首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Desmosomal cadherins are a family of calcium regulated proteins involved in the formation of desmosomes, a type of cell junction important in maintaining cell adhesion and tissue stability. The desmosomal plaque consists of members of the desmosomal cadherin, plakin and armadillo family of proteins. Desmosomal cadherins are transmembrane glycoproteins that interact with desmosomal cadherins of the adjacent cells via their extracellular repeat domains and are divided in two subfamilies, the desmogleins (Dsg) and the desmocollins (Dsc). On the cytoplasmic side, the cadherins connect to the intermediate filament (IF) network indirectly by interacting with plakin and armadillo proteins. Here, we report the elucidation of the genomic structure of two mouse desmocollin genes, Dsc2 and Dsc3. Interestingly, at the genomic level, desmocollins show a higher degree of similarity to the classical cadherins, such as E-cadherin, than to the desmogleins.  相似文献   

2.
Cadherins play an important role in specific cell-cell adhesion events. Their expression appears to be tightly regulated during development and each tissue or cell type shows a characteristic pattern of cadherin molecules. Inappropriate regulation of their expression levels or functionality has been observed in human malignancies, in many cases leading to aggravated cancer cell invasion and metastasis. The cadherins form a superfamily with at least six subfamilies, which can be distinguished on the basis of protein domain composition, genomic structure, and phylogenetic analysis of the protein sequences. These subfamilies comprise classical or type-I cadherins, atypical or type-II cadherins, desmocollins, desmogleins, protocadherins and Flamingo cadherins. In addition, several cadherins clearly occupy isolated positions in the cadherin superfamily (cadherin-13, -15, -16, -17, Dachsous, RET, FAT, MEGF1 and most invertebrate cadherins). We suggest a different evolutionary origin of the protocadherin and Flamingo cadherin genes versus the genes encoding desmogleins, desmocollins, classical cadherins, and atypical cadherins. The present phylogenetic analysis may accelerate the functional investigation of the whole cadherin superfamily by allowing focused research of prototype cadherins within each subfamily.  相似文献   

3.
The cadherins are a superfamily of calcium-dependent glycoproteins that are cell adhesion molecules. Two families of cadherins, the desmocollins (Dsc) and desmogleins (Dsg), are found only in the desmosome type of cell–cell junction. They are each present in at least three different isoforms with differing spatial and temporal distributions and are specified by two clusters of closely linked genes on human chromosome 18q12.1. The human DSC2 gene, coding for the most widely distributed form of the desmocollins, has been found to consist of more than 32 kb of DNA. By using PCR we have determined the exon–intron organization. The gene is arranged into 17 exons ranging in size from 46 to 258 bp; exon 16 is alternatively spliced, giving rise to the a and b forms of the protein. This has revealed a remarkable degree of conservation of intron position with other cadherins. The desmocollin exon–intron organization is more similar to the so-called classical cadherins than to the desmogleins, especially in the cytoplasmic domain. Intron 1 is the largest in DSC2, as it is in the desmogleins, in contrast to the classical cadherins, where intron 2 is extremely large; this latter intron is missing from the desmogleins.  相似文献   

4.
The desmosomal cadherins comprise the desmocollins and desmogleins and are involved in epithelial cell-cell adhesion. There are three desmocollins (DSC 1-3) and three desmogleins (DSG 1-3) that are expressed in a tissue- and development-specific manner. Desmosomal proteins have been implicated in a number of disorders characterized by loss of cell-cell adhesion and trauma-induced skin fragility. Therefore, the desmocollins are potential candidates for genodermatoses involving epithelial tissues. In order to screen the entire DSC1 and DSC3 genes, we have characterized their intron-exon organization. The DSC1 gene comprises 17 exons spanning approximately 33 kb on 18q12.1, and the DSC3 gene comprises 17 exons spanning approximately 49 kb on 18q12.1. We have also developed a comprehensive PCR-based mutation detection strategy for desmocollins 1, 2, and 3 using primers placed on flanking introns followed by direct sequencing of the PCR products.  相似文献   

5.
Cadherin is a super family of genes, with at least 80 members. These members include classic cadherins, desmogleins, desmocollins, protocadherins, CNRs, Fats, seven-pass transmembrane cadherins and Ret tyrosine kinase. The repeated EC extracellular domains (N-terminal domain) are common to the family members and ensure cell adherence in a calcium dependant mechanism. The cadherins are expressed from amoebae to mammals. The biological complexity of cadherins is expressed at different levels, multigenic family and multiple functions in different tissues leading to use different methodological approaches. All the talks in this session broach in a promising aspect in the field of the basic comprehension of cell adhesion (R. M. Mège), at the molecular level (H. Feracci), physiological homeostasis of gut (S. Thenet), cell lineage (V. Delmas) or cancer transformation (L. Larue).  相似文献   

6.
Cell adhesion and communication are interdependent aspects of cell behavior that are critical for morphogenesis and tissue architecture. In the skin, epidermal adhesion is mediated in part by specialized cell-cell junctions known as desmosomes, which are characterized by the presence of desmosomal cadherins, known as desmogleins and desmocollins. We identified a cadherin family member, desmoglein 4, which is expressed in the suprabasal epidermis and hair follicle. The essential role of desmoglein 4 in skin was established by identifying mutations in families with inherited hypotrichosis, as well as in the lanceolate hair mouse. We also show that DSG4 is an autoantigen in pemphigus vulgaris. Characterization of the phenotype of naturally occurring mutant mice revealed disruption of desmosomal adhesion and perturbations in keratinocyte behavior. We provide evidence that desmoglein 4 is a key mediator of keratinocyte cell adhesion in the hair follicle, where it coordinates the transition from proliferation to differentiation.  相似文献   

7.
The desmosomal cadherins, desmogleins, and desmocollins mediate strong intercellular adhesion. Human intestinal epithelial cells express the desmoglein-2 isoform. A proteomic screen for Dsg2-associated proteins in intestinal epithelial cells identified a lectin referred to as galectin-3 (Gal3). Gal3 bound to N-linked β-galactosides in Dsg2 extracellular domain and co-sedimented with caveolin-1 in lipid rafts. Down-regulation of Gal3 protein or incubation with lactose, a galactose-containing disaccharide that competitively inhibits galectin binding to Dsg2, decreased intercellular adhesion in intestinal epithelial cells. In the absence of functional Gal3, Dsg2 protein was internalized from the plasma membrane and degraded in the proteasome. These results report a novel role of Gal3 in stabilizing a desmosomal cadherin and intercellular adhesion in intestinal epithelial cells.  相似文献   

8.
Although data are available from only vertebrates, urochordates, and three nonchordate animals, there are definite differences in the structures of classic cadherins between vertebrates plus urochordates and nonchordates. In this study we examined structural diversity of classic cadherins among bilaterian animals by obtaining new data from an amphioxus (Cephalochordata, Chordata), an acorn worm (Hemichordata), a sea star (Echinodermata), and an oyster (Mollusca). The structures of newly identified nonchordate cadherins are grouped together with those of the known sea urchin and Drosophila cadherins, whereas the structure of an amphioxus (Branchiostoma belcheri) cadherin, designated BbC, is differently categorized from those of other known chordate cadherins. BbC is identified as a cadherin by its cytoplasmic domain whose sequence is highly related to the cytoplasmic sequences of all known classic cadherins, but it lacks all of the five repeats constituting the extracellular homophilic-binding domain of other chordate cadherins. The ectodomains of BbC match the ectodomains found in nonchordate cadherins but not present in other chordate cadherins. We show that the BbC functions as a cell-cell adhesion molecule when expressed in Drosophila S2 cells and localizes to adherens junctions in the ectodermal epithelia in amphioxus embryos. We argue that BbC is the amphioxus homologue of the classic cadherins involved in the formation of epithelial adherens junctions. The structural relationships of the cadherin molecules allow us to propose a possibility that cephalochordates might be basal to the sister-groups vertebrates and urochordates.  相似文献   

9.
Classic cadherins, which are adhesion molecules in cell-cell adherens junctions, have a large contribution to the construction of the animal body. Their molecular structures show clear differences between chordate and nonchordate metazoans. Although nonchordate classic cadherins have cadherin superfamily-specific extracellular repeats (CRs) and a highly conserved cytoplasmic domain (CP), these cadherins have a unique extracellular domain that is absent from vertebrate and ascidian classic cadherins. We called this the primitive classic cadherin domain (PCCD). To understand the roles of the PCCD, we constructed and characterized a series of mutant forms of the Drosophila classic cadherin DE-cadherin. Biochemical analyses indicated that the last two CRs and PCCD form a special structure with proteolytic cleavage. Mutations in the PCCD did not eliminate the cell-cell-binding function of DE-cadherin in cultured cells, but prevented the cadherin from efficiently translocating to the plasma membrane in epithelial cells of the developing embryo. In addition, genetic rescue assays suggested that although CP-mediated control plays a central role in tracheal fusion, the role of the PCCD in efficient recruitment of DE-cadherin to apical areas of the plasma membranes is also important for dynamic epithelial morphogenesis. We propose that there is a fundamental difference in the mode of classic cadherin-mediated cell-cell adhesion between chordate and nonchordate metazoans.  相似文献   

10.
For the extracellular (EC) domain of E-cadherin to function in homophilic adhesion it is thought that its intracytoplasmic (IC) domain must bind alpha- and beta-catenins, which link it to the actin cytoskeleton. However, the IC domain of pemphigus vulgaris antigen (PVA or Dsg3), which is in the desmoglein subfamily of the cadherin gene superfamily, does not bind alpha- or beta-catenins. Because desmogleins have also been predicted to function in the cell adhesion of desmosomes, we speculated that the PVA IC domain might be able to act in a novel way in conferring adhesive function on the EC domain of cadherins. To test this hypothesis we studied aggregation of mouse fibroblast L cell clones that expressed chimeric cDNAs encoding the EC domain of E-cadherin with various IC domains. We show here that the full IC domain of PVA as well as an IC subdomain containing only 40 amino acids of the PVA intracellular anchor (IA) region confer adhesive function on the E-cadherin EC domain without catenin-like associations with cytoplasmic molecules or fractionation with the cell cytoskeleton. This IA region subdomain is evolutionarily conserved in desmogleins, but not classical cadherins. These findings suggest an important cell biologic function for the IA region of desmogleins and demonstrate that strong cytoplasmic interactions are not absolutely necessary for E- cadherin-mediated adhesion.  相似文献   

11.
Classic cadherins are calcium dependent homophilic cell adhesion molecules that play a key role in developmental processes such as morphogenesis, compartmentalization and maintenance of a tissue. They also play important roles in development and function of the nervous system. Although classic cadherins have been shown to be involved in the migration of non-neuronal cells, little is known about their role in neuronal migration. Here, we show that classic cadherins are essential for the migration of precerebellar neurons. In situ hybridization analysis shows that at least four classic cadherins, cadherin 6 (Cad6), cadherin 8 (Cad8), cadherin11 (Cad11) and N-cadherin (Ncad), are expressed in the migratory streams of lateral reticular nucleus and external cuneate nucleus (LRN/ECN) neurons. Functional analysis performed by electroporation of cadherin constructs into the hindbrain indicates requirement for cadherins in the migration of LRN/ECN neurons both in vitro and in vivo. While overexpression of full-length classic cadherins, NCAD and CAD11, has no effect on LRN/ECN neuron migration, overexpression of two dominant negative (DN) constructs, membrane-bound form and cytoplasmic form, slows it down. Introduction of a DN construct does not alter some characteristics of LRN/ECN cells as indicated by a molecular marker, TAG1, and their responsiveness to chemotropic activity of the floor plate (FP). These results suggest that classic cadherins contribute to contact-dependent mechanisms of precerebellar neuron migration probably via their adhesive property.  相似文献   

12.
The sequence and structural analysis of cadherins allow us to find sequence determinants-a few positions in sequences whose residues are characteristic and specific for the structures of a given family. Comparison of the five extracellular domains of classic cadherins showed that they share the same sequence determinants despite only a nonsignificant sequence similarity between the N-terminal domain and other extracellular domains. This allowed us to predict secondary structures and propose three-dimensional structures for these domains that have not been structurally analyzed previously. A new method of assigning a sequence to its proper protein family is suggested: analysis of sequence determinants. The main advantage of this method is that it is not necessary to know all or almost all residues in a sequence as required for other traditional classification tools such as BLAST, FASTA, and HMM. Using the key positions only, that is, residues that serve as the sequence determinants, we found that all members of the classic cadherin family were unequivocally selected from among 80,000 examined proteins. In addition, we proposed a model for the secondary structure of the cytoplasmic domain of cadherins based on the principal relations between sequences and secondary structure multialignments. The patterns of the secondary structure of this domain can serve as the distinguishing characteristics of cadherins.  相似文献   

13.
Cadherins are a large family of single-pass transmembrane proteins principally involved in Ca2+-dependent homotypic cell adhesion. The cadherin molecules comprise three domains, the intracellular domain, the transmembrane domain and the extracellular domain, and form large complexes with a vast array of binding partners (including cadherin molecules of the same type in homophilic interactions and cellular protein catenins), orchestrating biologically essential extracellular and intracellular signalling processes. While current, contrasting models for classic cadherin homophilic interaction involve varying numbers of specific repeats found in the extracellular domain, the structure of the domain itself clearly remains the main determinant of cell stability and binding specificity. Through intracellular interactions, cadherin enhances its adhesive properties binding the cytoskeleton via cytoplasmic associated factors alpha- catenin, beta-catenin and p120ctn. Recent structural studies on classic cadherins and these catenin molecules have provided new insight into the essential mechanisms underlying cadherin-mediated cell interaction and catenin-mediated cellular signalling. Remarkable structural diversity has been observed in beta-catenin recognition of other cellular factors including APC, Tcf and ICAT, proteins that contribute to or compete with cadherin/catenin functioning.  相似文献   

14.
The desmosomal cadherins, desmogleins (Dsgs) and desmocollins (Dscs), comprise the adhesive core of intercellular junctions known as desmosomes. Although these adhesion molecules are known to be critical for tissue integrity, mechanisms that coordinate their trafficking into intercellular junctions to regulate their proper ratio and distribution are unknown. We demonstrate that Dsg2 and Dsc2 both exhibit microtubule-dependent transport in epithelial cells but use distinct motors to traffic to the plasma membrane. Functional interference with kinesin-1 blocked Dsg2 transport, resulting in the assembly of Dsg2-deficient junctions with minimal impact on distribution of Dsc2 or desmosomal plaque components. In contrast, inhibiting kinesin-2 prevented Dsc2 movement and decreased its plasma membrane accumulation without affecting Dsg2 trafficking. Either kinesin-1 or -2 deficiency weakened intercellular adhesion, despite the maintenance of adherens junctions and other desmosome components at the plasma membrane. Differential regulation of desmosomal cadherin transport could provide a mechanism to tailor adhesion strength during tissue morphogenesis and remodeling.  相似文献   

15.
Plakoglobin and β-catenin are homologous armadillo repeat proteins found in adherens junctions, where they interact with the cytoplasmic domain of classical cadherins and with α-catenin. Plakoglobin, but normally not β-catenin, is also a structural constituent of desmosomes, where it binds to the cytoplasmic domains of the desmosomal cadherins, desmogleins and desmocollins. Here, we report structural, biophysical, and biochemical studies aimed at understanding the molecular basis of selective exclusion of β-catenin and α-catenin from desmosomes. The crystal structure of the plakoglobin armadillo domain bound to phosphorylated E-cadherin shows virtually identical interactions to those observed between β-catenin and E-cadherin. Trypsin sensitivity experiments indicate that the plakoglobin arm domain by itself is more flexible than that of β-catenin. Binding of plakoglobin and β-catenin to the intracellular regions of E-cadherin, desmoglein1, and desmocollin1 was measured by isothermal titration calorimetry. Plakoglobin and β-catenin bind strongly and with similar thermodynamic parameters to E-cadherin. In contrast, β-catenin binds to desmoglein-1 more weakly than does plakoglobin. β-Catenin and plakoglobin bind with similar weak affinities to desmocollin-1. Full affinity binding of desmoglein-1 requires sequences C-terminal to the region homologous to the catenin-binding domain of classical cadherins. Although pulldown assays suggest that the presence of N- and C-terminal β-catenin “tails” that flank the armadillo repeat region reduces the affinity for desmosomal cadherins, calorimetric measurements show no significant effects of the tails on binding to the cadherins. Using purified proteins, we show that desmosomal cadherins and α-catenin compete directly for binding to plakoglobin, consistent with the absence of α-catenin in desmosomes.  相似文献   

16.
Cadherin-mediated cell-cell adhesion is perturbed in protein tyrosine kinase (PTK)-transformed cells. While cadherins themselves appear to be poor PTK substrates, their cytoplasmic binding partners, the Arm catenins, are excellent PTK substrates and therefore good candidates for mediating PTK-induced changes in cadherin behavior. These proteins, p120ctn, β-catenin and plakoglobin, bind to the cytoplasmic region of classical cadherins and function to modulate adhesion and/or bridge cadherins to the actin cytoskeleton. In addition, as demonstrated recently for β-catenin, these proteins also have crucial signaling roles that may or may not be related to their effects on cell-cell adhesion. Tyrosine phosphorylation of cadherin complexes is well documented and widely believed to modulate cell adhesiveness. The data to date, however, is largely correlative and the mechanism of action remains unresolved. In this review, we discuss the current literature and suggest models whereby tyrosine phosphorylation of Arm catenins contribute to regulation or perturbation of cadherin function.  相似文献   

17.
Classical cadherins.   总被引:15,自引:0,他引:15  
Cadherins represent a gene family of Ca(2+)-dependent cell adhesion molecules (CAMs) identified during development and in adult organs. They generally mediate cell-cell adhesion by homotypic interaction, although heterotypic binding between different cadherin molecules is possible. Molecular cloning and sequence comparison has led to the characterization of a highly homologous group of 'classical' cadherins and more distantly related members, together composing a gene superfamily. The classical cadherins are transmembrane glycoproteins which exhibit, in addition to the structural homologies, a very similar overall protein topology. Protein sequence comparison has led to the identification of domains of common functional importance. The cytoplasmic domains of cadherins associate with peripheral cytoplasmic proteins termed catenin alpha, beta and gamma with molecular weights of 102, 88 and 80 kDa respectively. This complex formation seems to regulate the adhesive function of cadherins, most likely by connecting cadherins with actin microfilaments. Possible implications of catenins for cadherin function are discussed.  相似文献   

18.
Classic cadherins represent a family of calcium-dependent homophilic cell–cell adhesion molecules. They confer strong adhesiveness to animal cells when they are anchored to the actin cytoskeleton via their cytoplasmic binding partners, catenins. The cadherin/catenin adhesion system plays key roles in the morphogenesis and function of the vertebrate and invertebrate nervous systems. In early vertebrate development, cadherins are involved in multiple events of brain morphogenesis including the formation and maintenance of the neuroepithelium, neurite extension and migration of neuronal cells. In the invertebrate nervous system, classic cadherin-mediated cell–cell interaction plays important roles in wiring among neurons. For synaptogenesis, the cadherin/catenin system not only stabilizes cell–cell contacts at excitatory synapses but also assembles synaptic molecules at synaptic sites. Furthermore, this system is involved in synaptic plasticity. Recent studies on the role of individual cadherin subtypes at synapses indicate that individual cadherin subtypes play their own unique role to regulate synaptic activities.  相似文献   

19.
The ability to form selective cell-cell adhesions is an essential property of metazoan cells. Members of the cadherin superfamily are important regulators of this process in both vertebrates and invertebrates. With the advent of genome sequencing projects, determination of the full repertoire of cadherins available to an organism is possible and here we present the identification and analysis of the cadherin repertoires in the genomes of Caenorhabditis elegans and Drosophila melanogaster. Hidden Markov models of cadherin domains were matched to the protein sequences obtained from the translation of the predicted gene sequences. Matches were made to 21 C. elegans and 18 D. melanogaster sequences. Experimental and theoretical work on C. elegans sequences, and data from ESTs, show that three pairs of genes, and two triplets, should be merged to form five single genes. It also produced sequence changes at one or both of the 5' and 3' termini of half the sequences. In D. melanogaster it is probable that two of the cadherin genes should also be merged together and that three cadherin genes should be merged with other neighbouring genes.Of the 15 cadherin proteins found in C. elegans, 13 have the features of cell surface proteins, signal sequences and transmembrane helices; the other two have only signal sequences. Of the 17 in D. melanogaster, 11 at present have both features and another five have transmembrane helices. The evidence currently available suggests about one-third of the cadherins in the two organisms can be grouped into subfamilies in which all, or parts of, the molecules are conserved. Each organism also has a approximately 980 residue protein (CDH-11 and CG11059) with two cadherin domains and whose sequences match well over their entire length two proteins from human brain. Two proteins in C. elegans, HMR-1A and HMR-1B, and three in D. melanogaster, CadN, Shg and CG7527, have cytoplasmic domains homologous to those of the classical cadherin genes of chordates but their extracellular regions have different domain structures. Other common subclasses include the seven-helix membrane cadherins, Fat-like protocadherins and the Ret-like cadherins. At present, the remaining cadherins have no obvious similarities in their extracellular domain architecture or homologies to their cytoplasmic domains and may, therefore, represent species-specific or phylum-specific molecules.  相似文献   

20.
Recent progress in protocadherin research   总被引:10,自引:0,他引:10  
Protocadherins constitute a large family belonging to the cadherin superfamily and function in different tissues of a wide variety of multicellular organisms. Protocadherins have unique features that are not found in classic cadherins. Expression of protocadherins is spatiotemporally regulated and they are localized at synapses in the CNS. Although protocadherins have Ca(2+)-dependent homophilic interaction activity, the activities are relatively weak. Some protocadherins have heterophilic interaction activity and the cytoplasmic domains associate with the unique cytoplasmic proteins, which are essential for their biological functions. Given the characteristic properties, the large size, and the diversity of members of the protocadherin family, protocadherins may participate in various biological processes. In particular, protocadherins seem to play a central role(s) in the CNS as related to synaptic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号