首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Dinoflagellates are recognised as one of the major phytoplankton groups that produce dimethylsulphoniopropionate (DMSP), the precursor of the marine trace gas dimethylsulphide (DMS) which has climate-cooling potential. To improve the prospects for including dinoflagellates in global climate models that include DMSP-related processes, we increased the data base for this group by measuring DMSP, DMS-producing enzyme activity (DPEA), carbon, nitrogen and Chl a in nine clonal dinoflagellate cultures (1 heterotrophic and 8 phototrophic strains). Growth rates ranged from 0.11 to 1.92?day?1 with the highest value being for the heterotroph Crypthecodinium cohnii. Overall, we observed two orders of magnitude variability in DMSP content (11–364?mM) and detected DPEA in five of the nine strains (0.61–59.73?fmol?cell?1?h?1). Cell volume varied between 454 and 18,439?μm3 and whilst C and N content were proportional to the cell volume, DMSP content was not. The first DMSP measurements for a dinoflagellate from Antarctic waters and a species with diatom-like plastids are included. Lower DMSP concentrations were found in three small athecate species and a dinoflagellate with haptophyte-like plastids. The highest concentrations and production rates tended to be in globally distributed dinoflagellates and the heterotroph. Photosynthetic species that are distributed in temperate to tropical waters showed low DMSP concentrations and production rates and the polar representative showed moderate concentration and a low production rate. Estuarine species had the lowest concentrations and production rates. These data should help refine the inclusion of dinoflagellates as a functional group in future global climate models.  相似文献   

2.
The ubiquitous, biogenic trace gas dimethylsulfide (DMS) represents the largest natural source of atmospheric sulfur. Given DMS involvement in cloud formation and climate, understanding and parameterizing the oceanic DMS source and cycling processes is a necessary challenge. We report DMS cycling rates from microzooplankton dilution grazing experiments conducted monthly during 1 year in coastal northwestern Mediterranean waters. Concentrations of DMS, its algal precursor dimethylsulfoniopropionate (DMSPt) and chlorophyll a (Chla) ranged 0.9–11 nmol L?1, 10–71 nmol L?1, and 0.2–1.5 µg L?1, respectively. By comparing the growth and stock production rates of the DMSP-producing algae to those of total phytoplankton, we estimated that 3?±?4% (range 0.4–12%) of the carbon primary production was invested in DMSP biosynthesis. Microzooplankton grazing rates on DMSP-producing phytoplankton (0.46–1.45 day?1) were generally higher than those on the bulk assemblage (0.08–0.99 day?1), except in midsummer months. This could have been due to the smaller size of most DMSP producers. There was no indication of micrograzer selection against DMSP-containing phytoplankton, since they were not grazed at lower rates than the bulk phytoplankton assemblage. A proportion of 6–20% of the grazed DMSP was converted into DMS, and this grazing-derived production accounted for 32–96% of dark gross DMS production by the total community. Bacteria consumed daily?≤?14–100% of the gross DMS production, which resulted in biological DMS turnover times of 1 to?≥?10 days. Throughout the year, grazing-mediated DMS production explained 73% of the variance in the DMS concentration, implying that microzooplankton grazing plays a major role in controlling DMS concentration in surface waters across a broad range of environmental and productivity conditions in the Mediterranean Sea. These findings should help improve the representation of herbivore grazing in prognostic models to predict the distribution and dynamics of the global DMS emission and its feedback response to changing climate.  相似文献   

3.
Production of dimethyl sulfide (DMS) from marine samples is often quantified using gas chromatography techniques. Typically, these are labour intensive and have a slow sample turnover rate. Here we demonstrate the use of a portable fast DMS sensor (FDS) that utilises the chemiluminescent reaction of DMS and ozone to measure DMS production in aqueous samples, with a maximum frequency of 10?Hz. We have developed a protocol for quantifying DMS production that removes potential signal interference from other biogenic trace gases such as isoprene (2-methyl-1,3-butadiene) and hydrogen sulfide. The detection limit was 0.89?pM (0.02?ppbv) when using a DMS standard gas mixture. The lowest DMS production rates quantified with the FDS and verified using conventional gas chromatography with flame photometric detection (GC-FPD) were around 0.01?nmol?min?1. There was a strong correlation in DMS production when comparing the FDS and GC-FPD techniques with a range of marine samples (e.g., r 2 ?=?0.94 for Emiliania huxleyi). However, the combined dataset showed the FDS measured 22% higher DMS production than the GC-FPD, with the differences in rates likely due to interfering gases, for example hydrogen sulfide and isoprene. This possible overestimation of DMS production is smaller than the two-fold difference in DMS production between day and night samples from a culture of E. huxleyi. The response time of the instrument to changes in DMS production is method dependent (e.g., geometry of incubation vessel, bubble size) and was approximately 4?min under our conditions when using a culture of E. huxleyi (800?ml) with aeration at 100?ml?min?1. We suggest the FDS can reduce sample handling, is suitable for short- and long-term measurements of DMS production in algal cultures, and will widen the range of DMS research in marine environments.  相似文献   

4.
于1994~1998年期间调查了浮游植物生产的生源气候气体二甲基硫(DMS)及其前身二甲基硫丙酸(DMSPp)在我国胶州湾、芝罘湾、东海的分布状况及其影响因素.结果表明,自然海区中二者浓度都存在明显的时空变化.地理分布规律是,高值出现在沿岸海区和陆架海区,低值出现在外海特别是贫营养海区.就不同季节而言,高值出现在春季或夏季,低值出现在秋季.DMS或DMSPp的分布在大尺度上主要受海流和水团的影响,而在小尺度上营养条件和生物因子则更重要.在近岸海区,硅藻是DMS和DMSPp的重要贡献者.研究海区硝酸盐与DMSPp的关系有两种情况:当硝酸盐浓度低于1μmol/L时,二者为正相关,硝酸盐浓度高于这个阈值时,二者为负相关.表明浮游植物细胞中二甲基硫丙酸作为渗透压调节物质其含量受到氮源可得性的调控.此外,研究结果还显示,生活污水入海、海水养殖等也对DMS和DMSPp的浓度分布有一定影响.  相似文献   

5.
Coral zooxanthellae contain high concentrations of dimethylsulphoniopropionate (DMSP), the precursor of dimethylsulphide (DMS), an aerosol substance that could affect cloud cover, solar radiation and ocean temperatures. Acropora intermedia a dominant staghorn coral in the Indo-Pacific region, contain some of the highest concentrations of DMSP reported in the literature but no studies have shown that corals produce atmospheric DMS in situ and thus could potentially participate in sea surface temperature (SST) regulation over reefs; or how production varies during coral bleaching. We show that A. intermedia from the Great Barrier Reef (GBR) produces significant amounts of atmospheric DMS, in chamber experiments, indicating that coral reefs in this region could contribute to an “ocean thermostat” similar to that described for the western Pacific warm pool, where significantly fewer coral reefs have bleached during the last 25?years because of a cloud-SST feedback. However, when Acropora intermedia was stressed with higher light levels and seawater temperatures DMSP production, an indicator of zooxanthellae expulsion, increased markedly in the chamber, whilst atmospheric DMS emissions almost completely shut down. These results suggest that during increased light levels and seawater temperatures in the GBR coral shut-down atmospheric DMS aerosol production, potentially increasing solar radiation levels over reefs and exacerbating coral bleaching.  相似文献   

6.
Bacterial species associated with the dimethylsulfoniopropionate (DMSP)-producing phytoplankton Scrippsiella trochoidea were cultured and identified, with the aim of establishing their ability to metabolise DMSP, dimethylsulfide (DMS) and dimethylsulfoxide (DMSO). Results demonstrate that of the cultivable bacteria only α-Proteobacteria were capable of producing DMS from DMSP. The concentration of DMSP was shown to affect the amount of DMS produced. Lower DMSP concentrations (1.5?μmol?dm?3) were completely assimilated, whereas higher concentrations (10?μmol?dm?3) resulted in increasing amounts of DMS being produced. By contrast to the restricted set of bacteria that metabolised DMSP,?~?70% of the bacterial isolates were able to ‘consume’ DMS. However, 98-100% of the DMS removed was accounted for as DMSO. Notably, a number of these bacteria would only oxidise DMS in the presence of glucose, including members of the γ-Proteobacteria and Bacteroidetes. The observations from this study, coupled with published field data, identify DMS oxidation to DMSO as a major transformation pathway for DMS, and we speculate that the fate of DMS and DMSP in the field are tightly coupled to the available carbon produced by phytoplankton.  相似文献   

7.
A newly isolated methanogen, strain DMS1T, is the first obligately anaerobic archaeon which was directly enriched and isolated from a freshwater sediment in defined minimal medium containing dimethyl sulfide (DMS) as the sole carbon and energy source. The use of a chemostat with a continuous DMS-containing gas stream as a method of enrichment, followed by cultivation in deep agar tubes, resulted in a pure culture. Since the only substrates utilized by strain DMS1T are methanol, methylamines, methanethiol (MT), and DMS, this organism is considered an obligately methylotrophic methanogen like most other DMS-degrading methanogens. Strain DMS1T differs from all other DMS-degrading methanogens, since it was isolated from a freshwater pond and requires NaCl concentrations (0 to 0.04 M) typical of the NaCl concentrations required by freshwater microorganisms for growth. DMS was degraded effectively only in a chemostat culture in the presence of low hydrogen sulfide and MT concentrations. Addition of MT or sulfide to the chemostat significantly decreased degradation of DMS. Transient accumulation of DMS in MT-amended cultures indicated that transfer of the first methyl group during DMS degradation is a reversible process. On the basis of its low level of homology with the most closely related methanogen, Methanococcoides burtonii (94.5%), its position on the phylogenetic tree, its morphology (which is different from that of members of the genera Methanolobus, Methanococcoides, and Methanohalophilus), and its salt tolerance and optimum (which are characteristic of freshwater bacteria), we propose that strain DMS1T is a representative of a novel genus. This isolate was named Methanomethylovorans hollandica. Analysis of DMS-amended sediment slurries with a fluorescence microscope revealed the presence of methanogens which were morphologically identical to M. hollandica, as described in this study. Considering its physiological properties, M. hollandica DMS1T is probably responsible for degradation of MT and DMS in freshwater sediments in situ. Due to the reversibility of the DMS conversion, methanogens like strain DMS1T can also be involved in the formation of DMS through methylation of MT. This phenomenon, which previously has been shown to occur in sediment slurries of freshwater origin, might affect the steady-state concentrations and, consequently, the total flux of DMS and MT in these systems.  相似文献   

8.
We investigated the regulatory effect of salinity on the production of dimethylsulfide (DMS) and methanethiol (MeSH) in estuarine sediments and the potential interactions with the nitrous oxide (N2O) reductase step of the denitrification pathway. This was achieved by monitoring DMS, MeSH and N2O accumulation in sediment slurries retrieved from a temperate estuary (Ave, NW Portugal). Treatments were performed with and without amendments of potential sulfur gas precursors, DMSP (0–50?μM) or methionine (0–500?μM) at different salinities (0, 15 and 30?ppt). Experimental increases of salinity inhibited DMS accumulation under both oxic and anoxic incubation conditions, and the pattern was observed whether DMSP or methionine was added or not, i.e. lower salinities stimulated DMS net production. In contrast, MeSH tended to accumulate to higher concentrations in higher salinity treatments (15 and 30?ppt). Our results also suggest that while salinity had a direct influence on N2O accumulation, it also may modulated N2O production through its regulatory effect on the formation of MeSH, a compound previously shown to inhibit N2O reduction activity. Overall, our results suggest that changes in salinity may have an important regulatory role in net production of DMS, MeSH and N2O and their potential emissions to the atmosphere.  相似文献   

9.
Dimethyl sulfide (DMS) was produced immediately after the addition of 0.1 to 2 μM β-dimethylsulfonio-propionate (DMSP) to coastal seawater samples. Azide had little effect on the initial rate of DMS production from 0.5 μM added DMSP, but decreased the rate of production after 6 h. Filtration of water samples through membrane filters (pore size, 0.2 μm) greatly reduced DMS production for approximately 10 h, after which time DMS production resumed at a high rate. Autoclaving completely eliminated the production of DMS. The antibiotics chloramphenicol, tetracycline, kanamycin, and vancomycin all had little effect on the accumulation of DMS over the first few hours of incubation, but produced significant inhibition thereafter. The effects of individual antibiotics were additive. Chloroform over a range of concentrations (0.25 to 1.25 mM) had no effects on DMS production. Similarly, organic amendments, including acrylate, glucose, protein, and starch, did not affect DMS accumulation from DMSP. Acrylate, a product of the enzymatic cleavage of DMSP, was metabolized in seawater samples, and two strains of bacteria were isolated with this compound as the growth substrate. These bacteria produced DMS from DMSP. The sensitivity to inhibitors with respect to growth and DMSP-lyase activity varied from strain to strain. These results illustrate the significant potential for microbial conversion of dissolved DMSP to DMS in coastal seawater.  相似文献   

10.
The influence of the seasonal development of microplankton communities on the cycling of dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP) was investigated along a South–North gradient (36–59°N) in the Northwest (NW) Atlantic Ocean. Three surveys allowed the sampling of surface mixed layer (SML) waters at stations extending from the subtropical gyre to the Greenland Current during May, July and October 2003. Pools and transformation rates of DMSP and DMS were quantified and related to prevailing physical and biochemical conditions, phytoplankton abundance and taxonomic composition, as well as bacterioplankton abundance and leucine uptake. The South–North progression of the diatom bloom, a prominent feature in the NW Atlantic, did not influence the production of DMS whereas conditions in the N Atlantic Drift lead to a persistent bloom of DMSP-rich flagellate-dominated phytoplankton community and high net DMS production rates. Macroscale patterns of the observed variables were further explored using principal component analysis (PCA). The first axis of the PCA showed a strong association between the spatio-temporal distribution of DMSP and the abundance of several phytoplankton groups including dinoflagellates and prymnesiophytes, as well as with microbial-mediated DMSPd consumption and yields and rates of the conversion of DMSP into DMS. The second axis revealed a strong association between concentrations of DMS and SML depth and photosynthetically active radiation, a result supporting the prominent role of solar radiation as a driver of DMS dynamics.  相似文献   

11.
Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDS, or MSH added to sediments. However, when DMS was added at approximately 2-muM levels as [C]DMS, metabolism by sediments resulted in a CH(4)/CO(2) ratio of only 0.06. Addition of molybdate increased the ratio to 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block CO(2) production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a "noncompetitive" substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [C]-DMS to yield a CH(4)/CO(2) ratio of approximately 2.8. Reduced methylated sulfur compounds represent a new class of substrates for methanogens and may be potential precursors of methane in a variety of aquatic habitats.  相似文献   

12.
The spatial distributions of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP), DMSP-lyase activity (DLA) and their controlling factors including nutrients, phytoplankton community and bacterial abundance were investigated in the East China Sea (ECS) during fall from October 19 to November 2, 2015. Diatoms and dinoflagellates dominated the phytoplankton community, while other taxonomic groups were rare and mainly found in the oligotrophic open sea. Affected by the high nutrients concentrations, Chl a, DMS, DMSP and DLA showed high values in eutrophic inshore waters, and decreased from the costal zones to the open sea. Statistical analysis suggested that diatoms and dinoflagellates were the main controlling factors of DMS, DMSP, and DLA in ECS. For size-fractionated samples, a reduced contribution of the microplankton from inshore stations to offshore stations affected by the trophic conditions was noted. Meanwhile, this decrease in microplankton led to an increase in the ratio of DLA contributed by picoplankton and free-living bacteria from the estuary area to the offshore region. The DMS sea-to-air flux was calculated using the equation of Nightingale et al. (Glob Biogeochem Cy 14(1):373–387, 2000), and approximately 2.88 × 10?2 Tg of sulfur was transferred from the sea into the atmosphere in the form of DMS in ECS during fall.  相似文献   

13.
The southern Barents Sea is considered to be the most productive area in the Arctic Ocean; however, there are no assessments of daily production rates in the coastal waters. During the summer and autumn of 2007, we investigated the variation of mesozooplankton community structure relative to environmental conditions at 12 coastal stations. Copepods dominated the total zooplankton biomass and abundance during both periods. Diversity indices and the total biomass of zooplankton communities differed significantly between the two seasons. Cluster analyses revealed two distinct groups of stations which were associated with Ura Bay and the adjacent open sea, respectively. Daily production rates of the copepod species examined were calculated using three methods based on: (1) a temperature-dependent equation and (2) two multiple regressions that consider temperature, body weight, and chlorophyll a concentration. Significant seasonal differences for daily production rates were found using all three model equations (p?<?0.05): 358?±?188–1,775?±?791 versus 198?±?85–1,584?±?559?μg?dry?mass?m?3?day?1. Results of principal components analyses demonstrated that the abundance and biomass of herbivorous species were related to variation in chlorophyll a concentration while the abundance and biomass of other species (omnivorous copepods and Ctenophora) were related mainly with water temperature and salinity. Mesozooplankton biomass was higher during this study relative to previous studies. Computed copepod production rates were higher compared with other Arctic seas confirming a high productive potential of the coastal southern Barents Sea.  相似文献   

14.
Microzooplankton herbivory is considered to be a key processby which dimethylsulphoniopropionate (DMSP) in phytoplanktonis transformed to climatically active dimethyl sulphide (DMS).However, there is little firm evidence to show that this occursin natural waters. We used direct measurements of microzooplanktongrazing rates and net DMS production in the southern North Seato examine the impact of herbivory on DMS production. Estimatesof the particulate DMSP ingested by microzooplankton in theform of Phaeocystis sp. were found to account for the DMS productionrates observed.  相似文献   

15.
Dimethyl sulfide (DMS) is a significant source of marine sulfate aerosol and plays an important role in modifying cloud properties. Fully coupled climate simulations using dynamic marine ecosystem and DMS calculations are conducted to estimate DMS fluxes under various climate scenarios and to examine the sign and strength of phytoplankton-DMS-climate feedbacks for the first time. Simulation results show small differences in the DMS production and emissions between pre-industrial and present climate scenarios, except for some areas in the Southern Ocean. There are clear changes in surface ocean DMS concentrations moving into the future, and they are attributable to changes in phytoplankton production and competition driven by complex spatially varying mechanisms. Comparisons between parallel simulations with and without DMS fluxes into the atmosphere show significant differences in marine ecosystems and physical fields. Without DMS, the missing subsequent aerosol indirect effects on clouds and radiative forcing lead to fewer clouds, more solar radiation, and a much warmer climate. Phaeocystis, a uniquely efficient organosulfur producer with a growth advantage under cooler climate states, can benefit from producing the compound through cooling effects of DMS in the climate system. Our results show a tight coupling between the sulfur and carbon cycles. The ocean carbon uptake declines without DMS emissions to the atmosphere. The analysis indicates a weak positive phytoplankton-DMS-climate feedback at the global scale, with large spatial variations driven by individual autotrophic functional groups and complex mechanisms. The sign and strength of the feedback vary with climate states and phytoplankton groups. This highlights the importance of a dynamic marine ecosystem module and the sulfur cycle mechanism in climate projections.  相似文献   

16.
17.
Both solar irradiance and primary production have been proposed as independent controls on seawater dimethyl sulphide (DMS) and dimethylsulphoniopropionate (DMSP) concentrations. However, irradiance also drives photosynthesis, and thus influences a complex set of inter-related processes that modulate marine DMS. We investigate the potential inter-relationships between the rate of primary production (carbon assimilation), water-attenuated irradiance and DMS/DMSP dynamics by applying correlation analysis to a high resolution, concurrently sampled in situ data set from a range of latitudes covering multiple biogeochemical provinces from 3 of the 4 Longhurst biogeochemical domains. The combination of primary production (PP) and underwater irradiance (Iz) within a multivariate regression model is able to explain 55% of the variance in DMS concentrations from all depths within the euphotic zone and 66% of the variance in surface DMS concentrations. Contrary to some previous studies we find a variable representing biological processes is necessary to better account for the variance in DMS. We find that the inclusion of Iz accounts for variance in DMS that is independent from the variance explained by PP. This suggests an important role for solar irradiance (beyond the influence of irradiance upon primary production) in mediating the relationship between the productivity of the ecosystem, DMS/DMSP production and ambient seawater DMS concentrations.  相似文献   

18.
Microcalorimetric measurements of heat production from glucose by Vibrio alginolyticus were made to assess the viability of calorimetry as a technique for studying the metabolism of marine bacteria at organic nutrient concentrations found in marine waters. The results show that the metabolism of glucose by this bacterium can be measured by calorimetry at submicromolar concentrations. A linear correlation between glucose concentration and total heat production was observed over a concentration range of 8 mM to 0.35 μM. It is suggested that these data indicate a constant efficiency of metabolism for this bacterium over the wide range of glucose concentrations studied.  相似文献   

19.
20.
About a decade of dimethylsulphide (DMS) measurements in the North East Pacific are summarized and compared to model simulations. Bottle samples at various depths have been taken three times per year along Line P from the British Columbia coast to Ocean Station Papa (145°?W, 50°?N). Despite the long timeseries, DMS measurements are still sparse and the data show large variabilities in concentrations both spatially and temporally. DMS concentrations in late summer have been consistently high, while spring measurements at the offshore stations suggest a downward trend over the past years. Low values in spring, however, have also been recorded in the late 1990s, which might hint to interannual variability in the onset of the spring bloom and/or plankton assemblage rather than to a response to recent climate change. Some of the variability, both short-term and interannual, can be caused by regional or local preconditioning of the physical environment. The model simulations provide examples where periods of low winds, shallow mixed layers and sometimes high irradiance follow a mixing event and cause DMS peaks on various time scales as well as consistently elevated DMS concentrations for longer timeperiods. The model in its current configuration, which has been calibrated with measurements in the late 1990s/early 2000s, is not able to capture the low values in winter and spring observed in recent years. We suggest that this is due to missing or misrepresented links in the biogeochemical parameterizations of the model, e.g., an incomplete representation of variations in the phytoplankton assemblage. Including a seasonally varying S:N ratio to account for the absence of dinoflagellates in winter and spring significantly improves the simulation. Variability in DMS concentrations can also be induced by natural iron fertilization, which the model reproduces when timing is specified. For example, the model can reproduce the effects of natural volcanic Fe fertilization on surface water plankton dynamics and mixed layer DMS accumulation. The model also shows that the amplitude of the short term variability (days) increases when DMSP producing phytoplankton are less iron limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号