suggast that E1 and E3 contain on the average one A-type unit; E2 probably contains one 3100 dalton unit plus one or two B-type units.  相似文献   

15.
Pea membranes supplied with GDP-[14C]mannose, UDP-N-[14C]acetylglucosamine or UDP-[14C]glucose catalyze the transfer of 14C-labeled sugars or sugar phosphates to endogenous lipid acceptors as well as to exogenously added dolichyl phosphates. Fully unsaturated polyprenyl phosphates were not used as effective acceptors by this system. Mannosyl-P-dolichol was formed most rapidly in the presence of long-chained dolichyl-P while mannosyl-PP-, glucosyl-PP- and GlcNAc-PP-dolichol were preferentially formed from relatively short-chained dolichyl phosphate acceptors. Glucosyl-PP- and mannosyl-PP-dolichol accumulated in the preparation without further metabolism, but GlcNAc-PP-dolichol was lengthened by addition of a second GlcNAc plus several [14C]mannose units to form an oligosaccharide fraction susceptible to the action of endoglycosidase H. This lipid-linked oligosaccharide could then be glycosylated in the presence of UDP-[14C]glucose to form a longer oligosaccharide. It is concluded that levels of endogenous dolichyl phosphates in pea membranes are rate-limiting for several of the key glycosyltransferases required for oligosaccharide assembly.  相似文献   

16.
The assay of fibroblast and leukocyte-N-acetylglucosaminylphosphotransferase with alpha-methylmannoside acceptor and commercially available UDP-[3H or 14C]N-acetylglucosamine donor was modified to yield low background and consequently high sensitivity and reliability comparable to those obtained with the synthetically made [beta-32P]UDP-N-acetylglucosamine donor. This was achieved by an additional elution step that removed free [3H or 14C]N-acetylglucosamine which appeared to be the breakdown product responsible for the high background. In addition, the [3H or 14C]N-acetylglucosamine-1-phospho-6-alpha-methylmannoside product of the transfer reaction was then isolated and, following desalting, could serve as a substrate for the assay of alpha-N-acetylglucosaminyl phosphodiesterase. Cell preparations of patients with I-cell disease and pseudo-Hurler polydystrophy demonstrated severe to moderate deficiency of transferase activity and normal phosphodiesterase activity toward the respective substrates labeled with 3H or 14C in the glucosamine moiety.  相似文献   

17.
Incubating white matter membranes with UDP-N-acetyl-[14C]glucosamine in the presence of Mg2+ and AMP resulted in the labeling of two major glycolipids, a minor glycolipid and several membrane-associated glycoproteins. The addition of AMP protected the labeled sugar nucleotide from degradation by a membrane-bound sugar nucleotide pyrophosphatase activity. While no labeled oligosaccharide lipid was recovered in a CHCl3CH3OHH2O (10:10:3) extract after incubating with only UDP-N-acetyl-[14C] glucosamine, Mg2+, and AMP, the inclusion of unlabeled GDP-mannose led to the formation of an N-acetyl-[14C]glucosamine-labeled oligosaccharide lipid that was soluble in CHCl3CH3OHH2O (10:10:3). The [GlcNAc-14C]oligosaccharide unit was released by treatment with 0.1 N HCl in 80% tetrahydrofuran at 50 °C for 30 min and appears to have the same molecular size as the lipid-linked [mannose-14C] oligosaccharide, formed enzymatically by white matter membranes as judged by their elution behavior on Bio-Gel P-6. The incorporation of N-acetyl-[14C]glucosamine into glycolipid was stimulated by exogenous dolichol monophosphate, but inhibited by UMP or tunicamycin, a glucosamine-containing antibiotic. Although UMP and tunicamycin drastically inhibited the labeling of glycolipid, these compounds had very little effect on the labeling of glycoproteins. The major glycolipids have the chemical and Chromatographic characteristics of N-acetylglucosaminylpyrophosphoryldolichol and N,N′-diacetylchitobiosylpyrophosphoryldolichol. When the labeled glycoproteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, four labeled polypeptides were observed, having apparent molecular weights of 145,000, 105,000, 54,000, and 35,000. Virtually all of the N-acetyl-[14C]glucosamine was released when the labeled glycopeptides, produced by pronase digestion, were incubated with an exo-β-N-acetylglucosaminidase, indicating that all of the N-acetyl-[14C]glucosamine incorporated under these conditions is attached to white matter membrane glycoproteins at nonreducing termini.  相似文献   

18.
  • 1.1. The presence of glycoproteins within the nucleus of cell is now well established and the question arises on the nature of the nuclear glycosylation and the site of their glycosylation.
  • 2.2. In order to study endogenous nuclear proteins acceptors, we have isolated a subnuclear fraction: nuclear matrix characterized by DNA, RNA, phospholipids and proteins content. Nuclear matrix acceptors were obtained from nuclei incubated with UDP-N-acetyl [14C]glucosamine.
  • 3.3. In this report we describe the presence of three major glycoproteins labeled with N-acetyl [14C]glucosamine in the nuclear matrix fraction. We obtained gP 32, gP 67 and gP70 with pI values around 6.2, 6.5 and 8.2.
  相似文献   

19.
Dolichyl pyrophosphate N-acetyl[14C]glucosamine was synthesized after incubation of liver microsomes from hibernating ground squirrels with UDP-N-acetyl[14C )glucosamine. The radioactivity of glycolipid formed by liver microsomes from hibernating ground squirrels was about 2-fold greater than by liver microsomes from active animals. Addition of exogenous dolichyl phosphate to the incubation mixture increased the formation of dolichyl pyrophosphate N-acetyl[14C]glucosamine by microsomes from both active and hibernating ground squirrels about 6 times. Liver microsomes from hibernating ground squirrels converted dolichyl pyrophosphate N-acetyl[14C]glucosamine into dolichyl pyrophosphate N,N'-diacetyl[14C]chitobiose in the presence of unlabelled UDP-N-acetylglucosamine. This conversion was maximal at 1.0 M concentration of unlabelled UDP-N-acetylglucosamine. The level of dolichyl phosphate assessed by the level of dolichyl pyrophosphate N-acetylglucosamine formation was nearly 2 times greater in liver microsomes from hibernating ground squirrels than from active animals.  相似文献   

20.
PARTICULATE AND SOLUBILIZED FUCOSYL TRANSFERASES FROM MOUSE BRAIN   总被引:1,自引:0,他引:1  
The transfer of [14C]fucose from GDP-[U-14C]fucose to endogenous and exogenous acceptors by particulate and solubilized preparations from mouse brain is described. Suspensions of brain microsomes incorporated [14C]fucose into a heterogenous group of glycoprotein products, which have a distribution on gel electrophoresis similar to those synthesized in vivo. Fucosyl transferase, extracted from brain microsomes by Triton X-100, transferred [14C]fucose from GDP-[U-14C]fucose to terminal galactose residues exposed by mild acid hydrolysis of porcine plasma glycoprotein. Comparison of the specific activities of the solubilized fucosyl transferase from a number of organs showed that, in the presence of the exogenous acceptor which was used, the transferase of brain was more active than the transferases from all other organs tested, with the exception of kidney. Examination of subcellular fractions of brain, with endogenous and exogenous acceptors, showed that activity was limited to fractions containing microsomal membranes, whereas synaptosomal and other fractions were virtually inactive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号