首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Skeletal muscle myoblast differentiation and fusion into multinucleate myotubes is associated with dramatic cytoskeletal changes. We find that microtubules in differentiated myotubes are highly stabilized, but premature microtubule stabilization blocks differentiation. Factors responsible for microtubule destabilization in myoblasts have not been identified.

Findings

We find that a transient decrease in microtubule stabilization early during myoblast differentiation precedes the ultimate microtubule stabilization seen in differentiated myotubes. We report a role for the serine-threonine kinase LKB1 in both microtubule destabilization and myoblast differentiation. LKB1 overexpression reduced microtubule elongation in a Nocodazole washout assay, and LKB1 RNAi increased it, showing LKB1 destabilizes microtubule assembly in myoblasts. LKB1 levels and activity increased during myoblast differentiation, along with activation of the known LKB1 substrates AMP-activated protein kinase (AMPK) and microtubule affinity regulating kinases (MARKs). LKB1 overexpression accelerated differentiation, whereas RNAi impaired it.

Conclusions

Reduced microtubule stability precedes myoblast differentiation and the associated ultimate microtubule stabilization seen in myotubes. LKB1 plays a positive role in microtubule destabilization in myoblasts and in myoblast differentiation. This work suggests a model by which LKB1-induced microtubule destabilization facilitates the cytoskeletal changes required for differentiation. Transient destabilization of microtubules might be a useful strategy for enhancing and/or synchronizing myoblast differentiation.  相似文献   

2.

Objective

Leptin receptors are abundant in human skeletal muscle, but the role of leptin in muscle growth, development and aging is not well understood. Here we utilized a novel mouse model lacking all functional leptin receptor isoforms (POUND mouse, Leprdb/lb) to determine the role of leptin in skeletal muscle.

Methods and Findings

Skeletal muscle mass and fiber diameters were examined in POUND mice, and primary myoblast cultures were used to determine the effects of altered leptin signaling on myoblast proliferation and differentiation. ELISA assays, integrated pathway analysis of mRNA microarrays, and reverse phase protein analysis were performed to identify signaling pathways impacted by leptin receptor deficiency. Results show that skeletal muscle mass and fiber diameter are reduced 30–40% in POUND mice relative to wild-type controls. Primary myoblast cultures demonstrate decreased proliferation and decreased expression of both MyoD and myogenin in POUND mice compared to normal mice. Leptin treatment increased proliferation in primary myoblasts from muscles of both adult (12 months) and aged (24 months) wild-type mice, and leptin increased expression of MyoD and myogenin in aged primary myoblasts. ELISA assays and protein arrays revealed altered expression of molecules associated with the IGF-1/Akt and MAPK/MEK signaling pathways in muscle from the hindlimbs of mice lacking functional leptin receptors.

Conclusion

These data support the hypothesis that the adipokine leptin is a key factor important for the regulation of skeletal muscle mass, and that leptin can act directly on its receptors in peripheral tissues to regulate cell proliferation and differentiation.  相似文献   

3.
4.
5.
The functionally undefined Stac3 gene, predicted to encode a SH3 domain- and C1 domain-containing protein, was recently found to be specifically expressed in skeletal muscle and essential to normal skeletal muscle development and contraction. In this study we determined the potential role of Stac3 in myoblast proliferation and differentiation, two important steps of muscle development. Neither siRNA-mediated Stac3 knockdown nor plasmid-mediated Stac3 overexpression affected the proliferation of C2C12 myoblasts. Stac3 knockdown promoted the differentiation of C2C12 myoblasts into myotubes as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA and protein expression of myogenic markers including myogenin and myosin heavy chain. In contrast, Stac3 overexpression inhibited the differentiation of C2C12 myoblasts into myotubes as evidenced by decreased fusion index, decreased number of nuclei per myotube, and decreased mRNA and protein expression of myogenic markers. Compared to wild-type myoblasts, myoblasts from Stac3 knockout mouse embryos showed accelerated differentiation into myotubes in culture as evidenced by increased fusion index, increased number of nuclei per myotube, and increased mRNA expression of myogenic markers. Collectively, these data suggest an inhibitory role of endogenous Stac3 in myoblast differentiation. Myogenesis is a tightly controlled program; myofibers formed from prematurely differentiated myoblasts are dysfunctional. Thus, Stac3 may play a role in preventing precocious myoblast differentiation during skeletal muscle development.  相似文献   

6.
The aim of this study is to determine if the Odc1 gene, which encodes ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, is directly regulated by the androgen receptor (AR) in skeletal muscle myoblasts and if Odc1 regulates myoblast proliferation and differentiation. We previously showed that expression of Odc1 is decreased in muscle from AR knockout male mice. In this study, we show in vivo that Odc1 expression is also decreased >60% in muscle from male muscle-specific AR knockout mice. In normal muscle homeostasis, Odc1 expression is regulated by age and sex, reflecting testosterone levels, as muscle of adult male mice expresses high levels of Odc1 compared with age-matched females and younger males. In vitro, expression of Odc1 is 10- and 1.5-fold higher in proliferating mouse C(2)C(12) and human skeletal muscle myoblasts, respectively, than in differentiated myotubes. Dihydrotestosterone increases Odc1 levels 2.7- and 1.6-fold in skeletal muscle cell myoblasts after 12 and 24 h of treatment, respectively. Inhibition of ODC activity in C(2)C(12) myoblasts by α-difluoromethylornithine decreases myoblast number by 40% and 66% following 48 and 72 h of treatment, respectively. In contrast, overexpression of Odc1 in C(2)C(12) myoblasts results in a 27% increase in cell number vs. control when cells are grown under differentiation conditions for 96 h. This prolonged proliferation is associated with delayed differentiation, with reduced expression of the differentiation markers myogenin and Myf6 in Odc1-overexpressing cells. In conclusion, androgens act via the AR to upregulate Odc1 in skeletal muscle myoblasts, and Odc1 promotes myoblast proliferation and delays differentiation.  相似文献   

7.
8.

Background

Despite the initial promise of myoblast transfer therapy to restore dystrophin in Duchenne muscular dystrophy patients, clinical efficacy has been limited, primarily by poor cell survival post-transplantation. Murine muscle derived stem cells (MDSCs) isolated from slowly adhering cells (SACs) via the preplate technique, induce greater muscle regeneration than murine myoblasts, primarily due to improved post-transplantation survival, which is conferred by their increased stress resistance capacity. Aldehyde dehydrogenase (ALDH) represents a family of enzymes with important morphogenic as well as oxidative damage mitigating roles and has been found to be a marker of stem cells in both normal and malignant tissue. In this study, we hypothesized that elevated ALDH levels could identify murine and human muscle derived cell (hMDC) progenitors, endowed with enhanced stress resistance and muscle regeneration capacity.

Methodology/Principal Findings

Skeletal muscle progenitors were isolated from murine and human skeletal muscle by a modified preplate technique and unfractionated enzymatic digestion, respectively. ALDHhi subpopulations isolated by fluorescence activate cell sorting demonstrated increased proliferation and myogenic differentiation capacities compared to their ALDHlo counterparts when cultivated in oxidative and inflammatory stress media conditions. This behavior correlated with increased intracellular levels of reduced glutathione and superoxide dismutase. ALDHhi murine myoblasts were observed to exhibit an increased muscle regenerative potential compared to ALDHlo myoblasts, undergo multipotent differentiation (osteogenic and chondrogenic), and were found predominately in the SAC fraction, characteristics that are also observed in murine MDSCs. Likewise, human ALDHhi hMDCs demonstrated superior muscle regenerative capacity compared to ALDHlo hMDCs.

Conclusions

The methodology of isolating myogenic cells on the basis of elevated ALDH activity yielded cells with increased stress resistance, a behavior that conferred increased regenerative capacity of dystrophic murine skeletal muscle. This result demonstrates the critical role of stress resistance in myogenic cell therapy as well as confirms the role of ALDH as a marker for rapid isolation of murine and human myogenic progenitors for cell therapy.  相似文献   

9.

Background

Intramyocellular lipid accumulation is strongly related to insulin resistance in humans, and we have shown that high glucose concentration induced de novo lipogenesis and insulin resistance in murin muscle cells. Alterations in Wnt signaling impact the balance between myogenic and adipogenic programs in myoblasts, partly due to the decrease of Wnt10b protein. As recent studies point towards a role for Wnt signaling in the pathogenesis of type 2 diabetes, we hypothesized that activation of Wnt signaling could play a crucial role in muscle insulin sensitivity.

Methodology/Principal Findings

Here we demonstrate that SREBP-1c and Wnt10b display inverse expression patterns during muscle ontogenesis and regeneration, as well as during satellite cells differentiation. The Wnt/β-catenin pathway was reactivated in contracting myotubes using siRNA mediated SREBP-1 knockdown, Wnt10b over-expression or inhibition of GSK-3β, whereas Wnt signaling was inhibited in myoblasts through silencing of Wnt10b. SREBP-1 knockdown was sufficient to induce Wnt10b protein expression in contracting myotubes and to activate the Wnt/β-catenin pathway. Conversely, silencing Wnt10b in myoblasts induced SREBP-1c protein expression, suggesting a reciprocal regulation. Stimulation of the Wnt/β-catenin pathway i) drastically decreased SREBP-1c protein and intramyocellular lipid deposition in myotubes; ii) increased basal glucose transport in both insulin-sensitive and insulin-resistant myotubes through a differential activation of Akt and AMPK pathways; iii) restored insulin sensitivity in insulin-resistant myotubes.

Conclusions/Significance

We conclude that activation of Wnt/β-catenin signaling in skeletal muscle cells improved insulin sensitivity by i) decreasing intramyocellular lipid deposition through downregulation of SREBP-1c; ii) increasing insulin effects through a differential activation of the Akt/PKB and AMPK pathways; iii) inhibiting the MAPK pathway. A crosstalk between these pathways and Wnt/β-catenin signaling in skeletal muscle opens the exciting possibility that organ-selective modulation of Wnt signaling might become an attractive therapeutic target in regenerative medicine and to treat obese and diabetic populations.  相似文献   

10.
Lbx2 regulates formation of myofibrils   总被引:1,自引:0,他引:1  

Background  

Skeletal muscle differentiation requires assembly of contractile proteins into organized myofibrils. The Drosophila ladybird homeobox gene (lad) functions in founder cells of the segmental border muscle to promote myoblast fusion and muscle shaping. Tetrapods have two homologous genes (Lbx). Lbx1 functions in migration and/or proliferation of hypaxial myoblasts, whereas the function of Lbx2 is poorly understood.  相似文献   

11.
Caveolin-3 is the principal structural protein of caveolae membrane domains in striated muscle cells. Caveolin-3 mRNA and protein expression are dramatically induced during the differentiation of C2C12 skeletal myoblasts, coincident with myoblast fusion. In these myotubes, caveolin-3 localizes to the sarcolemma (muscle cell plasma membrane), where it associates with the dystrophin-glycoprotein complex. However, it remains unknown what role caveolin-3 plays in myoblast differentiation and myotube formation. Here, we employ an antisense approach to derive stable C2C12 myoblasts that fail to express the caveolin-3 protein. We show that C2C12 cells harboring caveolin-3 antisense undergo differentiation and express normal amounts of four muscle-specific marker proteins. However, C2C12 cells harboring caveolin-3 antisense fail to undergo myoblast fusion and, therefore, do not form myotubes. Interestingly, treatment with specific p38 mitogen-activated protein kinase inhibitors blocks both myotube formation and caveolin-3 expression, but does not affect the expression of other muscle-specific proteins. In addition, we find that three human rhabdomyosarcoma cell lines do not express caveolin-3 and fail to undergo myoblast fusion. Taken together, these results support the idea that caveolin-3 expression is required for myoblast fusion and myotube formation, and suggest that p38 is an upstream regulator of caveolin-3 expression.  相似文献   

12.
Following damage to skeletal muscle, satellite cells become activated, migrate towards the injured area, proliferate, and fuse with each other to form myotubes which finally mature into myofibers. We tested a new approach to muscle regeneration by incorporating myoblasts, with or without the exogenous growth factors bFGF or HGF, into three-dimensional gels of reconstituted basement membrane (matrigel). In vitro, bFGF and HGF induced C2C12 myoblast proliferation and migration and were synergistic when used together. In vivo, C2C12 or primary i28 myoblasts were injected subcutaneously together with matrigel and growth factors in the flanks of nude mice. The inclusion of either bFGF or HGF increased the vascularization of the gels. Gels supplemented with bFGF showed myogenesis accompanied by massive mesenchymal cell recruitment and poor organization of the fascicles. Samples containing HGF showed delayed differentiation with respect to controls or bFGF, with increased myoblast proliferation and a significantly higher numbers of cells in myotubes at later time points. HGF samples showed limited mesenchymal cell infiltration and relatively good organization of fascicles. The use of both bFGF and HGF together showed increased numbers of nuclei in myotubes, but with bFGF-mediated fibroblast recruitment dominating. These studies suggest that an appropriate combination of basement membrane components and growth factors could represent a possible approach to enhance survival dispersion, proliferation, and differentiation of myogenic cells during muscle regeneration and/or myoblast transplantation. This model will help develop cell therapy of muscle diseases and open the future to gene therapy approaches.  相似文献   

13.
Skeletal myogenesis is a precise procedure marked by specific changes in muscle cell morphology and cytoarchitecture. Cessation of proliferation by skeletal muscle precursor cells (myoblasts) coincides with the induction of fusion to form multinucleated myotubes and the initiation of differentiation, the process through which sarcomeres are formed. Concurrently, there is a distinct upregulation in expression of muscle-specific isoforms and an extreme downregulation of non-muscle-specific cytoskeletal isoforms. The sarcomere is the contractile unit of the cell and is comprised of a number of different proteins aggregated and aligned in very ordered arrays along the myotube. It is this rigorously controlled alignment that gives striated muscle its characteristic "striped" appearance. Previous studies, conducted predominantly in cardiac muscle, propose models for the development of the sarcomere that attribute little of the differentiative process to the myoblast morphology and cytoskeletal arrangement. In this study, perturbation of myoblast morphology and cytoskeletal arrangement by transfection with nonmuscle actin genes in the mouse skeletal muscle cell line C2 resulted in myotubes of both varied morphology and sarcomeric structure. The results presented herein not only provide novel insights into the formation of the sarcomere in skeletal muscle, but also suggest a role for myoblast morphology and cytoskeletal structure in the subsequent differentiation of the myotube.  相似文献   

14.
15.
为研究脑信号蛋白家族(Semaphorins)成员Sema7A对成肌细胞增殖和分化的影响,本文设计并合成了Sema7A基因的小干扰RNA(small interfering RNA,siRNA),用此siRNA转染C2C12成肌细胞.通过Hoechst核染和流式细胞术检测细胞增殖情况,免疫荧光检测肌管的形成情况,real-time qPCR和Western印迹技术检测成肌标记基因的变化.结果显示,干扰Sema7A后,C2C12成肌细胞增殖减慢,处在G2和S期的细胞所占的比例明显下降,而G1期细胞的比例升高.免疫荧光检测结果显示,干扰Sema7A后,肌管的直径及MyHC+细胞所占比例均显著降低.Real-time qPCR和Western印迹结果也显示,肌肉分化标志基因MyoD、MyoG、MyHC的mRNA及蛋白质表达均下降.进一步检测Sema7A受体下游信号通路发现,干扰Sema7A后,其下游信号分子PI3K和AKT的磷酸化水平被下调.以上结果表明,Sema7A可以调节C2C12成肌细胞的增殖和分化,可能是通过其受体作用于PI3K/AKT信号通路实现的,这为进一步研究Sema7A在骨骼肌发育中的作用提供实验基础.  相似文献   

16.
Platelet-derived growth factors (PDGFs) regulate embryonic development, tissue regeneration, and wound healing through their binding to PDGF receptors, PDGFRα and PDGFRβ. However, the role of PDGF signaling in regulating muscle development and regeneration remains elusive, and the cellular and molecular responses of myogenic cells are understudied. Here, we explore the PDGF-PDGFR gene expression changes and their involvement in skeletal muscle myogenesis and myogenic fate. By surveying bulk RNA sequencing and single-cell profiling data of skeletal muscle stem cells, we show that myogenic progenitors and muscle stem cells differentially express PDGF ligands and PDGF receptors during myogenesis. Quiescent adult muscle stem cells and myoblasts preferentially express PDGFRβ over PDGFRα. Remarkably, cell culture- and injury-induced muscle stem cell activation altered PDGF family gene expression. In myoblasts, PDGF-AB and PDGF-BB treatments activate two pro-chemotactic and pro-mitogenic downstream transducers, RAS-ERK1/2 and PI3K-AKT. PDGFRs inhibitor AG1296 inhibited ERK1/2 and AKT activation, myoblast migration, proliferation, and cell cycle progression induced by PDGF-AB and PDGF-BB. We also found that AG1296 causes myoblast G0/G1 cell cycle arrest. Remarkably, PDGF-AA did not promote a noticeable ERK1/2 or AKT activation, myoblast migration, or expansion. Also, myogenic differentiation reduced the expression of both PDGFRα and PDGFRβ, whereas forced PDGFRα expression impaired myogenesis. Thus, our data highlight PDGF signaling pathway to stimulate satellite cell proliferation aiming to enhance skeletal muscle regeneration and provide a deeper understanding of the role of PDGF signaling in non-fibroblastic cells.  相似文献   

17.
18.
The insulin-like growth factors (IGF-I and IGF-II), working through the type 1 IGF receptor (IGF-1R), are key mediators of skeletal muscle fiber growth and hypertrophy. These processes are largely dependent on stimulation of proliferation and differentiation of muscle precursor cells, termed myoblasts. It has not been rigorously determined whether the IGFs can also mediate skeletal muscle hypertrophy in a myoblast-independent fashion. Similarly, although the phosphatidylinositol 3-kinase (PI3K) and calcineurin signaling pathways have been implicated in skeletal muscle hypertrophy, these pathways are also involved in skeletal myoblast differentiation. To determine whether the IGFs can stimulate skeletal muscle hypertrophy in a myoblast-independent fashion, we developed and validated a retroviral expression vector that mediated overexpression of the human IGF-1R in rat L6 skeletal myotubes (immature muscle fibers), but not in myoblasts. L6 myotubes transduced with this vector accumulated significantly higher amounts of myofibrillar proteins, in a ligand- and receptor-dependent manner, than controls and demonstrated significantly increased rates of protein synthesis. Stimulation of myotube hypertrophy was independent of myoblast contributions, inasmuch as these cultures did not exhibit increased levels of myoblast proliferation or differentiation. Experiments with PI3K and calcineurin inhibitors indicated that myoblast-independent myotube hypertrophy was mediated by PI3K, but not calcineurin, signaling. This study demonstrates that IGF can mediate skeletal muscle hypertrophy in a myoblast-independent fashion and suggests that muscle-specific overexpression of the IGF-1R or stimulation of its signaling pathways could be used to develop strategies to ameliorate muscle wasting without stimulating proliferative pathways leading to carcinogenesis or other pathological sequelae.  相似文献   

19.
Skeletal myoblasts withdrawing from cell cycle is a prerequisite for myodifferentiation, while upon proliferation/differentiation transformation, a large portion of myoblasts will undergo apoptosis. Skeletal fibroblasts, residing in muscle tissue both during and post myogenesis, have been proofed to play pivotal roles in muscle development, while their effect on myoblast apoptosis being coincident with differentiation has not been reported. Using a membrane insert co‐culture system, we studied it and found that the mitochondrial pathway played a crucial role in myoblast apoptosis during differentiation, and fibroblasts promoted not only cell cycle withdrawal but also myoblast survival in a paracrine fashion, which was coupled with upregulations of β1 integrin, phosphorylated Akt and anti‐apoptotic protein Bcl2. To determine the effect of β1 integrin in the process, we transfected myoblasts with siRNA specific for β1 integrin before co‐culture and found that β1 integrin knockdown abolished anti‐apoptotic ability of myoblasts and inhibited Akt activation and Bcl2 expression. Blockage of PI3K/Akt pathway with wortmannin also seriously impaired the protective effect of fibroblasts on myoblasts and fibroblast‐induced Bcl2 expression. The data demonstrated that fibroblasts protected myoblasts from intrinsic apoptosis associated with differentiation, and β1 integrin‐PI3K/Akt pathway activation was required for the process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号