首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present here a neural network-based method for detection of signal peptides (abbreviation used: SP) in proteins. The method is trained on sequences of known signal peptides extracted from the Swiss-Prot protein database and is able to work separately on prokaryotic and eukaryotic proteins. A query protein is dissected into overlapping short sequence fragments, and then each fragment is analyzed with respect to the probability of it being a signal peptide and containing a cleavage site. While the accuracy of the method is comparable to that of other existing prediction tools, it provides a significantly higher speed and portability. The accuracy of cleavage site prediction reaches 73% on heterogeneous source data that contains both prokaryotic and eukaryotic sequences while the accuracy of discrimination between signal peptides and non-signal peptides is above 93% for any source dataset. As a consequence, the method can be easily applied to genome-wide datasets. The software can be downloaded freely from http://rpsp.bioinfo.pl/RPSP.tar.gz.  相似文献   

2.
We present a new method, secondary structure prediction by deviation parameter (SSPDP) for predicting the secondary structure of proteins from amino acid sequence. Deviation parameters (DP) for amino acid singlets, doublets and triplets were computed with respect to secondary structural elements of proteins based on the dictionary of secondary structure prediction (DSSP)-generated secondary structure for 408 selected nonhomologous proteins. To the amino acid triplets which are not found in the selected dataset, a DP value of zero is assigned with respect to the secondary structural elements of proteins. The total number of parameters generated is 15,432, in the possible parameters of 25,260. Deviation parameter is complete with respect to amino acid singlets, doublets, and partially complete with respect to amino acid triplets. These generated parameters were used to predict secondary structural elements from amino acid sequence. The secondary structure predicted by our method (SSPDP) was compared with that of single sequence (NNPREDICT) and multiple sequence (PHD) methods. The average value of the percentage of prediction accuracy for αhelix by SSPDP, NNPREDICT and PHD methods was found to be 57%, 44% and 69% respectively for the proteins in the selected dataset. For Β-strand the prediction accuracy is found to be 69%, 21% and 53% respectively by SSPDP, NNPREDICT and PHD methods. This clearly indicates that the secondary structure prediction by our method is as good as PHD method but much better than NNPREDICT method.  相似文献   

3.
We present a novel computational method for predicting which proteins from highly and abnormally expressed genes in diseased human tissues, such as cancers, can be secreted into the bloodstream, suggesting possible marker proteins for follow-up serum proteomic studies. A main challenging issue in tackling this problem is that our understanding about the downstream localization after proteins are secreted outside the cells is very limited and not sufficient to provide useful hints about secretion to the bloodstream. To bypass this difficulty, we have taken a data mining approach by first collecting, through extensive literature searches, human proteins that are known to be secreted into the bloodstream due to various pathological conditions as detected by previous proteomic studies, and then asking the question: 'what do these secreted proteins have in common in terms of their physical and chemical properties, amino acid sequence and structural features that can be used to predict them?' We have identified a list of features, such as signal peptides, transmembrane domains, glycosylation sites, disordered regions, secondary structural content, hydrophobicity and polarity measures that show relevance to protein secretion. Using these features, we have trained a support vector machine-based classifier to predict protein secretion to the bloodstream. On a large test set containing 98 secretory proteins and 6601 non-secretory proteins of human, our classifier achieved approximately 90% prediction sensitivity and approximately 98% prediction specificity. Several additional datasets are used to further assess the performance of our classifier. On a set of 122 proteins that were found to be of abnormally high abundance in human blood due to various cancers, our program predicted 62 as blood-secreted proteins. By applying our program to abnormally highly expressed genes in gastric cancer and lung cancer tissues detected through microarray gene expression studies, we predicted 13 and 31 as blood secreted, respectively, suggesting that they could serve as potential biomarkers for these two cancers, respectively. Our study demonstrated that our method can provide highly useful information to link genomic and proteomic studies for disease biomarker discovery. Our software can be accessed at http://csbl1.bmb.uga.edu/cgi-bin/Secretion/secretion.cgi.  相似文献   

4.
We present a new method, secondary structure prediction by deviation parameter (SSPDP) for predicting the secondary structure of proteins from amino acid sequence. Deviation parameters (DP) for amino acid singlets, doublets and triplets were computed with respect to secondary structural elements of proteins based on the dictionary of secondary structure prediction (DSSP)-generated secondary structure for 408 selected non-homologous proteins. To the amino acid triplets which are not found in the selected dataset, a DP value of zero is assigned with respect to the secondary structural elements of proteins. The total number of parameters generated is 15,432, in the possible parameters of 25,260. Deviation parameter is complete with respect to amino acid singlets, doublets, and partially complete with respect to amino acid triplets. These generated parameters were used to predict secondary structural elements from amino acid sequence. The secondary structure predicted by our method (SSPDP) was compared with that of single sequence (NNPREDICT) and multiple sequence (PHD) methods. The average value of the percentage of prediction accuracy for a helix by SSPDP, NNPREDICT and PHD methods was found to be 57%, 44% and 69% respectively for the proteins in the selected dataset. For b-strand the prediction accuracy is found to be 69%, 21% and 53% respectively by SSPDP, NNPREDICT and PHD methods. This clearly indicates that the secondary structure prediction by our method is as good as PHD method but much better than NNPREDICT method.  相似文献   

5.
A sensitive new plate-reader assay has been developed showing that adult mammalian blood serum contains circulating soluble sulfhydryl oxidase activity that can introduce disulfide bonds into reduced proteins with the reduction of oxygen to hydrogen peroxide. The activity was purified 5000-fold to >90% homogeneity from bovine serum and found by mass spectrometry to be consistent with the short isoform of quiescin-sulfhydryl oxidase 1 (QSOX1). This FAD-dependent enzyme is present at comparable activity levels in fetal and adult commercial bovine sera. Thus cell culture media that are routinely supplemented with either fetal or adult bovine sera will contain this facile catalyst of protein thiol oxidation. QSOX1 is present at approximately 25 nM in pooled normal adult human serum. Examination of the unusual kinetics of QSOX1 toward cysteine and glutathione at low micromolar concentrations suggests that circulating QSOX1 is unlikely to significantly contribute to the oxidation of these monothiols in plasma. However, the ability of QSOX1 to rapidly oxidize conformationally mobile protein thiols suggests a possible contribution to the redox status of exofacial and soluble proteins in blood plasma. Recent proteomic studies showing that plasma QSOX1 can be utilized in the diagnosis of pancreatic cancer and acute decompensated heart failure, together with the overexpression of this secreted enzyme in a number of solid tumors, suggest that the robust QSOX assay developed here may be useful in the quantitation of enzyme levels in a wide range of biological fluids.  相似文献   

6.
Although serum/plasma has been the preferred source for identification of disease biomarkers, these efforts have been met with little success, in large part due the relatively small number of highly abundant proteins that render the reliable detection of low abundant disease-related proteins challenging due to the expansive dynamic range of concentration of proteins in this sample. Proximal fluid, the fluid derived from the extracellular milieu of tissues, contains a large repertoire of shed and secreted proteins that are likely to be present at higher concentrations relative to plasma/serum. It is hypothesized that many, if not all, proximal fluid proteins exchange with peripheral circulation, which has provided significant motivation for utilizing proximal fluids as a primary sample source for protein biomarker discovery. The present review highlights recent advances in proximal fluid proteomics, including the various protocols utilized to harvest proximal fluids along with detailing the results from mass spectrometry- and antibody-based analyses.  相似文献   

7.
Protein binding site prediction using an empirical scoring function   总被引:4,自引:1,他引:3  
Liang S  Zhang C  Liu S  Zhou Y 《Nucleic acids research》2006,34(13):3698-3707
Most biological processes are mediated by interactions between proteins and their interacting partners including proteins, nucleic acids and small molecules. This work establishes a method called PINUP for binding site prediction of monomeric proteins. With only two weight parameters to optimize, PINUP produces not only 42.2% coverage of actual interfaces (percentage of correctly predicted interface residues in actual interface residues) but also 44.5% accuracy in predicted interfaces (percentage of correctly predicted interface residues in the predicted interface residues) in a cross validation using a 57-protein dataset. By comparison, the expected accuracy via random prediction (percentage of actual interface residues in surface residues) is only 15%. The binding sites of the 57-protein set are found to be easier to predict than that of an independent test set of 68 proteins. The average coverage and accuracy for this independent test set are 30.5 and 29.4%, respectively. The significant gain of PINUP over expected random prediction is attributed to (i) effective residue-energy score and accessible-surface-area-dependent interface-propensity, (ii) isolation of functional constraints contained in the conservation score from the structural constraints through the combination of residue-energy score (for structural constraints) and conservation score and (iii) a consensus region built on top-ranked initial patches.  相似文献   

8.
Some creatures living in extremely low temperatures can produce some special materials called “antifreeze proteins” (AFPs), which can prevent the cell and body fluids from freezing. AFPs are present in vertebrates, invertebrates, plants, bacteria, fungi, etc. Although AFPs have a common function, they show a high degree of diversity in sequences and structures. Therefore, sequence similarity based search methods often fails to predict AFPs from sequence databases. In this work, we report a random forest approach “AFP-Pred” for the prediction of antifreeze proteins from protein sequence. AFP-Pred was trained on the dataset containing 300 AFPs and 300 non-AFPs and tested on the dataset containing 181 AFPs and 9193 non-AFPs. AFP-Pred achieved 81.33% accuracy from training and 83.38% from testing. The performance of AFP-Pred was compared with BLAST and HMM. High prediction accuracy and successful of prediction of hypothetical proteins suggests that AFP-Pred can be a useful approach to identify antifreeze proteins from sequence information, irrespective of their sequence similarity.  相似文献   

9.
Secreted protein prediction system combining CJ-SPHMM,TMHMM, and PSORT   总被引:4,自引:0,他引:4  
To increase the coverage of secreted protein prediction, we describe a combination strategy. Instead of using a single method, we combine Hidden Markov Model (HMM)-based methods CJ-SPHMM and TMHMM with PSORT in secreted protein prediction. CJ-SPHMM is an HMM-based signal peptide prediction method, while TMHMM is an HMM-based transmembrane (TM) protein prediction algorithm. With CJ-SPHMM and TMHMM, proteins with predicted signal peptide and without predicted TM regions are taken as putative secreted proteins. This HMM-based approach predicts secreted protein with Ac (Accuracy) at 0.82 and Cc (Correlation coefficient) at 0.75, which are similar to PSORT with Ac at 0.82 and Cc at 0.76. When we further complement the HMM-based method, i.e., CJ-SPHMM + TMHMM with PSORT in secreted protein prediction, the Ac value is increased to 0.86 and the Cc value is increased to 0.81. Taking this combination strategy to search putative secreted proteins from the International Protein Index (IPI) maintained at the European Bioinformatics Institute (EBI), we constructed a putative human secretome with 5235 proteins. The prediction system described here can also be applied to predicting secreted proteins from other vertebrate proteomes. Availability: The CJ-SPHMM and predicted secreted proteins are available at: ftp://ftp.cbi.pku.edu.cn/pub/secreted-protein/  相似文献   

10.
Staphylococcus aureus is capable of colonizing and infecting humans by its arsenal of surface-exposed and secreted proteins. Iron-limited conditions in mammalian body fluids serve as a major environmental signal to bacteria to express virulence determinants. Here we present a comprehensive, gel-free, and GeLC-MS/MS-based quantitative proteome profiling of S. aureus under this infection-relevant situation. (14)N(15)N metabolic labeling and three complementing approaches were combined for relative quantitative analyses of surface-associated proteins. The surface-exposed and secreted proteome profiling approaches comprise trypsin shaving, biotinylation, and precipitation of the supernatant. By analysis of the outer subproteomic and cytoplasmic protein fraction, 1210 proteins could be identified including 221 surface-associated proteins. Thus, access was enabled to 70% of the predicted cell wall-associated proteins, 80% of the predicted sortase substrates, two/thirds of lipoproteins and more than 50% of secreted and cytoplasmic proteins. For iron-deficiency, 158 surface-associated proteins were quantified. Twenty-nine proteins were found in altered amounts showing particularly surface-exposed proteins strongly induced, such as the iron-regulated surface determinant proteins IsdA, IsdB, IsdC and IsdD as well as lipid-anchored iron compound-binding proteins. The work presents a crucial subject for understanding S. aureus pathophysiology by the use of methods that allow quantitative surface proteome profiling.  相似文献   

11.
MOTIVATION: Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop computational methods capable of accurately predicting disulfide connectivity patterns in proteins that could have potentially important applications. RESULTS: We have developed a novel method to predict disulfide connectivity patterns from protein primary sequence, using a support vector regression (SVR) approach based on multiple sequence feature vectors and predicted secondary structure by the PSIPRED program. The results indicate that our method could achieve a prediction accuracy of 74.4% and 77.9%, respectively, when averaged on proteins with two to five disulfide bridges using 4-fold cross-validation, measured on the protein and cysteine pair on a well-defined non-homologous dataset. We assessed the effects of different sequence encoding schemes on the prediction performance of disulfide connectivity. It has been shown that the sequence encoding scheme based on multiple sequence feature vectors coupled with predicted secondary structure can significantly improve the prediction accuracy, thus enabling our method to outperform most of other currently available predictors. Our work provides a complementary approach to the current algorithms that should be useful in computationally assigning disulfide connectivity patterns and helps in the annotation of protein sequences generated by large-scale whole-genome projects. AVAILABILITY: The prediction web server and Supplementary Material are accessible at http://foo.maths.uq.edu.au/~huber/disulfide  相似文献   

12.

Background

In silico, secretome proteins can be predicted from completely sequenced genomes using various available algorithms that identify membrane-targeting sequences. For metasecretome (collection of surface, secreted and transmembrane proteins from environmental microbial communities) this approach is impractical, considering that the metasecretome open reading frames (ORFs) comprise only 10% to 30% of total metagenome, and are poorly represented in the dataset due to overall low coverage of metagenomic gene pool, even in large-scale projects.

Results

By combining secretome-selective phage display and next-generation sequencing, we focused the sequence analysis of complex rumen microbial community on the metasecretome component of the metagenome. This approach achieved high enrichment (29 fold) of secreted fibrolytic enzymes from the plant-adherent microbial community of the bovine rumen. In particular, we identified hundreds of heretofore rare modules belonging to cellulosomes, cell-surface complexes specialised for recognition and degradation of the plant fibre.

Conclusions

As a method, metasecretome phage display combined with next-generation sequencing has a power to sample the diversity of low-abundance surface and secreted proteins that would otherwise require exceptionally large metagenomic sequencing projects. As a resource, metasecretome display library backed by the dataset obtained by next-generation sequencing is ready for i) affinity selection by standard phage display methodology and ii) easy purification of displayed proteins as part of the virion for individual functional analysis.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-356) contains supplementary material, which is available to authorized users.  相似文献   

13.
Ho SY  Yu FC  Chang CY  Huang HL 《Bio Systems》2007,90(1):234-241
In this paper, we investigate the design of accurate predictors for DNA-binding sites in proteins from amino acid sequences. As a result, we propose a hybrid method using support vector machine (SVM) in conjunction with evolutionary information of amino acid sequences in terms of their position-specific scoring matrices (PSSMs) for prediction of DNA-binding sites. Considering the numbers of binding and non-binding residues in proteins are significantly unequal, two additional weights as well as SVM parameters are analyzed and adopted to maximize net prediction (NP, an average of sensitivity and specificity) accuracy. To evaluate the generalization ability of the proposed method SVM-PSSM, a DNA-binding dataset PDC-59 consisting of 59 protein chains with low sequence identity on each other is additionally established. The SVM-based method using the same six-fold cross-validation procedure and PSSM features has NP=80.15% for the training dataset PDNA-62 and NP=69.54% for the test dataset PDC-59, which are much better than the existing neural network-based method by increasing the NP values for training and test accuracies up to 13.45% and 16.53%, respectively. Simulation results reveal that SVM-PSSM performs well in predicting DNA-binding sites of novel proteins from amino acid sequences.  相似文献   

14.
Post-translational modifications provide the proteins with the possibility to perform functions in addition to those determined by their primary sequence. However, analysis of multifunctional protein structures in the environment of cells and body fluids is made especially difficult by the presence of other interacting proteins. Bioinformatics tools are therefore helpful to predict protein multifunctionality through the identification of serine and threonine residues wherein the hydroxyl group is likely to become modified by phosphorylation or glycosylation. Moreover, serines and threonines where both modifications are likely to occur can also be predicted (YinYang sites), to suggest further functional versatility. Structural modifications of hydroxyl groups of P-, E-, and L-selectins have been predicted and possible functions resulting from such modifications are proposed. Functional changes of the three selectins are based on the assumption that transitory and reversible protein modifications by phosphate and O-GlcNAc cause specific conformational changes and generate binding sites for other proteins. The computer-assisted prediction of glycosylation and phosphorylation sites in selectins should be helpful to assess the contribution of dynamic protein modifications in selectin-mediated inflammatory responses and cell-cell adhesion processes that are difficult to determine experimentally.  相似文献   

15.
We have developed an ab initio protein structure prediction method called chunk-TASSER that uses ab initio folded supersecondary structure chunks of a given target as well as threading templates for obtaining contact potentials and distance restraints. The predicted chunks, selected on the basis of a new fragment comparison method, are folded by a fragment insertion method. Full-length models are built and refined by the TASSER methodology, which searches conformational space via parallel hyperbolic Monte Carlo. We employ an optimized reduced force field that includes knowledge-based statistical potentials and restraints derived from the chunks as well as threading templates. The method is tested on a dataset of 425 hard target proteins < or =250 amino acids in length. The average TM-scores of the best of top five models per target are 0.266, 0.336, and 0.362 by the threading algorithm SP(3), original TASSER and chunk-TASSER, respectively. For a subset of 80 proteins with predicted alpha-helix content > or =50%, these averages are 0.284, 0.356, and 0.403, respectively. The percentages of proteins with the best of top five models having TM-score > or =0.4 (a statistically significant threshold for structural similarity) are 3.76, 20.94, and 28.94% by SP(3), TASSER, and chunk-TASSER, respectively, overall, while for the subset of 80 predominantly helical proteins, these percentages are 2.50, 23.75, and 41.25%. Thus, chunk-TASSER shows a significant improvement over TASSER for modeling hard targets where no good template can be identified. We also tested chunk-TASSER on 21 medium/hard targets <200 amino-acids-long from CASP7. Chunk-TASSER is approximately 11% (10%) better than TASSER for the total TM-score of the first (best of top five) models. Chunk-TASSER is fully automated and can be used in proteome scale protein structure prediction.  相似文献   

16.
Protein secretion plays an important role in bacterial lifestyles. Secreted proteins are crucial for bacterial pathogenesis by making bacteria interact with their environments, particularly delivering pathogenic and symbiotic bacteria into their eukaryotic hosts. Therefore, identification of bacterial secreted proteins becomes an important process for the study of various diseases and the corresponding drugs. In this paper, fusing several new features into Chou’s pseudo-amino acid composition (PseAAC), two support vector machine (SVM)-based ternary classifiers are developed to predict secreted proteins of Gram-negative and Gram-positive bacteria. For the two types of bacteria, the high accuracy of 94.03% and 94.36% are obtained in distinguishing classically secreted, non-classically secreted and non-secreted proteins by our method. In order to compare the practical ability of our method in identifying bacterial secreted proteins with those of six published methods, proteins in Escherichia coli and Bacillus subtilis are collected to construct the test sets of Gram-negative and Gram-positive bacteria, and the prediction results of our method are comparable to those of existing methods. When performed on two public independent data sets for predicting NCSPs, it also yields satisfactory results for Gram-negative bacterial proteins. The prediction server SecretP can be accessed at http://cic.scu.edu.cn/bioinformatics/secretPV2/index.htm.  相似文献   

17.
G Schneider 《Gene》1999,237(1):113-121
Artificial neural networks were trained on the prediction of the subcellular location of bacterial proteins. A cross-validated average prediction accuracy of 93% was reached for distinction between cytoplasmic and non-cytoplasmic proteins, based on the analysis of protein amino-acid composition. Principal component analysis and self-organizing maps were used to create graphical representations of amino-acid sequence space. A clear separation of cytoplasmic, periplasmic, and extracellular proteins was observed. The neural network system was applied to predicting potentially secreted proteins in 15 complete genomes. For mesophile bacteria the predicted fractions of non-cytoplasmic proteins agree with previously published estimates, ranging between 15% and 30%. Characteristics of thermophile genomes might lead to an under-estimation of the fraction of secreted proteins by presently available prediction systems. A self-organizing map was constructed from all 15 bacterial genomes. This technique can reveal additional sequence features independent from exhaustive pair-wise sequence alignment. The Treponema pallidum and Mycobacterium tuberculosis data formed separate clusters indicating unusual characteristics of these genomes.  相似文献   

18.
Kaur H  Raghava GP 《FEBS letters》2004,564(1-2):47-57
In this study, an attempt has been made to develop a neural network-based method for predicting segments in proteins containing aromatic-backbone NH (Ar-NH) interactions using multiple sequence alignment. We have analyzed 3121 segments seven residues long containing Ar-NH interactions, extracted from 2298 non-redundant protein structures where no two proteins have more than 25% sequence identity. Two consecutive feed-forward neural networks with a single hidden layer have been trained with standard back-propagation as learning algorithm. The performance of the method improves from 0.12 to 0.15 in terms of Matthews correlation coefficient (MCC) value when evolutionary information (multiple alignment obtained from PSI-BLAST) is used as input instead of a single sequence. The performance of the method further improves from MCC 0.15 to 0.20 when secondary structure information predicted by PSIPRED is incorporated in the prediction. The final network yields an overall prediction accuracy of 70.1% and an MCC of 0.20 when tested by five-fold cross-validation. Overall the performance is 15.2% higher than the random prediction. The method consists of two neural networks: (i) a sequence-to-structure network which predicts the aromatic residues involved in Ar-NH interaction from multiple alignment of protein sequences and (ii) a structure-to structure network where the input consists of the output obtained from the first network and predicted secondary structure. Further, the actual position of the donor residue within the 'potential' predicted fragment has been predicted using a separate sequence-to-structure neural network. Based on the present study, a server Ar_NHPred has been developed which predicts Ar-NH interaction in a given amino acid sequence. The web server Ar_NHPred is available at and (mirror site).  相似文献   

19.
Production of foreign proteins in the tissues of transgenic animals represents an efficient and economical method of producing therapeutic and pharmaceutical proteins. In this study, we demonstrate that the mouse P12 gene promoter specific to the male accessory sex gland can be used to generate transgenic mice that express human growth hormone (hGH) in their seminal vesicle epithelium. The hGH is secreted into the ejaculated seminal fluids with the seminal vesicle lumen contents containing concentrations of up to 0.5 mg/ml. As semen is a body fluid that can be collected easily on a continuous basis, the production of transgenic animals expressing pharmaceutical proteins into their seminal fluid could prove to be a viable alternative to use of the mammary gland as a bioreactor.  相似文献   

20.
To detect diseases early in the general population, new diagnostic approaches are needed that have adequate sensitivity and specificity. Recent studies have used mass spectrometry to identify a serum proteomic pattern for breast and ovarian cancer. Serum contains 60-80 mg/mL protein, but 57-71% of this is serum albumin, and 8-26% are gamma-globulins. These large proteins must be depleted before smaller, less-abundant proteins can be detected using mass spectrometry, but because serum albumin is known to act as a carrier for smaller proteins, removal of these molecules using columns or filtration may result in the loss of molecules of interest. The objective of this study was to develop a reproducible method to deplete serum samples of high-abundance proteins in order to analyze the less-abundant proteins present in serum. We used organic solvents to precipitate the large proteins out of solution. We also predicted that this would cause many smaller proteins to dissociate from their carrier molecules, allowing for detection of a larger number of peptides and small proteins. These treated samples were analyzed using capillary liquid chromatography coupled with electrospray ionization mass spectrometry. Analysis demonstrated reproducible results. Acetonitrile treatment clearly released many carrier-bound molecular species and was superior to ultrafiltration alone for serum proteomic analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号