首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physical forces that underlie the exclusion of solutes from macromolecular surfaces can be probed in a similar way as the measurement of forces between macromolecules in condensed arrays using the osmotic stress technique and x-ray scattering. We report here the dependence of alcohol exclusion or, equivalently, the preferential hydration of DNA on the spacing between helices in condensed arrays. The actual forces describing exclusion are quite different from the commonly assumed steric crowding coupled with weak binding. For a set of 12 nonpolar alcohols, exclusion is due to repulsive hydration interactions with the charged DNA surface. Exclusion amplitudes do not depend simply on size, but rather on the balance between alkyl carbons and hydroxyl oxygens. Polyols are included at very close spacings. The distance dependence of polyol inclusion, however, is quite different from nonpolar alcohol exclusion, suggesting the underlying mechanism of interaction is different.  相似文献   

2.
Stanley C  Rau DC 《Biochemistry》2008,47(25):6711-6718
The interaction of urea and several naturally occurring protein-stabilizing osmolytes, glycerol, sorbitol, glycine betaine, trimethylamine oxide (TMAO), and proline, with condensed arrays of a hydrophobically modified polysaccharide, hydroxypropylcellulose (HPC), has been inferred from the effect of these solutes on the forces acting between HPC polymers. Urea interacts only very weakly. The protein-stabilizing osmolytes are strongly excluded. The observed energies indicate that the exclusion of the protein-stabilizing osmolytes from protein hydrophobic side chains would add significantly to protein stability. The temperature dependence of exclusion indicates a significant contribution of enthalpy to the interaction energy in contrast to expectations from "molecular crowding" theories based on steric repulsion. The dependence of exclusion on the distance between HPC polymers rather indicates that perturbations of water structuring or hydration forces underlie exclusion.  相似文献   

3.
Alcohols have been widely used as protein denaturants, precipitants and crystallization reagents. We have studied the effect of alcohols on aqueous hen-egg lysozyme self-interactions by measuring the osmotic second virial coefficient (B22) using static light scattering. Addition of alcohols increases B22, indicating stronger protein-protein repulsion or weaker attraction. For the monohydric alcohols used in this study (methanol, ethanol, 1-propanol, n-butanol, iso-butanol and trifluoroethanol), B22 for lysozyme reaches a common plateau at approximately 5% (v/v) alcohol, while glycerol increases B22 more than monohydric alcohols. For a 0.05 M NaCl hen-egg lysozyme solution at pH 7, B22 increases from 2.4 x 10(-4) to 4.7 x 10(-4) ml mol/g2 upon addition of monohydric alcohols and to 5.8 x 10(-4) ml mol/g2 upon addition of glycerol. We describe the alcohol effect using a simple model that supplements the DLVO theory with an additional alcohol-dependent term representing orientation-averaged hydrophobic interactions. In this model, the increased lysozyme repulsive forces in the presence of monohydric alcohols are interpreted in terms of adsorption of alcohol molecules on hydrophobic sites on the protein surface. This adsorption reduces attractive hydrophobic protein-protein interactions. A thicker lysozyme hydration layer in aqueous glycerol solution can explain the glycerol-increased lysozyme-lysozyme repulsion.  相似文献   

4.
Stretching of single collapsed DNA molecules   总被引:1,自引:0,他引:1       下载免费PDF全文
The elastic response of single plasmid and lambda phage DNA molecules was probed using optical tweezers at concentrations of trivalent cations that provoked DNA condensation in bulk. For uncondensed plasmids, the persistence length, P, decreased with increasing spermidine concentration before reaching a limiting value 40 nm. When condensed plasmids were stretched, two types of behavior were observed: a stick-release pattern and a plateau at approximately 20 pN. These behaviors are attributed to unpacking from a condensed structure, such as coiled DNA. Similarly, condensing concentrations of hexaammine cobalt(III) (CoHex) and spermidine induced extensive changes in the low and high force elasticity of lambda DNA. The high force (5-15 pN) entropic elasticity showed worm-like chain (WLC) behavior, with P two- to fivefold lower than in low monovalent salt. At lower forces, a 14-pN plateau abruptly appeared. This corresponds to an intramolecular attraction of 0.083-0.33 kT/bp, consistent with osmotic stress measurements in bulk condensed DNA. The intramolecular attractive force with CoHex is larger than with spermidine, consistent with the greater efficiency with which CoHex condenses DNA in bulk. The transition from WLC behavior to condensation occurs at an extension about 85% of the contour length, permitting looping and nucleation of condensation. Approximately half as many base pairs are required to nucleate collapse in a stretched chain when CoHex is the condensing agent.  相似文献   

5.
Measurement and modification of forces between lecithin bilayers.   总被引:15,自引:8,他引:7       下载免费PDF全文
We probe in two different ways the competing attractive and repulsive forces that create lamellar arrays of the phospholipid lecithin when in equilibrium with pure water. The first probe involves the addition of low molecular weight solutes, glucose and sucrose, to a system where the phospholipid is immersed in a large excess of water. Small solutes can enter the aqueous region between bilayers. Their effect is first to increase and then to decrease the separation between bilayers as sugar concentration increases. We interpret this waxing and waning of the lattice spacing in terms of the successive weakening and strengthening of the attractive van der Waals forces originally responsible for creation of a stable lattice. The second probe is an "osmotic stress method," in which very high molecular weight neutral polymer is added to the pure water phase but is unable to enter the multilayers. The polymer competes for water with the lamellar lattice, and thereby compresses it. From the resulting spacing (determined by X-ray diffraction) and the directly measured osmotic pressure, we find a force vs. distance curve for compressing the lattice (or, equivalently, the free energy of transfer to bulk water of water between bilayers. This method reveals a very strong, exponentially varying "hydration force" with a decay distance of about 2 A.  相似文献   

6.
Rhizomorph Formation in Fungi   总被引:1,自引:0,他引:1  
The effect on growth and rhizomorph formation of 12 alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butyl alcohol, tert-butyl alcohol, 1-pentanol, iso-amyl alcohol, ethylene glycol and glycerol) at different concentrations has been examined for 2 isolates of Armillaria mellea (Vahl ex Fr.) Quél. and 1 of Clitocybe geotropa (Bull. ex Fr.) Quél. The fungi were cultivated for 28 days on a synthetic, liquid glucose medium with the alcohols as supplement. The following alcohols strongly stimulated growth and rhizomorph formation: ethanol, 1-propanol and 1-butanol. A great variation was demonstrated between the isolates in relation to rhizomorph production, morphology, and ability to be stimulated by different alcohols.  相似文献   

7.
To interpret or to predict the responses of biopolymer processes in vivo and in vitro to changes in solute concentration and to coupled changes in water activity (osmotic stress), a quantitative understanding of the thermodynamic consequences of interactions of solutes and water with biopolymer surfaces is required. To this end, we report isoosmolal preferential interaction coefficients (Gamma(mu1) determined by vapor pressure osmometry (VPO) over a wide range of concentrations for interactions between native bovine serum albumin (BSA) and six small solutes. These include Escherichia coli cytoplasmic osmolytes [potassium glutamate (K(+)Glu(-)), trehalose], E. coli osmoprotectants (proline, glycine betaine), and also glycerol and trimethylamine N-oxide (TMAO). For all six solutes, Gamma(mu1) and the corresponding dialysis preferential interaction coefficient Gamma(mu1),(mu3) (both calculated from the VPO data) are negative; Gamma(mu1), (mu3) is proportional to bulk solute molality (m(bulk)3) at least up to 1 m (molal). Negative values of Gamma(mu1),(mu3) indicate preferential exclusion of these solutes from a BSA solution at dialysis equilibrium and correspond to local concentrations of these solutes in the vicinity of BSA which are lower than their bulk concentrations. Of the solutes investigated, betaine is the most excluded (Gamma(mu1),(mu3)/m(bulk)3 = -49 +/- 1 m(-1)); glycerol is the least excluded (Gamma(mu1),(mu3)/m(bulk)3 = -10 +/- 1 m(-1)). Between these extremes, the magnitude of Gamma(mu1),(mu3)/m(bulk)3 decreases in the order glycine betaine > proline >TMAO > trehalose approximately K(+)Glu(-) > glycerol. The order of exclusion of E. coli osmolytes from BSA surface correlates with their effectiveness as osmoprotectants, which increase the growth rate of E. coli at high external osmolality. For the most excluded solute (betaine), Gamma(mu1),(mu3) provides a minimum estimate of the hydration of native BSA of approximately 2.8 x 10(3) H(2)O/BSA, which corresponds to slightly less than a monolayer (estimated to be approximately 3.2 x 10(3) H(2)O). Consequently, of the solutes investigated here, only betaine might be suitable for use in osmotic stress experiments in vitro as a direct probe to quantify changes in hydration of protein surface in biopolymer processes. More generally, however, our results and analysis lead to the proposal that any of these solutes can be used to quantify changes in water-accessible surface area (ASA) in biopolymer processes once preferential interactions of the solute with biopolymer surface are properly taken into account.  相似文献   

8.
The assembly of double stranded DNA helices with divalent manganese ion is favored by increasing temperature. Direct force measurements, obtained from the osmotic stress technique coupled with x-ray diffraction, show that the force characteristics of spontaneously precipitated Mn(2+)-DNA closely resemble those observed previously by us for other counterion condensed DNA assemblies. At temperatures below the critical one for spontaneous assembly, we have quantitated the changes in entropy and manganese ion binding associated with the transition from repulsive to attractive interactions between helices mediated by osmotic stress. The release of structured water surrounding the DNA helix to the bulk solution is the most probable source of increased entropy after assembly. Increasing the water entropy of the bulk solution by changing the manganese salt anion from CI- to ClO4- predictably and quantitatively increases the transition entropy. This is further evidence for the dominating role of water in the close interaction of polar surfaces.  相似文献   

9.
We have measured forces generated by multivalent cation-induced DNA condensation using single-molecule magnetic tweezers. In the presence of cobalt hexammine, spermidine, or spermine, stretched DNA exhibits an abrupt configurational change from extended to condensed. This occurs at a well-defined condensation force that is nearly equal to the condensation free energy per unit length. The multivalent cation concentration dependence for this condensation force gives the apparent number of multivalent cations that bind DNA upon condensation. The measurements show that the lower critical concentration for cobalt hexammine as compared to spermidine is due to a difference in ion binding, not a difference in the electrostatic energy of the condensed state as previously thought. We also show that the resolubilization of condensed DNA can be described using a traditional Manning–Oosawa cation adsorption model, provided that cation–anion pairing at high electrolyte concentrations is taken into account. Neither overcharging nor significant alterations in the condensed state are required to describe the resolubilization of condensed DNA. The same model also describes the spermidine3+/Na+ phase diagram measured previously.  相似文献   

10.
Weng L  Li W  Zuo J 《Cryobiology》2011,62(3):210-217
Quantitative analyses of the bound water content in the alcohol aqueous solution and its osmotic behavior should be cryobiologically significant. This paper has presented two applications of the thermogram of the alcohol/water system recorded by differential scanning calorimeter (DSC). Both applications are: (1) generating the quantitative relationship between the bound water content and the solution composition; (2) calculating the osmotic virial coefficients for alcohols. Five alcohols including methanol, ethanol, ethylene glycol, propylene glycol and glycerol are investigated. In the present study, partial binary phase diagrams of these five alcohol solutions are determined in the first place. The bound water contents in these solutions are quantitatively evaluated by three criteria afterwards. In the end, the osmotic virial coefficients for these alcohols are calculated according to the osmotic virial equation. It is turned out that the bound water fraction out of the total water content increases with a rising molality. The ability of the solute to restrict water molecules can be weakened when the solution becomes more concentrated. The results also indicate that propylene glycol should be the strongest “water-blocker” while methanol the weakest one. These findings can deepen our understanding of the cryoprotective properties of the alcohols from the perspectives of their roles in binding free water and promoting the osmotic efflux of cell water.  相似文献   

11.
Motivated by experiments on condensed DNA phases in binary mixtures of water and a low-dielectric solute, we develop a theory for the electrostatic contribution to solute exclusion from a highly charged phase, within the continuum approximation of the medium. Because the electric field is maximum at the surface of each ion, the electrostatic energy is dominated by the Born energy; interactions between charges are of secondary importance. Neglecting interactions and considering only the competition between the Born energy and the free energy of mixing, we predict that low dielectric solutes are excluded from condensed DNA phases in water-cosolvent mixtures. This suggests that the traditional continuum electrostatic approach of modeling binary mixtures with a uniform dielectric constant needs to be modified. The linking of solute exclusion to solute dielectric properties also suggests a mechanism for predicting the electrostatic contribution to preferential hydration of polar and charged surfaces.  相似文献   

12.
Yang J  Rau DC 《Biophysical journal》2005,89(3):1932-1940
We have investigated the salt sensitivity of the hexagonal-to-cholesteric phase transition of spermidine-condensed DNA. This transition precedes the resolubilization of precipitated DNA that occurs at high spermidine concentration. The sensitivity of the critical spermidine concentration at the transition point to the anion species and the NaCl concentration indicates that ion pairing of this trivalent ion underlies this unusual transition. Osmotic pressure measurements of spermidine salt solutions are consistent with this interpretation. Spermidine salts are not fully dissociated at higher concentrations. The competition for DNA binding among the fully charged trivalent ion and the lesser charged complex species at higher concentrations significantly weakens attraction between DNA helices in the condensed state. This is contrary to the suggestion that the binding of spermidine at higher concentrations causes DNA overcharging and consequent electrostatic repulsion.  相似文献   

13.
Teif VB 《Biophysical journal》2005,89(4):2574-2587
We test and compare different models for ligand-induced DNA condensation. Using 14C-labeled spermidine3+, we measure the binding to condensed DNA at micromolar to molar polyamine concentrations. DNA aggregates at a critical polyamine concentration. Spermidine3+ binding becomes highly cooperative at the onset of aggregation. At higher concentrations, spermidine3+ binding to condensed DNA reaches a plateau with the degree of binding equal to 0.7 (NH(4+)/PO3-). Condensed DNA exists in a wide range of spermidine concentrations with the roughly constant degree of ligand binding. At greater concentrations, the degree of binding increases again. Further spermidine penetration between the double helices causes DNA resolubilization. We show that a simple two-state model without ligand-ligand interactions qualitatively predicts the reentrant aggregation-resolubilization behavior and the dependence on the ligand, Na+, and DNA concentrations. However, such models are inconsistent with the cooperative ligand binding to condensed DNA. Including the contact or long-range ligand-ligand interactions improves the coincidence with the experiments, if binding to condensed DNA is slightly more cooperative than to the starting DNA. For example, in the contact interaction model it is equivalent to an additional McGhee-von Hippel cooperativity parameter of approximately 2. Possible physical mechanisms for the observed cooperativity of ligand binding are discussed.  相似文献   

14.
The gene encoding Leifsonia alcohol dehydrogenase (LSADH), a useful biocatalyst for producing (R)-chiral alcohols, was cloned from the genomic DNA of Leifsonia sp. S749. The gene contained an opening reading frame consisting of 756 nucleotides corresponding to 251 amino acid residues. The subunit molecular weight was calculated to be 24,999, which was consistent with that determined by polyacrylamide gel electrophoresis. The enzyme was expressed in recombinant Escherichia coli cells and purified to homogeneity by three column chromatographies. The predicted amino acid sequence displayed 30-50% homology to known short chain alcohol dehydrogenase/reductases (SDRs); moreover, the NADH-binding site and the three catalytic residues in SDRs were conserved. The recombinant E. coli cells which overexpressed lsadh produced (R)-form chiral alcohols from ketones using 2-propanol as a hydrogen donor with the highest level of productivity ever reported and enantiomeric excess (e.e.).  相似文献   

15.
T Yagi 《Microbios》1992,70(283):93-102
The accumulation of glycerol and inorganic ions as it related to osmotic pressure, and the regulation of intracellular osmotic pressure in a salt-tolerant yeast, Zygosaccharomyces rouxii, were examined for several hours after salt stress. Intracellular contents of glycerol increased for up to 6 h in media supplemented with 1 M and 2 M NaCl and did not increase in medium containing 3 M NaCl. Intracellular contents of Na+ and Cl- reached a maximum value within 1 and 3 h, respectively, in all NaCl-containing media and increases were proportional to the concentration of NaCl in the medium. As glycerol was accumulated in cells, the intracellular contents of Na+ and Cl- gradually decreased in media containing 1 M and 2 M NaCl. After salt stress, cell volume decreased within 1 h and the original volume was re-established for 3 to 6 h in media with 1 M and 2 M NaCl but not in medium with 3 M NaCl. Intracellular concentrations of solutes, which were calculated from the total contents of glycerol and inorganic ions and the cell volume, became almost equivalent to the external osmotic pressure within 1 h after salt stress. Experiments using various inhibitors showed that a large amount of ATP was required not only for the synthesis and accumulation of glycerol but also for the exclusion of Na+ and Cl- from cells under salt-stressed conditions.  相似文献   

16.
In Neurospora crassa the aliphatic alcohols methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, ethylene glycol, glycerol, and allyl alcohol and the phenolic compounds phenol, hydroquinone, resorcinol, pyrogallol, phloroglucinol, sodium salicylate, and acetylsalicylic acid were analyzed with respect to their capacities to induce heat shock proteins (HSP) and to inhibit protein synthesis. Both the alcohols and phenols showed the greatest levels of HSP induction at concentrations which inhibited the overall protein synthesis by about 50%. The abilities of the different alcohols to induce the heat shock response are proportional to their lipophilicities: the lipophilic alcohol isobutanol is maximally inductive at about 0.6 M, whereas the least lipophilic alcohol, methanol, causes maximal induction at 5.7 M. The phenols, in general, show a higher capability to induce the heat shock response. The concentrations for maximal induction range between 25 mM (sodium salicylate) and 100 mM (resorcinol). Glycerol (4.1 M) shifted the concentration necessary for maximal HSP induction by hydroquinone from 50 to 200 mM. The results reveal that the induction of HSP occurs under conditions which considerably constrain cell metabolism. The heat shock response, therefore, does not represent a sensitive marker for toxicity tests but provides a good estimate for the extent of cell damage.  相似文献   

17.
DNA complexes of spermine and spermidine become resolubilized at very high concentrations of the oligoamine. It has been postulated that high oligoamine concentrations shift the DNA from the globule back to the coil phase. The present study indicates that DNA resolubilization at high concentrations of spermine and spermidine is explained by formation of small particles of condensed DNA that cannot be precipitated by centrifugation. The fact that DNA stays condensed during resolubilization was confirmed using a relatively new condensation assay and three independent microscopic techniques. A considerable portion of DNA was found to be in particles with diameter <100 nm. Formation of such small particles is likely to be caused by colloidal forces. The ability to form small, condensed DNA particles in solutions that contain high concentrations of oligocation should aid in the design of synthetic DNA vectors for gene transfer and gene therapy and in the handling of DNA for diagnostic studies.  相似文献   

18.
Chatterjee C  Gerig JT 《Biochemistry》2006,45(49):14665-14674
Fluoro alcohols present in aqueous solutions can alter the dominant conformations of peptides and proteins. The origins of these effects likely are related to the details of solute-fluoro alcohol interactions. Preferential interaction of the fluoro alcohol component of a fluoro alcohol-water mixture with peptide solutes has been demonstrated by several experimental approaches. In the present work, we have used 1H{19F} intermolecular NOE experiments to examine interactions of hexafluoro-2-propanol in a 30% fluoro alcohol-50 mM phosphate buffer solvent mixture with the "Trp-cage" peptide (NLY IQW LKD GGP SSG RPP PS). The results show that the peptide is selectively solvated by hexafluoro-2-propanol to the extent that the fluoro alcohol concentration near the peptide may be 3 to 4 times higher than the nominal concentration of fluoro alcohol in the bulk sample. The observed NOEs indicate that peptide-fluoro alcohol interactions persist for times of the order of 1 ns at 5 degrees C. As the sample temperature is increased, the lifetimes of fluoro alcohol interactions with several exposed side chains decrease to the extent that the peptide hydrogen-solvent fluorine interactions appear to become diffusive in nature, with interaction lifetimes of approximately 0.03 ns. It is known that protein molecules can provide specific sites for binding small organic solvent molecules. Our work suggests that small peptides also have this ability and that the dynamics for such interactions can be site-specific.  相似文献   

19.
Forces between type I collagen triple helices are studied in solvents of varying hydrogen-bonding ability. The swelling of collagen fibers in reconstituted films is controlled by the concentration of soluble polymers that are excluded from the fibers and that compete osmotically with collagen for available solvent. The interaxial spacing between the triple helices as a function of the polymer concentration is measured by x-ray diffraction. Exponential-like changes in the spacing with increasing osmotic stress, qualitatively similar to the forces previously found in aqueous solution, are also seen in formamide and ethylene glycol. These are solvents that, like water, are capable of forming three-dimensional hydrogen-bond networks. In solvents that either cannot form a network or have a greatly impaired ability to form a hydrogen-bonded network, strikingly different behavior is observed. A hard-wall repulsion is seen with collagen solvated by ethanol, 2-propanol, and N,N-dimethylformamide. The spacing between helices hardly changes with increasing polymer concentration until the stress exceeds some threshold where removal of the solvent becomes energetically favorable. No solvation of collagen is observed in dimethoxyethane. In solvents with an intermediate ability to form hydrogen-bonded networks, methanol, 2-methoxyethanol, or N-methylformamide, the change in spacing with polymer concentration is intermediate between exponential-like and hard-wall. These results provide direct evidence that the exponential repulsion observed between collagen helices at 0-8-A surface separations in water is due to the energetic cost associated with perturbing the hydrogen-bonded network of solvent molecules between the collagen surfaces.  相似文献   

20.
Using the osmotic stress technique together with a self-cleavage assay we measure directly differences in sequestered water between specific and nonspecific DNA-BamHI complexes as well as the numbers of water molecules released coupled to specific complex formation. The difference between specific and nonspecific binding free energy of the BamHI scales linearly with solute osmolal concentration for seven neutral solutes used to set water activity. The observed osmotic dependence indicates that the nonspecific DNA-BamHI complex sequesters some 120-150 more water molecules than the specific complex. The weak sensitivity of the difference in number of waters to the solute identity suggests that these waters are sterically inaccessible to solutes. This result is in close agreement with differences in the structures determined by x-ray crystallography. We demonstrate additionally that when the same solutes that were used in competition experiments are used to probe changes accompanying the binding of free BamHI to its specific DNA sequence, the measured number of water molecules released in the binding process is strikingly solute-dependent (with up to 10-fold difference between solutes). This result is expected for reactions resulting in a large change in a surface exposed area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号