首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
协作网通常被用于描述各种社会关系,相似的概念也可以应用到转录调控网络的研究中.针对被调控基因共享转录因子的相似性,可以建立一个被调控基因协作网,同样,根据转录因子调控基因的相似性可以建立一个相对较小的转录因子协作网.对被调控基因协作网的聚类研究发现,大部分的类都显著地富集一个或者多个GO功能注释.进一步的结果分析发现某些GO注释的基因更倾向于共享相似的调控机制.这表明,在协作网中,相对简单的调控机制相似性能捕捉生物功能相关的信息.并且,将在二部图分析中使用的概念--"异常点"引入到协作网的分析中,发现协作网的异常点和致死基因有相关性.综上所述,协作网的方法是分析转录调控网络的一个有用的补充.  相似文献   

2.
3.
MOTIVATION: Metabolic networks are organized in a modular, hierarchical manner. Methods for a rational decomposition of the metabolic network into relatively independent functional subsets are essential to better understand the modularity and organization principle of a large-scale, genome-wide network. Network decomposition is also necessary for functional analysis of metabolism by pathway analysis methods that are often hampered by the problem of combinatorial explosion due to the complexity of metabolic network. Decomposition methods proposed in literature are mainly based on the connection degree of metabolites. To obtain a more reasonable decomposition, the global connectivity structure of metabolic networks should be taken into account. RESULTS: In this work, we use a reaction graph representation of a metabolic network for the identification of its global connectivity structure and for decomposition. A bow-tie connectivity structure similar to that previously discovered for metabolite graph is found also to exist in the reaction graph. Based on this bow-tie structure, a new decomposition method is proposed, which uses a distance definition derived from the path length between two reactions. An hierarchical classification tree is first constructed from the distance matrix among the reactions in the giant strong component of the bow-tie structure. These reactions are then grouped into different subsets based on the hierarchical tree. Reactions in the IN and OUT subsets of the bow-tie structure are subsequently placed in the corresponding subsets according to a 'majority rule'. Compared with the decomposition methods proposed in literature, ours is based on combined properties of the global network structure and local reaction connectivity rather than, primarily, on the connection degree of metabolites. The method is applied to decompose the metabolic network of Escherichia coli. Eleven subsets are obtained. More detailed investigations of the subsets show that reactions in the same subset are really functionally related. The rational decomposition of metabolic networks, and subsequent studies of the subsets, make it more amenable to understand the inherent organization and functionality of metabolic networks at the modular level. SUPPLEMENTARY INFORMATION: http://genome.gbf.de/bioinformatics/  相似文献   

4.
Banerjee A 《Bio Systems》2012,107(3):186-196
Exploring common features and universal qualities shared by a particular class of networks in biological and other domains is one of the important aspects of evolutionary study. In an evolving system, evolutionary mechanism can cause functional changes that forces the system to adapt to new configurations of interaction pattern between the components of that system (e.g. gene duplication and mutation play a vital role for changing the connectivity structure in many biological networks. The evolutionary relation between two systems can be retraced by their structural differences). The eigenvalues of the normalized graph Laplacian not only capture the global properties of a network, but also local structures that are produced by graph evolutions (like motif duplication or joining). The spectrum of this operator carries many qualitative aspects of a graph. Given two networks of different sizes, we propose a method to quantify the topological distance between them based on the contrasting spectrum of normalized graph Laplacian. We find that network architectures are more similar within the same class compared to between classes. We also show that the evolutionary relationships can be retraced by the structural differences using our method. We analyze 43 metabolic networks from different species and mark the prominent separation of three groups: Bacteria, Archaea and Eukarya. This phenomenon is well captured in our findings that support the other cladistic results based on gene content and ribosomal RNA sequences. Our measure to quantify the structural distance between two networks is useful to elucidate evolutionary relationships.  相似文献   

5.
Nonparametric sparsification of complex multiscale networks   总被引:2,自引:0,他引:2  
Many real-world networks tend to be very dense. Particular examples of interest arise in the construction of networks that represent pairwise similarities between objects. In these cases, the networks under consideration are weighted, generally with positive weights between any two nodes. Visualization and analysis of such networks, especially when the number of nodes is large, can pose significant challenges which are often met by reducing the edge set. Any effective "sparsification" must retain and reflect the important structure in the network. A common method is to simply apply a hard threshold, keeping only those edges whose weight exceeds some predetermined value. A more principled approach is to extract the multiscale "backbone" of a network by retaining statistically significant edges through hypothesis testing on a specific null model, or by appropriately transforming the original weight matrix before applying some sort of threshold. Unfortunately, approaches such as these can fail to capture multiscale structure in which there can be small but locally statistically significant similarity between nodes. In this paper, we introduce a new method for backbone extraction that does not rely on any particular null model, but instead uses the empirical distribution of similarity weight to determine and then retain statistically significant edges. We show that our method adapts to the heterogeneity of local edge weight distributions in several paradigmatic real world networks, and in doing so retains their multiscale structure with relatively insignificant additional computational costs. We anticipate that this simple approach will be of great use in the analysis of massive, highly connected weighted networks.  相似文献   

6.
MOTIVATION: Large scale gene expression data are often analysed by clustering genes based on gene expression data alone, though a priori knowledge in the form of biological networks is available. The use of this additional information promises to improve exploratory analysis considerably. RESULTS: We propose constructing a distance function which combines information from expression data and biological networks. Based on this function, we compute a joint clustering of genes and vertices of the network. This general approach is elaborated for metabolic networks. We define a graph distance function on such networks and combine it with a correlation-based distance function for gene expression measurements. A hierarchical clustering and an associated statistical measure is computed to arrive at a reasonable number of clusters. Our method is validated using expression data of the yeast diauxic shift. The resulting clusters are easily interpretable in terms of the biochemical network and the gene expression data and suggest that our method is able to automatically identify processes that are relevant under the measured conditions.  相似文献   

7.
Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks.  相似文献   

8.
The brain''s structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e.g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a “fingerprint”. Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the “uncertainty” of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.  相似文献   

9.
The assessment of phylogenetic network reconstruction methods requires the ability to compare phylogenetic networks. This is the second in a series of papers devoted to the analysis and comparison of metrics for tree-child time consistent phylogenetic networks on the same set of taxa. In this paper, we generalize to phylogenetic networks two metrics that have already been introduced in the literature for phylogenetic trees: the nodal distance and the triplets distance. We prove that they are metrics on any class of tree-child time consistent phylogenetic networks on the same set of taxa, as well as some basic properties for them. To prove these results, we introduce a reduction/expansion procedure that can be used not only to establish properties of tree-child time consistent phylogenetic networks by induction, but also to generate all tree-child time consistent phylogenetic networks with a given number of leaves.  相似文献   

10.
11.
The cortex exhibits an intricate vertical and horizontal architecture, the latter often featuring spatially clustered projection patterns, so-called patches. Many network studies of cortical dynamics ignore such spatial structures and assume purely random wiring. Here, we focus on non-random network structures provided by long-range horizontal (patchy) connections that remain inside the gray matter. We investigate how the spatial arrangement of patchy projections influences global network topology and predict its impact on the activity dynamics of the network. Since neuroanatomical data on horizontal projections is rather sparse, we suggest and compare four candidate scenarios of how patchy connections may be established. To identify a set of characteristic network properties that enables us to pin down the differences between the resulting network models, we employ the framework of stochastic graph theory. We find that patchy projections provide an exceptionally efficient way of wiring, as the resulting networks tend to exhibit small-world properties with significantly reduced wiring costs. Furthermore, the eigenvalue spectra, as well as the structure of common in- and output of the networks suggest that different spatial connectivity patterns support distinct types of activity propagation.  相似文献   

12.
Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model for RIGs, by comparing various RIG definitions against a series of network models.  相似文献   

13.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   

14.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   

15.
16.
Recent advances in magnetic resonance imaging (MRI) are allowing neuroscientists to gain critical insights into the neural networks mediating a variety of cognitive processes. This work investigates structural and functional connectivity in the human brain under different experimental conditions through multimodal MRI acquisitions. To define the nodes of a full-brain network, a set of regions was identified from resting-state functional MRI (fMRI) data using spatial independent component analysis (sICA) and a hierarchical clustering technique. Diffusion-weighted imaging (DWI) data were acquired from the same subjects and a probabilistic fiber tracking method was used to estimate the structure of this network. Using features originating from graph theory, such as small-world properties and network efficiency, we characterized the structural and functional connectivities of the full-brain network and we compared them quantitatively. We showed that structural and functional networks shared some properties in terms of topology as measured by the distribution of the node degrees, hence supporting the existence of an underlying anatomical substrate for functional networks.  相似文献   

17.
18.
The formulation of network models from global protein studies is essential to understand the functioning of organisms. Network models of the proteome enable the application of Complex Network Analysis, a quantitative framework to investigate large complex networks using techniques from graph theory, statistical physics, dynamical systems and other fields. This approach has provided many insights into the functional organization of the proteome so far and will likely continue to do so. Currently, several network concepts have emerged in the field of proteomics. It is important to highlight the differences between these concepts, since different representations allow different insights into functional organization. One such concept is the protein interaction network, which contains proteins as nodes and undirected edges representing the occurrence of binding in large-scale protein-protein interaction studies. A second concept is the protein-signaling network, in which the nodes correspond to levels of post-translationally modified forms of proteins and directed edges to causal effects through post-translational modification, such as phosphorylation. Several other network concepts were introduced for proteomics. Although all formulated as networks, the concepts represent widely different physical systems. Therefore caution should be taken when applying relevant topological analysis. We review recent literature formulating and analyzing such networks.  相似文献   

19.
An advanced graph theoretical approach is introduced that enables a higher level of functional interpretation of samples of directed networks with identical fixed pairwise different vertex labels that are drawn from a particular population. Compared to the analysis of single networks, their investigation promises to yield more detailed information about the represented system. Often patterns of directed edges in sample element networks are too intractable for a direct evaluation and interpretation. The new approach addresses the problem of simplifying topological information and characterizes such a sample of networks by finding its locatable characteristic topological patterns. These patterns, essentially sample-specific network motifs with vertex labeling, might represent the essence of the intricate topological information contained in all sample element networks and provides as well a means of differentiating network samples. Central to the accurateness of this approach is the null model and its properties, which is needed to assign significance to topological patterns. As a proof of principle the proposed approach has been applied to the analysis of networks that represent brain connectivity before and during painful stimulation in patients with major depression and in healthy subjects. The accomplished reduction of topological information enables a cautious functional interpretation of the altered neuronal processing of pain in both groups.  相似文献   

20.
Complex interactions between different kinds of bio-molecules and essential nutrients are responsible for cellular functions. Rapid advances in theoretical modeling and experimental analyses have shown that drastically different biological and non-biological networks share a common architecture. That is, the probability that a selected node in the network has exactly k edges decays as a power-law. This finding has definitely opened an intense research and debate on the origin and implications of this ubiquitous pattern. In this review, we describe the recent progress on the emergence of power-law distributions in cellular networks. We first show the internal characteristics of the observed complex networks uncovered using graph theory. We then briefly review some works that have significantly contributed to the theoretical analysis of cellular networks and systems, from metabolic and protein networks to gene expression profiles. This prevalent topology observed in so many diverse biological systems suggests the existence of generic laws and organizing principles behind the cellular networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号